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Simple Summary: Obesity is a global concern within human, pet, and horse populations. A major
consequence of obesity is a disruption to glucose and insulin metabolisms, leading to metabolic
conditions including insulin resistance and/or diabetes. This paper discusses these consequences
of obesity and excess adipose tissue both in idle and athletic subjects. Exercise conditioning can
improve glucose metabolism and insulin sensitivity. Regular exercise can also facilitate weight loss,
wherein the reduction of adipose tissue alleviates fat’s negative impacts on metabolism, while also
decreasing the mechanical load on a subject’s limbs. These actions could result in better health,
reduced incidence of metabolic disease, and, perhaps, improved performance.

Abstract: Obesity is an important health concern in horses, along with humans and companion
animals. Adipose tissue is an inflammatory organ that alters the insulin-signaling cascade, ultimately
causing insulin dysregulation and impaired glucose metabolism. These disruptions can increase the
risk of metabolic disease and laminitis in horses and may also impact energy metabolism during
exercise. A single bout of exercise, along with chronic exercise conditioning, increases insulin
sensitivity and glucose disposal via both contraction- and insulin-mediated glucose uptake pathways.
Regular exercise also increases calorie expenditure, which can facilitate weight (as body fat) loss.
This paper explores the metabolic pathways affected by adiposity, as well as discusses the impact of
exercise on insulin metabolism in horses.

Keywords: equine; obesity; exercise; insulin dysregulation

1. Introduction

It is well documented that exercise conditioning has profound impacts on health and
wellbeing. Exercise is recognized by the American Medical Association as “one of the most
important contributors to a healthy lifestyle” [1]. The American College of Sports Medicine
launched the “Exercise is Medicine” program to highlight the importance of physical
activity, particularly for the anti-inflammatory benefits of exercise [2]. Exercise conditioning
results in improvements in performance capacity, cardio-respiratory health, musculature
efficiency, biomechanics, and bone remodeling. A reduction in systemic inflammation is
a key element of the benefits of exercise conditioning, which also has impacts on insulin
and glucose metabolism. Exercise may also decrease body fat and increase muscle mass.
Exercise is prescribed to mediate inflammation and obesity and to improve health, and
yet exercise may be challenging to some. An obesity-induced decline in exercise capacity
(OIDEC) has been described in several species, as obesity is associated with reductions in
aerobic capacity, increased work effort (reduced efficiency of work), and altered energy
metabolism [3].

Several of these elements are of great interest in the horse industry, as an increasing
proportion of the horse population is overweight and/or obese, including some equestrian
athletes. Many horses also suffer from insulin dysregulation (ID), which describes both
insulin resistance and the resulting hyperinsulinemia. Horses may be described as having
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Equine Metabolic Syndrome (EMS) when they demonstrate criteria including ID, obesity
and/or regional adiposity, hypertension, hypertriglyceridemia, and/or altered adipokine
concentrations [4]. However, it should be noted that some horses and ponies may also
suffer from insulin resistance without being overweight [5]. Laminitis is a debilitating hoof
condition often requiring euthanasia, which may be triggered by multiple factors including
sepsis, trauma, or endocrinopathic disorders, including EMS or pituitary pars intermedia
dysfunction (PPID or Cushing’s disease). The term hyperinsulinemia-associated laminitis
(HAL) has been coined to describe some of these cases, as elevated insulin concentrations
in the blood can cause acute laminitis [6,7]. It is possible that exercise conditioning can
mediate the severity of ID and facilitate weight loss, thus reducing the risk of laminitis,
while also improving aspects of athletic work and mitigating OIDEC. Indeed, there are
numerous reports documenting that exercise increases insulin sensitivity in horses, with or
without changes in body composition or reductions in body fat.

2. Obesity and Insulin Resistance

In several species, adiposity is associated with the development of insulin resistance,
with many individuals developing Type 2 diabetes. Insulin is secreted by the β-cells of
the pancreas and its functions include the following: lowering blood glucose concentra-
tions by stimulating glucose uptake by tissues and upregulating glucose oxidation and
glycogen synthesis, inhibiting gluconeogenesis, contributing to fat storage by inhibiting
lipolysis, and promoting triacylglycerol storage in adipose tissue. Insulin exerts its primary
function on insulin-sensitive tissues by first binding to the insulin receptor (INSR) at the
cell membrane [8]. The INSR has both α and β subunits, with insulin binding to the α

