Effect of Exercise Conditioning on Countering the Effects of Obesity and Insulin Resistance in Horses—A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Obesity and Insulin Resistance
3. Obesity and Insulin Resistance in Horses
4. Exercise, Weight Loss, and Insulin Metabolism
5. Exercise, Weight Loss, and Insulin Sensitivity in Horses
6. Practical Tips to Use Exercise Conditioning to Counter the Effects of Obesity and Insulin Resistance
- -
- Exercise the horse to the highest level of intensity suited for his overall health.
- ⚬
- Recall that exercise intensity is directly related to the benefits seen in glucose metabolism.
- ⚬
- In horses with lameness issues, this might be limited to walking, but such horses may benefit from the use of equipment such as an underwater treadmill or swimming pool to decrease weight-bearing on limbs.
- ⚬
- Exercise intensity may be increased even at low speeds by adding hill work and poles.
- -
- Exercise the horse at least 3–6 days per week
- ⚬
- This will help to ensure any acute effects of exercise may last the entire week to provide additive benefits to the longer-term benefits of exercise conditioning.
- -
- Limit calorie intake while ensuring the rest of the diet is adequately balanced
- ⚬
- Work closely with an equine nutritionist.
- ⚬
- Reduce/remove energy-dense concentrates, particularly those rich in starch and sugar.
- ⚬
- Avoid an uncontrolled grazing of pasture.
- ▪
- Use a grazing muzzle if pasture is the only option.
- ⚬
- Focus on forage—hay/preserved forages.
- ▪
- Hay can be easily analyzed, soaked, and weighed to provide controlled and known nutrient intakes.
- ▪
- Hay intake may need to be reduced to 1.5% of body weight and reduced further as needed (and under veterinary supervision) to achieve weight loss.
- ⚬
- Try to feed as much forage as possible (by weight), while ensuring daily calorie intake is lower.
- ▪
- Select hay with a lower caloric density (i.e., less than 1.7 mcal/kg DE; typically with more than 50% ADF).
- ▪
- Soak hay for 30 min to reduce some sugars and calories (disperse the water after soaking).
- ▪
- Use a slow-feed hay net to prolong feeding time.
7. Conclusions
Funding
Conflicts of Interest
References
- Anonymous. Exercise. Available online: https://www.ama-assn.org/topics/exercise (accessed on 12 February 2024).
- Anonymous. Exercise Is Medicine. Available online: https://www.exerciseismedicine.org/ (accessed on 10 February 2024).
- Pataky, Z.; Armand, S.; Müller-Pinget, S.; Golay, A.; Allet, L. Effects of obesity on functional capacity. Obesity 2014, 22, 56–62. [Google Scholar] [CrossRef]
- Durham, A.; Frank, N.; McGowan, C.M.; Menzies-Gow, N.J.; Roelfsema, E.; Vervuert, I.; Feige, K.; Fey, K. ECEIM concensus statement on equine metabolic syndrome. J. Vet. Intern. Med. 2019, 33, 335–349. [Google Scholar] [CrossRef]
- Argo, C.M.; Dugdale, A.H.A.; McGowan, C.M. Considerations for the use of restricted, soaked grass hay diets to promote weight loss in the management of equine metabolic syndrome and obesity. Vet. J. 2015, 206, 170–177. [Google Scholar] [CrossRef]
- Karikoski, N.P.; McGowan, C.M.; Singer, E.R.; Asplin, K.E.; Tulamo, R.-M.; Patterson-Kane, J.C. Pathology of Natural Cases of Equine Endocrinopathic Laminitis Associated with Hyperinsulinemia. Vet. Pathol. 2015, 52, 945–956. [Google Scholar] [CrossRef] [PubMed]
- de Laat, M.; McGowan, C.; Sillence, M.; Pollitt, C.C. Equine laminitis: Induced by 48 hr hyperinsulinemia in Standardbred horses. Equine Vet. J. 2010, 42, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Petersen, M.C.; Shulman, G.I. Mechanisms of Insulin Action and Insulin Resistance. Physiol. Rev. 2018, 98, 2133–2223. [Google Scholar] [CrossRef]
- Sakamoto, K.; Holman, G.D. Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic. Am. J. Physiol.-Endocrinol. Metab. 2008, 295, E29–E37. [Google Scholar] [CrossRef]
- Bird, S.R.; Hawley, J.A. Update on the effects of physical activity on insulin sensitivity in humans. BMJ Open Sport Exerc. Med. 2017, 2, e000143. [Google Scholar] [CrossRef]
- Kojta, I.; Chacińska, M.; Błachnio-Zabielska, A. Obesity, Bioactive Lipids, and Adipose Tissue Inflammation in Insulin Resistance. Nutrients 2020, 12, 1305. [Google Scholar] [CrossRef]