subunits, which triggers a conformational change and causes the β subunits to activate a
tyrosine kinase enzyme. This results in the autophosphorylation of the β subunit along
with a series of other intracellular proteins known as insulin receptor substrates (IRSs). This
signal transduction cascade results in the activation of phosphoinositol 3 kinase (PI3K); the
recruitment and activation of PIP2, PIP3, and PDK-1; and then the activation of protein
kinase B (PKB, also known as AKT). PKB/AKT functions to phosphorylate and deactivate
proteins AS160 (also known as TBC1D4) and TBC1D1. This promotes the activation of the
protein Rab-GTP, which causes the movement of the major glucose transporter, GLUT4,
from intracellular vesicles to fuse with the cell membrane, thus allowing glucose to move
through GLUT 4 into cells [9,10]. Once inside the cells, hexokinase acts to trap glucose
inside by hydrolyzing ATP and converting glucose to glucose-6-phosphate. The activation
of PKB/AKT also phosphorylates and, thus, inactivates glycogen synthase kinase 3 (GSK3).
This results in the dephosphorylation and, therefore, activation of glycogen synthase to
promote glucose storage [8]. Similar pathways also result in the activation of enzymes to
promote the synthesis of fats and triglycerides. Insulin has further anabolic properties by
facilitating the uptake of amino acids by tissues and promoting protein synthesis, as insulin
and AKT also activate the mammalian target of rapamycin (mTOR) pathways [11,12].

It should be noted that there are several types of transporters that facilitate the diffusion
of glucose, with most work examining the Class 1 transporters (GLUT 1–4). GLUT4 is
the most prevalent transporter in the muscle, it is sensitive to insulin, and it has been
widely studied. However, GLUT1 is a basal glucose transporter that is insulin-independent
and allows glucose to move with its concentration gradient. GLUT2 and GLUT3 have
important functions for glucose transport within the pancreas, kidney and liver (GLUT2),
and the brain (GLUT3). GLUT 5, 7, 9, and 11 (Class 2 transporters) appear to move both
glucose and fructose within several tissue types, including the small intestine and kidneys.
GLUT 6, 8, 10, 12, and 13 are considered Class 3 transporters with expression in tissues
including the brain, liver, and testes. The roles of several GLUT transporters are only now
being discovered. Meanwhile, the sodium-dependent glucose-linked transporter (SGLT) is
important for glucose transport in the gut and kidneys [13].

Insulin resistance (IR) describes a situation wherein insulin fails to exert its effects
on tissues, which is most commonly documented by a decrease/failure of tissue glucose
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uptake in the presence of insulin. However, insulin resistance and its impaired signaling
pathways also affects fat and protein metabolism.

It is recognized that adipose is not solely a tissue for energy storage. Adipose is an im-
portant endocrine organ that produces hormones called adipocytokines (e.g., adiponectin
and leptin), which can contribute to energy balance. Adiponectin functions to regulate
glucose and fat metabolisms, and concentrations are higher in lean individuals; and these
concentrations decrease with weight gain and obesity. Studies administering adiponectin
have reported an increase in glucose uptake through effects on the insulin receptor activity
and the promotion of fatty acid oxidation [11,14]. With obesity, adiponectin is reduced, and
these positive roles on glucose and fat metabolism are withdrawn. Leptin concentrations
are lower in lean individuals and increase with adiposity, and leptin is involved with
satiety and energy expenditure. Obesity contributes to hyperleptinemia, and eventually
to leptin resistance. Excessive adipose tissue buildup (i.e., obesity) results in the over-
production of numerous pro-inflammatory cytokines, particularly TNFα and IL6, as well
as the adipocytokine resistin. The production of these compounds, in turn, contributes
to chronic inflammation and can affect several other metabolic pathways. For example,
increases in TNFα and IL6 lead to a decrease in insulin receptor activity, and TNFα further
inhibits fatty acid and glucose metabolism [15,16]. In animal studies, resistin functions to
inhibit insulin signaling and glucose uptake, thus causing insulin resistance. It should also
be noted that excessive free fatty acids in circulation, which occur with obesity, may also
override the ability of cells to metabolize them, resulting in lipotoxicity. Fat accumulation
has been shown to impair the deactivation of AS160/TCB1D4, thus preventing the move-
ment of GLUT4 [17]. Also, biologically active lipids, namely, diacylglycerols, ceramides,
and long-chain acyl-CoA, appear to affect insulin signaling pathways. For example, ce-
ramide inhibits the phosphorylation and activation of AKT [11]. Fat accumulation further
results in the production of reactive oxygen species (ROS) at the mitochondria, which can
also affect insulin signaling pathways [18]. The accumulation of adipose tissue, therefore,
contributes towards the development of insulin resistance. Insulin resistance plays a key
role in the dysfunction of pancreatic beta-cells and the development of type II diabetes
mellitus (T2DM; [19]).