- Yang, Q.; Vijayakumar, A.; Kahn, B.B. Metabolites as regulators of insulin sensitivity and metabolism. Nat. Rev. Mol. Cell Biol. 2018, 19, 654–672. [Google Scholar] [CrossRef]
- Navale, A.M.; Paranjape, A.N. Glucose transporters: Physiological and pathological roles. Biophys. Rev. 2016, 8, 5–9. [Google Scholar] [CrossRef]
- Bruun, J.M.; Lihn, A.S.; Verdich, C.; Pedersen, S.B.; Toubro, S.; Astrup, A.; Richelsen, B. Regulation of adiponectin by adipose tissue-derived cytokines: In vivo and in vitro investigations in humans. Am. J. Physiol.-Endocrinol. Metab. 2003, 285, E527–E533. [Google Scholar] [CrossRef]
- Hotamisligil, G.S.; Peraldi, P.; Budavari, A.; Ellis, R.; White, M.F.; Spiegelman, B.M. IRS-1-Mediated Inhibition of Insulin Receptor Tyrosine Kinase Activity in TNF-α- and Obesity-Induced Insulin Resistance. Science 1996, 271, 665–670. [Google Scholar] [CrossRef] [PubMed]
- Hotamisligil, G.S. Molecular mechanisms of insulin resistance and the role of the adipocyte. Int. J. Obes. 2000, 24, S23–S27. [Google Scholar] [CrossRef]
- Pehmøller, C.; Brandt, N.; Birk, J.B.; Høeg, L.D.; Sjøberg, K.A.; Goodyear, L.J.; Kiens, B.; Richter, E.A.; Wojtaszewski, J.F. Exercise alleviates lipid-induced insulin resistance in human skeletal muscle-signaling interaction at the level of TBC1 domain family member 4. Diabetes 2012, 61, 2743–2752. [Google Scholar] [CrossRef]
- Qatanani, M.; Lazar, M. Mechanisms of obesity-associated insulin resistance: Many choices on the menu. Genes. Dev. 2007, 21, 1443–1455. [Google Scholar] [CrossRef]
- Kahn, S.E.; Hull, R.L.; Utzschneider, K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006, 444, 840–846. [Google Scholar] [CrossRef]
- Zdrojewicz, Z.; Popowicz, E.; Szyca, M.; Michalik, T.; Śmieszniak, B. TOFI phenotype—Its effect on the occurrence of diabetes. Pediatr. Endocrinol. Diabetes Metab. 2017, 23, 96–100. [Google Scholar] [CrossRef]
- Sequeira, I.R.; Yip, W.; Lu, L.; Jiang, Y.; Murphy, R.; Plank, L.; Zhang, S.; Liu, H.; Chuang, C.-L.; Vazhoor-Amarsingh, G.; et al. Visceral Adiposity and Glucoregulatory Peptides are Associated with Susceptibility to Type 2 Diabetes: The TOFI_Asia Study. Obesity 2020, 28, 2368–2378. [Google Scholar] [CrossRef]
- DiNicolantonio, J.J.; Mehta, V.; Onkaramurthy, N.; O’Keefe, J.H. Fructose-induced inflammation and increased cortisol: A new mechanism for how sugar induces visceral adiposity. Prog. Cardiovasc. Dis. 2018, 61, 3–9. [Google Scholar] [CrossRef]
- Gorenko, Z.; Ocheretko, B.; Kovelskaya, A. an interrelation of physical working capacity and body component composition indicators of amateur athletes. Slobozhanskyi Her. Sci. Sport 2017, 60, 33–37. [Google Scholar] [CrossRef]
- Hergenroeder, A.L.; Brach, J.S.; Otto, A.D.; Sparto, P.J.; Jakicic, J.M. The Influence of Body Mass Index on Self-report and Performance-based Measures of Physical Function in Adult Women. Cardiopulm. Phys. Ther. J. 2011, 22, 11–20. [Google Scholar] [CrossRef]
- Laurson, K.R.; Eisenmann, J.C. Prevalence of Overweight Among High School Football Linemen. JAMA 2007, 297, 359–364. [Google Scholar] [CrossRef]
- Michailidis, Y. Physical condition differences between semi-professional and amateur soccer players. Int. J. Sport Cult. Sci. 2018, 6, 191–202. [Google Scholar] [CrossRef]
- Ekkekakis, P.; Lind, E. Exercise does not feel the same when you are overweight: The impact of self-selected and imposed intensity on affect and exertion. Int. J. Obes. 2006, 30, 652–660. [Google Scholar] [CrossRef]
- Mengeste, A.M.; Rustan, A.C.; Lund, J. Skeletal muscle energy metabolism in obesity. Obesity 2021, 29, 1582–1595. [Google Scholar] [CrossRef]
- Friedman, J.E.; Caro, J.; Pories, W.J.; Azevedo, J.L.; Dohm, G.L. Glucose metabolism in incubated human muscle: Effect of obesity and non-insulin-dependent diabetes mellitus. Metabolism 1994, 43, 1047–1054. [Google Scholar] [CrossRef]
- Mondal, H.; Mishra, S.P. Effect of BMI, Body Fat Percentage and Fat Free Mass on Maximal Oxygen Consumption in Healthy Young Adults. J. Clin. Diagn. Res. 2017, 11, cc17–cc20. [Google Scholar] [CrossRef]
- Hulens, M.; Vansant, G.; Lysens, R.; Claessens, A.L.; Muls, E. Exercise capacity in lean versus obese women. Scand. J. Med. Sci. Sports 2001, 11, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Pratt-Phillips, S.; Munjizun, A. Impacts of Adiposity on Exercise Performance in Horses. Animals 2023, 13, 666. [Google Scholar] [CrossRef]
- Dugdale, A.; Curtis, G.; Harris, P.; Argo, C. Assessment of body fat in the pony: Part I. Relationships between the anatomical distribution of adipose tissue, body composition and body condition. Equine Vet. J. 2011, 43, 552–561. [Google Scholar] [CrossRef]
- Dugdale, A.; Curtis, G.; Milne, E.; Harris, P.; Argo, C. Assessment of body fat in the pony: Part II. Validation of the deuterium oxide dilution technique for the measurement of body fat. Equine Vet. J. 2011, 43, 562–570. [Google Scholar] [CrossRef]
- Henneke, D.R.; Potter, G.D.; Kreider, J.L.; Yeates, B.F. Relationship between condition score, physical measurements and body fat percentage in mares. Equine Vet. J. 1983, 15, 371–372. [Google Scholar] [CrossRef]
- Carter, R.A.; Geor, R.; Staniar, W.B.; Cubitt, T.A.; Harris, P.A. Apparent adiposity assessed by standardised scoring systems and morphometric measurements in horses and ponies. Vet. J. 2009, 179, 204–210. [Google Scholar] [CrossRef]
- Morrison, P.K.; Harris, P.A.; Maltin, C.A.; Grove-White, D.; Argo, C.M. EQUIFAT: A novel scoring system for the semi-quantitative evaluation of regional adipose tissues in Equidae. PLoS ONE 2017, 12, e0173753. [Google Scholar] [CrossRef] [PubMed]
- Thatcher, C.D.; Pleasant, R.S.; Geor, R.J.; Elvinger, F. Prevalence of overconditioning in mature horses in southwest Virginia during the summer. J. Vet. Intern. Med. 2012, 26, 1413–1418. [Google Scholar] [CrossRef]
- Pratt-Phillips, S.E.; Owens, K.M.; Dowler, L.E.; Cloninger, M.T. Assessment of Resting Insulin and Leptin Concentrations and Their Association With Managerial and Innate Factors in Horses. J. Equine Vet. Sci. 2010, 30, 127–133. [Google Scholar] [CrossRef]
- Pagan, J.D.; Martin, O.A.; Crowley, N.L. Relationship between Body Condition and Metabolic Parameters in Sport Horses, Pony Hunters and Polo Ponies. J. Equine Vet. Sci. 2009, 29, 418–420. [Google Scholar] [CrossRef]
- Pratt-Phillips, S.; Munjizun, A.; Janicki, K. Visual Assessment of Adiposity in Elite Hunter Ponies. J. Equine Vet. Sci. 2023, 121, 104199. [Google Scholar] [CrossRef]
- Bamford, N.J.; Potter, S.J.; Harris, P.A.; Bailey, S.R. Breed differences in insulin sensitivity and insulinemic responses to oral glucose in horses and ponies of moderate body condition score. Domest. Anim. Endocrinol. 2014, 47, 101–107. [Google Scholar] [CrossRef]
- Giles, S.L.; Rands, S.A.; Nicol, C.; Harris, P. Obesity prevalence and associated risk factors in outdoor living domestic horses and ponies. PeerJ 2014, 121, e299. [Google Scholar] [CrossRef] [PubMed]
- Van Den Wollenberg, L.; Vandendriessche, V.; van Maanen, K.; Counotte, G.H.M. Comparison of Two Diagnostic Methods to Detect Insulin Dysregulation in Horses under Field Conditions. J. Equine Vet. Sci. 2020, 88, 102954. [Google Scholar] [CrossRef]
- Coleman, M.C.; Whitfield-Cargile, C.M.; Madrigal, R.G.; Cohen, N.D. Comparison of the microbiome, metabolome, and lipidome of obese and non-obese horses. PLoS ONE 2019, 14, e0215918. [Google Scholar] [CrossRef]
- Biddle, A.S.; Tomb, J.-F.; Fan, Z. Microbiome and Blood Analyte Differences Point to Community and Metabolic Signatures in Lean and Obese Horses. Front. Vet. Sci. 2018, 5, 225. [Google Scholar] [CrossRef]
- Frank, N.; Tadros, E. Insulin dysregulation. Equine Vet. J. 2014, 46, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Pratt-Phillips, S.E.; Geor, R.J.; McCutcheon, L.J. Comparison among the euglycemic-hyperinsulinemic clamp, insulin-modified frequently sampled intravenous glucose tolerance test, and oral glucose tolerance test for assessment of insulin sensitivity in healthy Standardbreds. Am. J. Vet. Res. 2015, 76, 84–91. [Google Scholar] [CrossRef]
- Kronfeld, D.S.; Treiber, K.H.; Geor, R.J. Comparison of nonspecific indications and quantitative methods for the assessment of insulin resistance in horses and ponies. J. Am. Vet. Med. Assoc. 2005, 226, 712–719. [Google Scholar] [CrossRef]
- Treiber, K.H.; Kronfeld, D.S.; Hess, T.M.; Boston, R.C.; Harris, P.A. Use of proxies and reference quintiles obtained from minimal model analysis for determination of insulin sensitivity and pancreatic beta-cell responsiveness in horses. Am. J. Vet. Res. 2005, 66, 2114–2121. [Google Scholar] [CrossRef]