While the association between obesity, inflammation, and insulin resistance is strong,
it should be noted that insulin resistance may develop in lean individuals as well. Some of
these individuals may have more fat accumulating around organs (visceral fat) compared
to subcutaneous fat and would, therefore, appear lean [20,21]. It is believed that a high
intake of refined sugars, particularly fructose, triggers the production of inflammatory
proteins and cortisol, which can contribute to insulin resistance [22]. Systemic inflammation
plays a role in obesity-related insulin resistance but may also affect glucose and insulin
metabolisms in individuals with other causes of inflammation [18].

Adiposity, along with its alterations in glucose metabolism, has consequences for
athletic capacity [3,23,24]. While professional athletes are less likely to be overweight,
amateur athletes may be [25,26]. Further, obese and overweight individuals who are
prescribed exercise training as part of a fitness program may face greater challenges to
a given workload [27]. Overweight individuals with and without T2DM have reduced
glucose uptake and oxidation [28]. Further, obese skeletal muscle produces more lactate
than lean muscle [29]. Obese humans have reduced aerobic capacity, as measured by
VO2max after accounting for fat mass [30]. Obese subjects are also more likely to end
exercise due to musculoskeletal pain (vs. fatigue in lean but non-athletic individuals) [31].
Exercise capacity at several levels may be compromised with obesity, resulting in obesity-
induced decline in exercise capacity (OIDEC).

3. Obesity and Insulin Resistance in Horses

Obesity in horses is characterized by excessive amounts of body fat accumulating in
several parts of the body, including across the crest of the neck, along the shoulder and ribs,
and across the tailhead area, as well as pronounced visceral fat. Body fat can be measured
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objectively in horses using methods including carcass evaluation, ultrasonography of
subcutaneous fat, measurement of total body water using deuterium oxide, and bioelectric
impedance [32–34]. Body fat may also be measured subjectively by evaluating the amount
of subcutaneous fat. The most common method is the Henneke body condition scoring
scale, which is a score of 1–9 used to describe the amount of fat coverage on a horse, wherein
a horse with a score of 1 would be severely emaciated and a horse with a score of 9 would
be grossly obese [35]. Most equine health professionals would agree that scores between
4 and 6 would be considered ideal, those horses with scores over 6 would be considered
overweight, and those over with a score over 7 would be considered obese. Obesity may
also be described in horses that have a “cresty neck” outlined by Carter et al. [36]. Other
methods of describing regional adipose tissue have also been developed, such as the Equifat
system [37]. Regardless of the system used, estimates of obesity in horses from around the
world range from 22 to 62% of the horse population [32,38,39]. It is likely that overweight
and obese horses tend to be more idle/leisure types of horses, though competitive equine
athletes may also be overweight [40,41].

Obesity develops largely due to an imbalance between calorie intake and calorie
expenditure. This could be because of simple overeating and a lack of exercise, as many
horses of today are fed high-quality forages and grains, often with less exercise than horses
were once used to. Some breeds of horses appear to be easy keepers, resulting in them
being more prone to weight gain [42–44]. Evidence in humans suggests that genetics may
contribute greatly to obesity (up to 40–70% of cases), supporting the notion that there
may be a genetic link within some breeds [11]. Recent work also suggests that the equine
microbiome may be involved in energy balance [45,46], where the microbes ferment fiber
to produce volatile fatty acids, which can be a major source of energetic substrates for
horses. For example, a horse that may be able to more fully ferment and digest a feed could
generate more calories from it compared to an animal with lower fermentative activity and,
thus, reduced digestibility of a feed.

Adiposity in horses also affects insulin metabolism. Insulin resistance (IR) has been
documented in horses, though the condition is somewhat different from humans in that
hyperinsulinemia alone can be very problematic, and the development of type 2 diabetes
is rare. Therefore, the term insulin dysregulation (ID) more appropriately describes the
collective abnormalities of insulin metabolism in horses [47]. The relationship between
insulin resistance and hyperinsulinemia is described by Durham and others, where insulin
resistance results in reduced glucose uptake, causing hyperglycemia. Hyperglycemia, in
turn, stimulates the β-cells of the pancreas to release additional insulin. The potential
decreased hepatic clearance of insulin also contributes to hyperinsulinemia. Meanwhile,
hyperinsulinemia may additionally favor the further development of insulin resistance via
a downregulation of signaling [4].