- Schuver, A.; Frank, N.; Chameroy, K.; Elliott, S.B. Assessment of insulin and glucose dynamics by using an oral sugar test in horses. J. Equine Vet. Sci. 2014, 34, 465–470. [Google Scholar] [CrossRef]
- Box, J.R.; McGowan, C.M.; Raekallio, M.R.; Mykkänen, A.K.; Carslake, H.; Karikoski, N.P. Insulin dysregulation in a population of Finnhorses and associated phenotypic markers of obesity. J. Vet. Intern. Med. 2020, 34, 1599–1605. [Google Scholar] [CrossRef]
- Reynolds, A.; Keen, J.A.; Fordham, T.; Morgan, R.A. Adipose tissue dysfunction in obese horses with equine metabolic syndrome. Equine Vet. J. 2019, 51, 760–766. [Google Scholar] [CrossRef]
- d’Fonseca, N.M.M.; Gibson, C.M.E.; van Doorn, D.A.; de Ruijter-Villani, M.; Stout, T.A.E.; Roelfsema, E. Effect of long-term overfeeding of a high-energy diet on glucose tolerance in Shetland pony mares. J. Vet. Intern. Med. 2020, 34, 1339–1349. [Google Scholar] [CrossRef]
- Ribeiro, R.M.; Ribeiro, D.S.; Paz, C.F.R.; Gobesso, A.A.; Faleiros, R.R. Insulin dysregulation in horses with induced obesity. Pesqui. Veterinária Bras. 2020, 40, 39–45. [Google Scholar] [CrossRef]
- Pratt, S.E.; Geor, R.J.; McCutcheon, L.J. Effects of dietary energy source and physical conditioning on insulin sensitivity and glucose tolerance in Standardbred horses. Equine Vet. J. 2006, 38, 579–584. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, R.M.; Boston, R.C.; Stefanovski, D.; Kronfeld, D.S.; Harris, P.A. Obesity and diet affect glucose dynamics and insulin sensitivity in Thoroughbred geldings. J. Anim. Sci. 2003, 81, 2333–2342. [Google Scholar] [CrossRef] [PubMed]
- de Laat, M.A.; Reiche, D.B.; Sillence, M.N.; McGree, J.M. Incidence and risk factors for recurrence of endocrinopathic laminitis in horses. J. Vet. Intern. Med. 2019, 33, 1473–1482. [Google Scholar] [CrossRef] [PubMed]
- Suagee, J.K.; Corl, B.; Crisman, M.; Pleasant, R.S.; Thatcher, C.D.; Geor, R.J. Relationships between body condition score and plasma inflammatory cytokines, insulin and lipids in a mixed population of light-breed horses. J. Vet. Intern. Med. 2013, 27, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.A.; Bamford, N.J.; Bailey, S.R. Equine metabolic syndrome: Evolution of understanding over two decades: A personal perspective. Anim. Prod. Sci. 2020, 60, 2103–2110. [Google Scholar] [CrossRef]
- Ragno, V.M.; Zello, G.A.; Klein, C.D.; Montgomery, J.B. From Table to Stable: A Comparative Review of Selected Aspects of Human and Equine Metabolic Syndrome. J. Equine Vet. Sci. 2019, 79, 131–138. [Google Scholar] [CrossRef]
- Morgan, R.; Keen, J.; McGowan, C. Equine metabolic syndrome. Vet. Rec. 2015, 177, 173–179. [Google Scholar] [CrossRef]
- Carter, R.A.; Treiber, K.H.; Geor, R.J.; Douglass, L.; Harris, P.A. Prediction of incipient pasture-associated laminitis from hyperinsulinaemia, hyperleptinaemia and generalised and localised obesity in a cohort of ponies. Equine Vet. J. 2009, 41, 171–178. [Google Scholar] [CrossRef]
- Banse, H.E.; Frank, N.; Kwong, G.P.; McFarlane, D. Relationship of oxidative stress in skeletal muscle with obesity and obesity-associated hyperinsulinemia in horses. Can. J. Vet. Res. 2015, 79, 329–338. [Google Scholar] [PubMed]
- Adams, A.A.; Katepalli, M.P.; Kohler, K.; Reedy, S.E.; Stilz, J.P.; Vick, M.M.; Fitzgerald, B.P.; Lawrence, L.M.; Horohov, D.W. Effect of body condition, body weight and adiposity on inflammatory cytokine responses in old horses. Vet. Immunol. Immunopathol. 2009, 127, 286–294. [Google Scholar] [CrossRef]
- Vick, M.M.; Adams, A.A.; Murphy, B.A.; Sessions, D.R.; Horohov, D.W.; Cook, R.F.; Shelton, B.J.; Fitzgerald, B.P. Relationships among inflammatory cytokines, obesity, and insulin sensitivity in the horses. J. Anim. Sci. 2007, 85, 1144–1155. [Google Scholar] [CrossRef] [PubMed]
- Zak, A.; Siwinska, N.; Elzinga, S.; Barker, V.D.; Stefaniak, T.; Schanbacher, B.J.; Place, N.J.; Niedzwiedz, A.; Adams, A.A. Effects of equine metabolic syndrome on inflammation and acute-phase markers in horses. Domest. Anim. Endocrinol. 2020, 72, 106448. [Google Scholar] [CrossRef]
- Girardi, F.M.; da Fonseca, L.A.; Ribeiro Filho, J.D.; Souto, P.C.; Ferreira, D.A.C.; Dornelas, L.; Bento, L.D.; de Carvalho Filho, W.P. Influence of Obesity on Serum Concentrations of Acute-Phase Proteins in Horses. J. Equine Vet. Sci. 2019, 83, 102810. [Google Scholar] [CrossRef]
- Pleasant, R.S.; Suagee, J.K.; Thatcher, C.D.; Elvinger, F.; Geor, R.J. Adiposity, plasma insulin, leptin, lipids, and oxidative stress in mature light breed horses. J. Vet. Intern. Med. 2013, 27, 576–582. [Google Scholar] [CrossRef]
- Ungru, J.; Blüher, M.; Coenen, M.; Raila, J.; Boston, R.; Vervuert, I. Effects of body weight reduction on blood adipokines and subcutaneous adipose tissue adipokine mRNA expression profiles in obese ponies. Vet. Rec. 2012, 171, 528. [Google Scholar] [CrossRef] [PubMed]
- Daradics, Z.; Crecan, C.M.; Rus, M.A.; Morar, I.A.; Mircean, M.V.; Cătoi, A.F.; Cecan, A.D.; Cătoi, C. Obesity-Related Metabolic Dysfunction in Dairy Cows and Horses: Comparison to Human Metabolic Syndrome. Life 2021, 11, 1406. [Google Scholar] [CrossRef]
- Hurrle, S.; Hsu, W.H. The etiology of oxidative stress in insulin resistance. Biomed. J. 2017, 40, 257–262. [Google Scholar] [CrossRef]
- Carter, R.; McCutcheon, L.J.; George, L.; Smith, T.; Frank, N.; Geor, R. Effects of diet-induced weight gain on insulin sensitivity and plasma hormone and lipid concentrations in horses. Am. J. Vet. Res. 2009, 70, 1250–1258. [Google Scholar] [CrossRef] [PubMed]
- Quinn, R.W.; Burk, A.O.; Hartsock, T.G.; Petersen, E.D.; Whitley, N.C.; Treiber, K.H.; Boston, R.C. Insulin Sensitivity in Thoroughbred Geldings: Effect of Weight Gain, Diet, and Exercise on Insulin Sensitivity in Thoroughbred Geldings. J. Equine Vet. Sci. 2008, 28, 728–738. [Google Scholar] [CrossRef]
- Blaue, D.; Schedlbauer, C.; Starzonek, J.; Gittel, C.; Brehm, W.; Einspanier, A.; Vervuert, I. Effects of body weight gain on insulin and lipid metabolism in equines. Domest. Anim. Endocrinol. 2019, 68, 111–118. [Google Scholar] [CrossRef]
- Burrows, A.M. Relationship between Live Body Condition Score and Internal Kidney, Pelvic, and Heart Fat Measurements in Equine Carcasses. Ph.D. Thesis, West Texas A&M University, Canyon, TX, USA, 2017. [Google Scholar]
- Siwinska, N.; Janus, I.; Zak-Bochenek, A.; Noszczyk-Nowak, A. Influence of Obesity on Histological Tissue Structure of the Cardiovascular System in Horsess. Animals 2022, 12, 732. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.-H.; Son, S.-K.; Cho, B.-W.; Lee, H.-K.; Kong, H.-S.; Jeon, G.-J.; Park, K.-D. Effects of change of body weight on racing time in Thoroughbred racehorses. J. Anim. Sci. Technol. 2008, 50, 741–746. [Google Scholar]
- Powell, D.M.; Bennett-Wimbush, K.; Peeples, A.; Duthie, M. Evaluation of Indicators of Weight-Carrying Ability of Light Riding Horses. J. Equine Vet. Sci. 2008, 28, 28–33. [Google Scholar] [CrossRef]
- Munjizun, A.; Gluck, C.; Walston, L.; High, K.; Hunter, R.; Pratt-Phillips, S. Effect of weight carriage on work effort in horses. Comp. Exerc. Physiol. 2023, 19, 511–516. [Google Scholar] [CrossRef]
- Stefánsdóttir, G.J.; Gunnarsson, V.; Roepstorff, L.; Ragnarsson, S.; Jansson, A. The effect of rider weight and additional weight in Icelandic horses in tölt: Part I. Physiological responses. Animal 2017, 11, 1558–1566. [Google Scholar] [CrossRef]
- Jansson, A.; Gunnarsson, V.Þ.; Ringmark, S.; Ragnarsson, S.; Söderroos, D.; Ásgeirsson, E.; Jóhannsdóttir, T.R.; Liedberg, C.; Stefánsdóttir, G.J. Increased body fat content in horses alters metabolic and physiological exercise response, decreases performance, and increases locomotion asymmetry. Physiol. Rep. 2021, 9, e14824. [Google Scholar] [CrossRef]
- Webb, S.P.; Potter, G.D.; Evans, J.W.; Webb, G.W. Influence of body fat content on digestible energy requirements of exercising horses in temperate and hot environments. J. Equine Vet. Sci. 1990, 10, 116–120. [Google Scholar] [CrossRef]
- Sanderson, S. The epidemic of canine obesity and its role in osteoarthritis. Isr. J. Vet. Med. 2012, 67, 195–202. [Google Scholar]
- Frye, C.W.; Shmalberg, J.W.; Wakshlag, J.J. Obesity, exercise and orthopedic disease. Vet. Clin. Small Anim. Pract. 2016, 46, 831–841. [Google Scholar] [CrossRef] [PubMed]
- Jaqueth, A.L.; Iwaniuk, M.E.; Burk, A.O. Characterization of the Prevalence and Management of Over-Conditioned Ponies and Horses in Maryland. J. Equine Vet. Sci. 2018, 68, 26–32. [Google Scholar] [CrossRef]