Insulin sensitivity (or insulin resistance) may be quantified using “gold standard”
methods such as the euglycemic-hyperinsulinemic clamp (EHC), or through the minimal
model analysis of a frequently sampled intravenous glucose tolerance test [47–49]. How-
ever, clinically, these practices are not often practical. Therefore, horse owners often rely
on a single blood test to analyze glucose and insulin concentrations or proxies using these
values [50], or a veterinarian can perform an oral glucose challenge test (OGT) [51]. Horses
may be considered suspects for ID when resting (and no prior grain feeding) insulin concen-
trations are greater than 20–31 µU/mL (depending on the assay used), and ID is diagnosed
if insulin concentrations are greater than 50–75 µU/mL (depending on assay). Confounding
factors (such as stress or recent exercise) or differences in glucose absorption may affect
these results. Further diagnostic descriptions are available (Equine Endocrinology Group,
https://sites.tufts.edu/equineendogroup/. Assessed on 27 December 2023).

Insulin dysregulation develops in many horses due to obesity [44,51–55], likely via
mechanisms described above. Diets high in starch and sugar have also been demonstrated
to decrease insulin sensitivity, even in leaner animals [56,57]. Many horses exhibit resting
(with or without hay/pasture or other feed) hyperinsulinemia, as well as exaggerated

https://sites.tufts.edu/equineendogroup/
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hyperinsulinemia following the feeding of a sugar- or starch-rich meal, or following the
consumption of rich, lush pasture. Hyperinsulinemia is potentially problematic as it has
been shown to directly cause laminitis [7], and there is an association between increased
basal insulin concentrations and increased lameness (pain) due to laminitis [58]. Therefore,
in many cases, while a true diagnosis of insulin resistance may be helpful, monitoring
resting insulin concentrations can be a good management tool for owners and veterinarians
to help identify horses that might be at risk of developing laminitis. Hyperinsulinemia
has also been correlated to body condition score [39,59], with higher concentrations of
insulin found in fatter horses. Indeed, hyperinsulinemia is closely associated with insulin
resistance [48,50]. Again, the term Equine Metabolic Syndrome (EMS) is used to describe
horses with insulin dysregulation, obesity, and/or localized fat deposits and other risk
factors that increase the risk of laminitis [4,60–62]. It should be noted that not all obese
horses have elements of ID, and some horses with IR and/or ID are not obese [63,64].

The link between obesity and insulin dysfunction is similar to the mechanisms pre-
sented above for humans. In horses, there is also an increased production of inflammatory
cytokines with increasing adiposity, leading to low-grade inflammation [65–68]. In fact,
adipocytokine production is correlated to body condition score and adiposity [39,59,66,69,70].
Obesity has also been shown to contribute to adipose tissue dysfunction in horses [53,71].
Oxidative stress is another component of both aging and obesity and may also contribute to
alterations in insulin dynamics [18,69,72].

To this end, several studies have demonstrated that weight gain in horses results in
reductions in insulin sensitivity. Further, a dietary energy source appears to influence
insulin sensitivity in horses. Induced obesity with a high grain diet for 5 months resulted
in ID (increased glucose and insulin concentrations, and higher area under a glucose
curve following an OGT) after 90 days. After 150 days, there was significant fasting
hyperinsulinemia as well as higher insulin concentrations following the OGT. Carter fed
horses 200% of their energy requirements to achieve an increase of 2 body condition scores
(avg BCS = 8) and reported that insulin sensitivity decreased by 71%, along with horses
presenting with basal hyperinsulinemia and hyperleptinemia [55,73]. Also, d’Fonseca
reported hyperinsulinemia along with higher insulin concentrations following an OGT
in ponies fed to gain 27% of their body weight for 24 weeks but noted a consequentially
more efficient glucose metabolism. Quinn and others documented that a body weight
gain of almost 3 body condition scores (90 kg) only resulted in reduced insulin sensitivity
(using the minimal model analysis) in horses fed a higher starch and sugar diet, but it did
not affect those fed a diet higher in fat and fiber. Only after exercise was also restricted
was there a negative impact on insulin sensitivity in the higher fat–fiber-fed horses [74].
Similarly, Pratt and others reported decreased insulin sensitivity in sedentary horses fed a
diet high in starch and sugar compared to those fed a diet higher in fat and fiber, although
with no changes in body weight or condition [56]. However, weight gain is not always
associated with changes in glucose metabolism [75].