- Gleeson, M.; Bishop, N.C.; Stensel, D.J.; Lindley, M.R.; Mastana, S.S.; Nimmo, M.A. The anti-inflammatory effects of exercise: Mechanisms and implications for the prevention and treatment of disease. Nat. Rev. Immunol. 2011, 11, 607–615. [Google Scholar] [CrossRef]
- Magkos, F.; Tsekouras, Y.; Kavouras, S.A.; Mittendorfer, B.; Sidossis, L.S. Improved insulin sensitivity after a single bout of exercise is curvilinearly related to exercise energy expenditure. Clin. Sci. 2008, 114, 59–64. [Google Scholar] [CrossRef]
- Steenberg, D.E.; Jørgensen, N.B.; Birk, J.B.; Sjøberg, K.A.; Kiens, B.; Richter, E.A.; Wojtaszewski, J.F.P. Exercise training reduces the insulin-sensitizing effect of a single bout of exercise in human skeletal muscle. J. Physiol. 2019, 597, 89–103. [Google Scholar] [CrossRef]
- Kjøbsted, R.; Munk-Hansen, N.; Birk, J.B.; Foretz, M.; Viollet, B.; Björnholm, M.; Zierath, J.R.; Treebak, J.T.; Wojtaszewski, J.F.P. Enhanced Muscle Insulin Sensitivity After Contraction/Exercise Is Mediated by AMPK. Diabetes 2016, 66, 598–612. [Google Scholar] [CrossRef]
- Jensen, T.E.; Sylow, L.; Rose, A.J.; Madsen, A.B.; Angin, Y.; Maarbjerg, S.J.; Richter, E.A. Contraction-stimulated glucose transport in muscle is controlled by AMPK and mechanical stress but not sarcoplasmatic reticulum Ca(2+) release. Mol. Metab. 2014, 3, 742–753. [Google Scholar] [CrossRef]
- Burke, L.M.; Loon, L.J.C.v.; Hawley, J.A. Postexercise muscle glycogen resynthesis in humans. J. Appl. Physiol. 2017, 122, 1055–1067. [Google Scholar] [CrossRef]
- DiMenna, F.J.; Arad, A.D. The acute vs. chronic effect of exercise on insulin sensitivity: Nothing lasts forever. Cardiovasc Endocrinol Metab 2021, 10, 149–161. [Google Scholar] [CrossRef]
- Dela, F.; Ploug, T.; Handberg, A.; Petersen, L.N.; Larsen, J.J.; Mikines, K.J.; Galbo, H. Physical training increases muscle GLUT4 protein and mRNA in patients with NIDDM. Diabetes 1994, 43, 862–865. [Google Scholar] [CrossRef]
- Richter, E.A.; Hargreaves, M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol. Rev. 2013, 93, 993–1017. [Google Scholar] [CrossRef]
- Greiwe, J.S.; Hickner, R.C.; Hansen, P.A.; Racette, S.B.; Chen, M.M.; Holloszy, J.O. Effects of endurance exercise training on muscle glycogen accumulation in humans. J. Appl. Physiol. 1999, 87, 222–226. [Google Scholar] [CrossRef]
- Duncan, G.E.; Perri, M.G.; Theriaque, D.W.; Hutson, A.D.; Eckel, R.H.; Stacpoole, P.W. Exercise Training, Without Weight Loss, Increases Insulin Sensitivity and Postheparin Plasma Lipase Activity in Previously Sedentary Adults. Diabetes Care 2003, 26, 557–562. [Google Scholar] [CrossRef]
- Ross, R. Does exercise without weight loss improve insulin sensitivity? Diabetes Care 2003, 26, 944–946. [Google Scholar] [CrossRef]
- Campbell, P.T.; Gross, M.D.; Potter, J.D.; Schmitz, K.H.; Duggan, C.; McTiernan, A.; Ulrich, C.M. Effect of exercise on oxidative stress: A 12-month randomized, controlled trial. Med. Sci. Sports Exerc. 2010, 42, 1448–1453. [Google Scholar] [CrossRef]
- Nojima, H.; Watanabe, H.; Yamane, K.; Kitahara, Y.; Sekikawa, K.; Yamamoto, H.; Yokoyama, A.; Inamizu, T.; Asahara, T.; Kohno, N. Effect of aerobic exercise training on oxidative stress in patients with type 2 diabetes mellitus. Metabolism 2008, 57, 170–176. [Google Scholar] [CrossRef]
- Whillier, S. Exercise and Insulin Resistance. In Physical Exercise for Human Health; Xiao, J., Ed.; Springer: Singapore, 2020; pp. 137–150. [Google Scholar]
- Gonzalez-Ortiz, M.; Robles-Cervantes, J.; Cardenas-Camarena, L.; Bustos-Saldana, R.; Martinez-Abundis, E. The effects of surgically removing subcutaneous fat on the metabolic profile and insulin sensitivity in obese women after large-volume liposuction treatment. Horm. Metab. Res. 2002, 34, 446–449. [Google Scholar] [CrossRef]
- Giugliano, G.; Nicoletti, G.; Grella, E.; Giugliano, F.; Esposito, K.; Scuderi, N.; D’Andrea, F. Effect of liposuction on insulin resistance and vascular inflammatory markers in obese women. Br. J. Plast. Surg. 2004, 57, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Brennan, A.M.; Standley, R.A.; Anthony, S.J.; Grench, K.E.; Helbling, N.L.; DeLany, J.P.; Cornnell, H.H.; Yi, F.; Stefanovic-Racic, M.; Toledo, F.G.S.; et al. Weight Loss and Exercise Differentially Affect Insulin Sensitivity, Body Composition, Cardiorespiratory Fitness, and Muscle Strength in Older Adults With Obesity: A Randomized Controlled Trial. J. Gerontol. Ser. A 2021, 77, 1088–1097. [Google Scholar] [CrossRef] [PubMed]