Excessive adiposity has its own potential health risks and can negatively impact
exercise performance (see [32] for a review). Briefly, equine obesity has been found to
cause an accumulation of adipose tissue around internal organs such as the kidney and
heart [76,77]. Excess adipose tissue contributes to the weight of horses, and weight carriage
has a clear impact on the effort required to exercise during both race-type events [78] and
non-racing exercise [79–81]. Adiposity is also associated with movement asymmetry [82].
Overweight horses have a harder time dissipating heat, which could contribute to early
fatigue [83]. Similar to other species, it is likely that adiposity contributes to mechanical
load in joints and an earlier onset of arthritis. For example, in dogs, obesity is strongly
associated with the development of osteoarthritis [84,85]. In horses, there are multiple
factors that may affect the development of arthritis besides obesity (such as conformation
or work-level). However, arthritis was recognized by horse owners as the most prevalent
weight-related disorder in horses, in comparison to in ponies (where the most prevalent
weight-related disorder was believed to be laminitis) [86]. Therefore, it is important for our



Animals 2024, 14, 727 6 of 15

equine partners to be leaner, both from an overall health standpoint and also in terms of
being able to perform their best. Exercise conditioning has the potential to do both.

4. Exercise, Weight Loss, and Insulin Metabolism

Exercise is well recognized as being able to prevent, manage, and treat disease as a
result of its anti-inflammatory effects, its ability to reduce body fat, and its effect on glucose
and insulin metabolisms [87]. Both acute exercise and long-term exercise conditioning
increase insulin sensitivity. A single bout of exercise increases insulin sensitivity for 12–72 h
in a relationship that is relative to energy expenditure, such that higher-intensity exercise
results in greater whole-body insulin sensitivity [88,89]. This partially occurs as a result of
the contraction-mediated movement of GLUT4 to the cell membrane, independent of the
action of insulin. This mechanism is primarily due to the role of adenosine monophosphate-
activated protein kinase (AMPK). AMPK is considered a sensor of cellular energy status
and is activated with stress and muscle contraction. With muscle contraction, there is an
increased demand for ATP, which becomes depleted. This depletion shifts the AMP/ATP
ratio, which activates the myokinase reaction (ADP + ADP > ATP + AMP) to produce
additional ATP and AMP. Increased AMP activates AMPK [90]. AMPK deactivates AS
160 and TBC1D1, which results in the movement of GLUT4 to the cell membrane. While
some believe that calcium released from the sarcoplasmic reticulum upon stimulation via
the t-tubules also acts directly and indirectly (via calcium-regulated protein kinases) to
increase AMPK [9], other studies suggest that calcium is not involved [91]. Regardless,
Kjøbsted and others demonstrated that AMPK is activated through muscle contraction
and appears to intensify the effects of insulin both at the muscle and the whole-body
levels [90]. Increased blood flow to the muscle during exercise complements these effects
by delivering additional glucose and any circulating insulin. Key glycolytic enzymes (ex.
Phosphofructokinase) are activated through a low energy status and AMPK, resulting in
increased glucose usage. Therefore, with exercise, both contraction-mediated independent
glucose uptake and insulin-mediated glucose uptake are enhanced, along with overall
glucose disposal, which, when combined with carbohydrate consumption, can result in
rapid glycogen synthesis in most species [92]. This AMPK-mediated effect is generally
recognized to last up 4 h after exercise, though a prolonged acute effect (PAE) of exercise
may last up to 72 h after exercise [93]. Following exercise, AKT continues to facilitate GLUT4
translocation to the cell membrane via TBC1D4, which continues longer after exercise is
complete [10], contributing to the post-exercise effects of exercise on insulin sensitivity.

Regular exercise conditioning may have additive effects of frequent singular-exercise
bouts, as well as more general adaptations including a greater muscle mass and, therefore,
a larger sink for glucose. Of note, GLUT4 mRNA expression and protein content increase
with exercise training [94–96]. This appears to occur with both aerobic/endurance types of
exercise training as well as resistance exercise. Moderate-intensity exercise training has also
been shown to increase IRS activation [10]. Glycogen synthase activity also appears to be
upregulated with exercise training, thus providing a greater sink for glucose, and exercise-
trained athletes tend to have larger concentrations of glycogen in the muscle [96]. Exercise
conditioning results in reduced vascular inflammation and improved capillarization to the
muscles. The latter contributes to improved glucose delivery to the muscles [10]. Exercise
conditioning appears to improve insulin sensitivity even without changes in adiposity [97],
though these effects may be short-lived [98]. Regular exercise decreases inflammation and
would alleviate the effect of ROS on insulin signaling [99,100].

A further effect of exercise on insulin sensitivity and glucose metabolism likely
includes the contribution of exercise to weight loss and the alleviation of inflamma-
tion [87,101]. Exercise results in caloric expenditure, potentially shifting energy balance
and resulting in weight loss. Reducing body fat would reduce the negative impact of adi-
pose tissue as described above. Several studies have examined the effects of fat reduction
surgery on insulin sensitivity, and most have reported some improvements in glucose
metabolism [102,103]. However, insulin sensitivity is not always improved with weight
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loss alone; diet- and exercise-induced weight loss is important [104]. Thus, exercise and
weight loss result in greater improvements in insulin sensitivity [98,101,105], particularly
for those with some levels of insulin resistance. Weight loss also appears to ameliorate
inflammation as well as other diseases including arthritis [87,106,107].

5. Exercise, Weight Loss, and Insulin Sensitivity in Horses

Due to the negative health consequences of obesity in horses, many studies have
investigated the effects of either diet and/or exercise on weight loss and insulin dynamics
in horses. Horses with active laminitis may not be able to exercise and, therefore, must rely
primarily on dietary restriction to facilitate weight loss. Several studies have, therefore,
investigated the effects of either dietary energy intake restriction or exercise (or both) on
overall glucose metabolism.

A few studies have directly examined the impact of exercise on insulin sensitivity in
horses using gold-standard methodology (Table 1). Powell and colleagues (2002) quantified
insulin sensitivity using an EHC in lean (BCS 4.5–5) and obese (8.5–9) mares before exercise
conditioning, and 24 h and 9 days following 7 days of light–moderate exercise in a round
pen for 30 min (heart rate < 140 bpm). Without any changes in body weight or body
condition, insulin sensitivity (as glucose-infusion rate during the EHC) increased 24 h after
the last exercise bout but was back to basal levels 9 days after the cessation of exercise
training [108]. Pratt and others reported that 7-week exercise conditioning in lean horses
ameliorated the negative impacts of a high-starch and -sugar diet on insulin-sensitivity
horses [56]. These horses demonstrated an increase in GLUT4 content and hexokinase
activity [109]. It was also reported that 7 days of exercise (45 min at 55% VO2max) resulted
in increased insulin sensitivity, GLUT-4 protein content, and glycogen synthase activity.
Following an additional 5 days of inactivity, these increases were still present [110]. In con-
trast, Carter and others reported that 8 weeks of moderate-intensity exercise conditioning
in overweight horses (BCS ≥ 7), which resulted in weight loss (4%) and fat mass loss (34%),
was not sufficient to affect insulin dynamics as quantified by a minimal model analysis of a
frequently sampled intravenous glucose tolerance test [111].

Table 1. Effect of exercise on insulin sensitivity in horses.

Horse Type Exercise Diet Test Used Effect on Insulin
Sensitivity Other Findings Reference

Lean and obese
mixed breed

mares

7 days of
light–moderate exercise

(~140 bpm, 30 min)

No diet
treatment EHC Increased IS [108]

Lean
Standardbreds

7 weeks of moderate
exercise

High SS
EHC Increased IS in High SS

similar to FF Increased GLUT4 [56,109]High FF

Lean
Standardbreds

7 days of endurance
exercise

No diet
treatment

EHC Increased IS by 2 times Increased GLUT4 [110]Increased GS activity

Overweight/obese
Arabians

8 weeks of low- to
moderate-intensity

exercise

No diet
treatment MMA No effect Reduced fat 34% [111]

Hyperinsulinemic
ponies

6 weeks of
moderate-intensity

exercise

Controlled
feed intake OGTT Decreased insulin

response to glucose
Decreased body weight

and condition [112]

IS: Insulin sensitivity, EHC: euglycemic-hyperinsulinemic clamp, SS: diet high in starch and sugar, FF: diet high in
fat and fiber, GS: glycogen synthase; MMA: minimal model analysis of a frequently sampled intravenous glucose
tolerance test; OGTT: oral glucose tolerance test.