- Ryan, A.S.; Ge, S.; Blumenthal, J.B.; Serra, M.C.; Prior, S.J.; Goldberg, A.P. Aerobic Exercise and Weight Loss Reduce Vascular Markers of Inflammation and Improve Insulin Sensitivity in Obese Women. J. Am. Geriatr. Soc. 2014, 62, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Gallo, G.; Candilio, G.; De Luca, E.; Iannicelli, A.; Sciaudone, G.; Pellino, G.; Sacco, R.; Selvaggi, F.; Sammarco, G. Bariatric surgery and rheumatic diseases: A literature review. Rev. Recent. Clin. Trials 2018, 13, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Edwards, C.; Rogers, A.; Lynch, S.; Pylawka, T.; Silvis, M.; Chinchilli, V.; Mosher, T.; Black, K. The effects of bariatric surgery weight loss on knee pain in patients with osteoarthritis of the knee. Arthritis 2012, 2012, 504189. [Google Scholar] [CrossRef] [PubMed]
- Powell, D.M.; Reedy, S.E.; Sessions, D.R.; Fitzgerald, B.P. Effect of short-term exercise training on insulin sensitivity in obese and lean Mares. Equine Vet. J. 2002, 34, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Stewart-Hunt, L.; Pratt-Phillips, S.; McCutcheon, L.J.; Geor, R.J. Dietary energy source and physical conditioning affect insulin sensitivity and skeletal muscle glucose metabolism in horses. Equine Vet. J. 2010, 42, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Stewart-Hunt, L.; Geor, R.J.; McCutcheon, L.J. Effects of short-term training on insulin sensitivity and skeletal muscle glucose metabolism in Standardbred horses. Equine Vet. J. Suppl. 2006, 36, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Carter, R.A.; McCutcheon, L.J.; Valle, E.; Meilahn, E.N.; Geor, R.J. Effects of exercise training on adiposity, insulin sensitivity, and plasma hormone and lipid concentrations in overweight or obese, insulin-resistant horses. Am. J. Vet. Res. 2010, 71, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Freestone, J.F.; Beadle, R.; Shoemaker, K.; Bessin, R.T.; Wolfsheimer, K.J.; Church, C. Improved insulin sensitivity in hyperinsulinaemic ponies through physical conditioning and controlled feed intake. Equine Vet. J. 1992, 24, 187–190. [Google Scholar] [CrossRef]
- Turner, S.P.; Hess, T.M.; Treiber, K.; Mello, E.B.; Souza, B.G.; Almeida, F.Q. Comparison of Insulin Sensitivity of Horses Adapted to Different Exercise Intensities. J. Equine Vet. Sci. 2011, 31, 645–649. [Google Scholar] [CrossRef]
- de Laat, M.A.; Hampson, B.A.; Sillence, M.N.; Pollitt, C.C. Sustained, Low-Intensity Exercise Achieved by a Dynamic Feeding System Decreases Body Fat in Ponies. J. Vet. Intern. Med. 2016, 30, 1732–1738. [Google Scholar] [CrossRef]
- Moore, J.L.; Siciliano, P.D.; Pratt-Phillips, S.E. Effects of Diet Versus Exercise on Morphometric Measurements, Blood Hormone Concentrations, and Oral Sugar Test Response in Obese Horses. J. Equine Vet. Sci. 2019, 78, 38–45. [Google Scholar] [CrossRef]
- Bamford, N.J.; Potter, S.J.; Baskerville, C.L.; Harris, P.A.; Bailey, S.R. Influence of dietary restriction and low-intensity exercise on weight loss and insulin sensitivity in obese equids. J. Vet. Intern. Med. 2019, 33, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Gordon, M.; Jerina, M.; Raub, R.; Davison, K.; Young, J.; Williamson, K. The effects of dietary manipulation and exercise on weight loss and related indices of health in horses. Comp. Exerc. Physiol. 2009, 6, 33–42. [Google Scholar] [CrossRef]
- Van Weyenberg, S.; Hesta, M.; Buyse, J.; Janssens, G.P.J. The effect of weight loss by energy restriction on metabolic profile and glucose tolerance in ponies. J. Anim. Physiol. Anim. Nutr. 2008, 92, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Dugdale, A.H.A.; Curtis, G.C.; Cripps, P.; Harris, P.A.; Argo, C.M. Effect of dietary restriction on body condition, composition and welfare of overweight and obese pony mares. Equine Vet. J. 2010, 42, 600–610. [Google Scholar] [CrossRef]
- Gill, J.C.; Pratt-Phillips, S.E.; Mansmann, R.; Siciliano, P.D. Weight Loss Management in Client-Owned Horses. J. Equine Vet. Sci. 2016, 39, 80–89. [Google Scholar] [CrossRef]