Studies have also aimed to determine the effects of exercise conditioning on whole-
body glucose dynamics by measuring basal glucose and insulin concentrations and/or
following a dynamic oral glucose challenge. Overweight (BCS = 8.4 ± 0.9), hyperinsu-
linemic ponies also showed improved insulin sensitivity through 6 weeks of exercise
conditioning [112]. Turner and others put horses into one of three exercise protocols:
turned out for self-exercise, light, or moderate exercise [113]. These horses were not over-
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weight but were fed a high-concentrate diet. Insulin sensitivity was estimated using the
reciprocal of the square root of insulin (RISQI [50]), and only forced exercise resulted in
improvements. De Laat used a dynamic feeding system to increase daily distance traveled
in horses. Compared to a stationary feeder, the dynamic feeding system increased distance
traveled and weight loss (BCS 6.53 ± 0.94 to 5.38 ± 1.71) but was not sufficient to improve
insulin sensitivity in all ponies studied [114]. Moore exercised obese horses for 4 weeks
at a workload calculated to expend the equivalent of 15% of the horse’s DE requirements.
Exercised horses showed improvements in insulin concentrations following an oral sugar
test as well as reduced leptin concentrations [115].

Studies have investigated the combined effects of diet and exercise, in part to determine
which may be more effective (Table 2). Bamford studied obese horses (BCS ≥ 7) that were
placed on an energy-restricted diet compared to those who also underwent forced exercise
5 days per week. All horses lost similar amounts of weight and had reduced insulin and
leptin concentrations along with increased adiponectin concentrations. However, the horses
that also exercised had significantly improved insulin sensitivity, as assessed through a
minimal model analysis of an intravenous glucose tolerance test [116]. Exercise, therefore,
appears to have a greater impact on insulin sensitivity than dietary restriction. Similarly,
Gordon and others fed horses a weight control feed plus controlled amounts of hay and
compared those who exercised 3× per week, and they reported stronger improvements in
horses that exercised [117]. This point was further proven in Moore’s study described above,
where another treatment of horses underwent a 15% reduction in DE intake (compared
to the 15% of DE calorie expenditure, thus both treatments effectively resulting in 85% of
net estimated calorie requirements). While these diet-restricted horses also lost significant
amounts of body weight and condition, these were greater in the exercised horses, and
the diet-restricted group showed no improvements in insulin sensitivity [115]. Along
these lines, Pagan reported that while some sport ponies were overweight, their insulin
concentrations were not as elevated as might be expected, potentially due to the positive
effects of exercise [40].

Table 2. Effect of dietary energy restriction and/or exercise on insulin sensitivity in horses.

Horse Type Exercise Diet Test Used Effect on Insulin
Sensitivity Other Findings Reference

Overweight
stock-type

4 weeks of exercise to expend
15% of DE requirements No diet treatment

OST

Improved IS
Decreased leptin

[115]

Decreased BW
Decreased BCS

No exercise
DE intake

reduced by 15% No change in IS Decreased BW
Decreased BCS

Obese horses
and ponies

5 days of exercise Energy restricted

MMA

No change in IS Decreased BW

[116]
25 min of walk/trot Decreased leptin

No exercise Energy restricted Improved IS Decreased BW
Decreased leptin

Overweight
QHs and TBs

12 weeks of moderate exercise
(30 min up 1 h, ~65% HR max,

3× per week) Weight control
feed +1% BW hay MMA

Improved AIRg
Decreased BW (~52 kg)

[117]
Decreased BCS (~2)

Decreased leptin

No exercise Improved AIRg Decreased BW (25 kg)
Decreased BCS (~1)

IS: insulin sensitivity, MMA: minimal model analysis of a frequently sampled intravenous glucose tolerance test;
OST: oral sugar test; BW: body weight, BCS: body condition score, HR: heart rate.

In many cases, the ability to exercise may be limited due to impaired health or the lack
of ability of owners to implement an exercise program. Therefore, it is still important to
employ dietary restrictions for weight loss in some horses, though energy and feed intake
may need to be severely restricted. Weight loss to achieve 1% BW loss per week required
the reduction of feed intake to 35% of energy requirements in some horses. However,
this resulted in reduced insulin concentrations following an OGT and improved insulin
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sensitivity [118]. Reducing dry matter intake to 1% of body weight resulted in weight and
fat loss, though insulin dynamics were not specifically measured in this study [119]. A body
weight reduction plan (reduced energy intake) resulted in significant weight loss in ponies
with diagnosed insulin resistance, leading to improved insulin sensitivity [70]. Weight
loss in these ponies also resulted in reduced serum leptin concentrations and increased
plasma adiponectin concentrations. Gill and coauthors worked directly with horse owners
to develop individual dietary management strategies for their overweight horses, which
included reducing/restricting pasture, switching from traditional concentrates to ration
balancers, and weighing feed. Horses with owners that followed their assigned protocols
lost weight and had ameliorated insulin concentrations [120]. Weight loss with dietary
energy restriction (and, thus, feed intake restriction) may not be sufficient in some horses
that appear to have weight loss resistance. In these cases, a very low feed intake (1% of
body weight) was required for some horses to lose weight [121]. Therefore, some horses
may need additional help losing weight. One study aimed to determine the effects of
weight loss induced by thyroid hormone administration for 48 weeks. Frank and others
administered levothyroxine to horses and reported significant weight loss without any
observable negative consequences. The level of weight loss (~5–10% of body weight) was
sufficient to result in almost 2-fold increases in insulin sensitivity [122]. These authors also
reported that insulin sensitivity was negatively correlated with body weight.

Together, these studies document the important contributions of exercise and dietary
restriction to facilitate weight loss, and, ultimately, to improve insulin sensitivity. Due to
the large number of negative health and performance consequences of obesity and insulin
resistance, it is important that horse owners manage their horses to promote leaner body
types. While exercise appears to have superior benefits on overall glucose metabolism and
insulin sensitivity, weight loss (through exercise, dietary restriction, or medication) is an
important and achievable goal.

It should be noted that an interesting facet of glucose and insulin metabolism in
horses is their relatively slow ability to replete muscle glycogen following a glycogen-
depleting exercise bout compared to other species [123]. Horses do not appear to have the
same post-exercise increase in insulin sensitivity and muscular glucose uptake as seen in
other species, even in the face of hyperglycemia [124,125]. While GLUT4’s concentrations
increase with exercise training in horses [110], its expression does not appear to increase
significantly following glycogen-depleting exercise [126]. Of interest is the increase in the
expression of other GLUT transporters (namely, GLUT3, GLUT6, and GLUT10) [126]. It
is currently unknown how the expression of these transporters is influenced by exercise
training. Further research is required to elucidate the functions of these transporters with
respect to exercise, glucose metabolism, and glycogen synthesis.

6. Practical Tips to Use Exercise Conditioning to Counter the Effects of Obesity and
Insulin Resistance

To summarize, below are some strategies that may be helpful to facilitate weight loss
and promote healthier glucose metabolism. Veterinary supervision may be required in
some cases.

- Exercise the horse to the highest level of intensity suited for his overall health.

◦ Recall that exercise intensity is directly related to the benefits seen in glucose
metabolism.

◦ In horses with lameness issues, this might be limited to walking, but such horses
may benefit from the use of equipment such as an underwater treadmill or
swimming pool to decrease weight-bearing on limbs.

◦ Exercise intensity may be increased even at low speeds by adding hill work
and poles.

- Exercise the horse at least 3–6 days per week
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◦ This will help to ensure any acute effects of exercise may last the entire week to
provide additive benefits to the longer-term benefits of exercise conditioning.

- Limit calorie intake while ensuring the rest of the diet is adequately balanced

◦ Work closely with an equine nutritionist.
◦ Reduce/remove energy-dense concentrates, particularly those rich in starch

and sugar.
◦ Avoid an uncontrolled grazing of pasture.

■ Use a grazing muzzle if pasture is the only option.

◦ Focus on forage—hay/preserved forages.

■ Hay can be easily analyzed, soaked, and weighed to provide controlled and
known nutrient intakes.

■ Hay intake may need to be reduced to 1.5% of body weight and reduced
further as needed (and under veterinary supervision) to achieve weight loss.

◦ Try to feed as much forage as possible (by weight), while ensuring daily calorie
intake is lower.

■ Select hay with a lower caloric density (i.e., less than 1.7 mcal/kg DE; typi-
cally with more than 50% ADF).

■ Soak hay for 30 min to reduce some sugars and calories (disperse the water
after soaking).

■ Use a slow-feed hay net to prolong feeding time.

7. Conclusions

Obesity is a global problem that has negative consequences on health and exercise
performance. Adipose tissue promotes inflammation and insulin resistance, and it al-
ters glucose metabolism, both at rest and during exercise. Adipose tissue accumulation
also loads the skeletal system, thus increasing the amount of work for locomotion and
potentially causing strain to the joints, tendons, and ligaments of the limbs. Therefore,
there is an obesity-induced decline in exercise capacity in horses, as well as other species.
Exercise promotes insulin sensitivity, upregulates glucose metabolism both at rest and
during exercise, and also burns calories and, in most instances, reduces body fat. Exercise
conditioning, therefore, has important benefits for the health of all horses, whether they are
athletes or companions. Further research is required to elucidate the additional benefits of
exercise conditioning in horses.
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