- Argo, C.M.; Curtis, G.; Grove-White, D.; Dugdale, A.; Barfoot, C.F.; Harris, P. Weight loss resistance: A further consideration for the nutritional management of obese Equidae. Vet. J. 2012, 194, 179–188. [Google Scholar] [CrossRef]
- Frank, N.; Elliott, S.; Boston, R.C. Effects of long-term oral administration of levothyrozine sodium on glucose dynamics in healthy adult horses. Am. J. Vet. Res. 2008, 69, 76–81. [Google Scholar] [CrossRef]
- Lacombe, V.A.; Hinchcliff, K.W.; Geor, R.J.; Baskin, C.R. Muscle glycogen depletion and subsequent replenishment affect anaerobic capacity of horses. J. Appl. Physiol. 2001, 91, 1782–1790. [Google Scholar] [CrossRef]
- Geor, R.J.; Larsen, L.; Waterfall, H.L.; Stewart-Hunt, L.; McCutcheon, L.J. Route of carbohydrate administration affects early post exercise muscle glycogen storage in horses. Equine Vet. J. 2006, 38, 590–595. [Google Scholar] [CrossRef]
- Pratt, S.E.; Geor, R.J.; Spriet, L.L.; McCutcheon, L.J. Time course of insulin sensitivity and skeletal muscle glycogen synthase activity after a single bout of exercise in horses. J. Appl. Physiol. 2007, 103, 1063–1069. [Google Scholar] [CrossRef] [PubMed]
- Valberg, S.J.; Velez-Irizarry, D.; Williams, Z.J.; Pagan, J.D.; Mesquita, V.; Waldridge, B.; Maresca-Fichter, H. Novel Expression of GLUT3, GLUT6 and GLUT10 in Equine Gluteal Muscle Following Glycogen-Depleting Exercise: Impact of Dietary Starch and Fat. Metabolites 2023, 13, 718. [Google Scholar] [CrossRef] [PubMed]
Horse Type | Exercise | Diet | Test Used | Effect on Insulin Sensitivity | Other Findings | Reference |
---|---|---|---|---|---|---|
Lean and obese mixed breed mares | 7 days of light–moderate exercise (~140 bpm, 30 min) | No diet treatment | EHC | Increased IS | [108] | |
Lean Standardbreds | 7 weeks of moderate exercise | High SS | EHC | Increased IS in High SS similar to FF | Increased GLUT4 | [56,109] |
High FF | ||||||
Lean Standardbreds | 7 days of endurance exercise | No diet treatment | EHC | Increased IS by 2 times | Increased GLUT4 | [110] |
Increased GS activity | ||||||
Overweight/obese Arabians | 8 weeks of low- to moderate-intensity exercise | No diet treatment | MMA | No effect | Reduced fat 34% | [111] |
Hyperinsulinemic ponies | 6 weeks of moderate-intensity exercise | Controlled feed intake | OGTT | Decreased insulin response to glucose | Decreased body weight and condition | [112] |
Horse Type | Exercise | Diet | Test Used | Effect on Insulin Sensitivity | Other Findings | Reference |
---|---|---|---|---|---|---|
Overweight stock-type | 4 weeks of exercise to expend 15% of DE requirements | No diet treatment | OST | Improved IS | Decreased leptin | [115] |
Decreased BW | ||||||
Decreased BCS | ||||||
No exercise | DE intake reduced by 15% | No change in IS | Decreased BW | |||
Decreased BCS | ||||||
Obese horses and ponies | 5 days of exercise | Energy restricted | MMA | No change in IS | Decreased BW | [116] |
25 min of walk/trot | Decreased leptin | |||||
No exercise | Energy restricted | Improved IS | Decreased BW | |||
Decreased leptin | ||||||
Overweight QHs and TBs | 12 weeks of moderate exercise (30 min up 1 h, ~65% HR max, 3× per week) | Weight control feed +1% BW hay | MMA | Improved AIRg | Decreased BW (~52 kg) | [117] |
Decreased BCS (~2) | ||||||
Decreased leptin | ||||||
No exercise | Improved AIRg | Decreased BW (25 kg) | ||||
Decreased BCS (~1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pratt-Phillips, S. Effect of Exercise Conditioning on Countering the Effects of Obesity and Insulin Resistance in Horses—A Review. Animals 2024, 14, 727. https://doi.org/10.3390/ani14050727
Pratt-Phillips S. Effect of Exercise Conditioning on Countering the Effects of Obesity and Insulin Resistance in Horses—A Review. Animals. 2024; 14(5):727. https://doi.org/10.3390/ani14050727
Chicago/Turabian StylePratt-Phillips, Shannon. 2024. "Effect of Exercise Conditioning on Countering the Effects of Obesity and Insulin Resistance in Horses—A Review" Animals 14, no. 5: 727. https://doi.org/10.3390/ani14050727
APA StylePratt-Phillips, S. (2024). Effect of Exercise Conditioning on Countering the Effects of Obesity and Insulin Resistance in Horses—A Review. Animals, 14(5), 727. https://doi.org/10.3390/ani14050727