Effects of Muscle Type and Aging on Glycolysis and Physicochemical Quality Properties of Bactrian camel (Camelus bactrianus) Meat
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Histological Analysis
2.3. Real-Time Quantitative PCR of MyHC Gene Isoforms
2.4. Detection of Camel Meat Quality Indicators
2.4.1. pH
2.4.2. Color
2.4.3. Cooking Loss
2.4.4. Shear Force
2.5. Glycolytic Potential and Key Enzyme Activity
2.5.1. Glycolytic Potential (GP)
2.5.2. Key Enzyme Activity
2.6. Data Analysis
3. Results
3.1. Types of Muscle Fibers in Different Camel Muscles
3.1.1. ATPase Staining
3.1.2. Expression of MyHC Isoform mRNAs in the Different Muscles of Camel
3.2. Quality of Camel Meat
3.2.1. pH
3.2.2. Shear Force
3.2.3. Cooking Loss
3.2.4. Color
3.3. Glycolytic Potential
3.4. Enzyme Activity
3.5. Relationship between Meat Quality and Glycolytic Indices and Muscle Fiber Type
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kurtu, M.Y. An Assessment of the Productivity for Meat and the Carcase Yield of Camels (Camelus dromedarius) and of the Consumption of Camel Meat in the Eastern Region of Ethiopia. Trop. Anim. Health Prod. 2004, 36, 65–76. [Google Scholar] [CrossRef]
- Dawood, A.A. Physical and Sensory Characteristics of Najdi-Camel Meat. Meat Sci. 1995, 39, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Eskandari, M.H.; Majlesi, M.; Gheisari, H.R.; Farahnaky, A.; Khaksar, Z. Comparison of Some Physicochemical Properties and Toughness of Camel Meat and Beef. J. Appl. Anim. Res. 2013, 41, 442–447. [Google Scholar] [CrossRef]
- Raiymbek, G.; Kadim, I.T.; Konuspayeva, G.; Mahgoub, O.; Serikbayeva, A.; Faye, B. Discriminant Amino-Acid Components of Bactrian (Camelus bactrianus) and Dromedary (Camelus dromedarius) Meat. J. Food Compos. Anal. 2015, 41, 194–200. [Google Scholar] [CrossRef]
- Raiymbek, G.; Faye, B.; Kadim, I.T.; Serikbaeva, A.; Konuspayeva, G. Comparative Fatty Acids Composition and Cholesterol Content in Bactrian (Camelus bactrianus) and Dromedary Camel (Camelus dromedarius) Meat. Trop. Anim. Health Prod. 2019, 51, 2025–2035. [Google Scholar] [CrossRef] [PubMed]
- Kadim, I.T.; Al-Karousi, A.; Mahgoub, O.; Al-Marzooqi, W.; Khalaf, S.; Al-Maqbali, R.S.; Al-Sinani, S.S.; Raiymbek, G. Chemical Composition, Quality and Histochemical Characteristics of Individual Dromedary Camel (Camelus dromedarius) Muscles. Meat Sci. 2013, 93, 564–571. [Google Scholar] [CrossRef]
- Liang, T.; Yang, X.J.; Yao, L.F. Present situation and countermeasures of camel industry development in Keping County. Xinjiang Anim. Husb. 2023, 39, 36–37+26. [Google Scholar]
- Mookerjee, S.A.; Nicholls, D.G.; Brand, M.D. Determining Maximum Glycolytic Capacity Using Extracellular Flux Measurements. PLoS ONE 2016, 11, e0152016. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, S.S.; England, E.M. Postmortem Glycolysis and Glycogenolysis: Insights from Species Comparisons. Meat Sci. 2018, 144, 118–126. [Google Scholar] [CrossRef]
- Zybert, A.; Sieczkowska, H.; Antosik, K.; Krzęcio-Nieczyporuk, E.; Adamczyk, G.; Koćwin-Podsiadła, M. Relationship Between Glycolytic Potential and Meat Quality of Duroc Pigs with Consideration of Carcass Chilling System/Związek Potencjału Glikolitycznego z Cechami Jakości Mięsa Tuczników Rasy Duroc, z Uwzględnieniem Systemu Chłodzenia Tusz. Ann. Anim. Sci. 2013, 13, 645–654. [Google Scholar] [CrossRef]
- Feng, Y.J.; Gu, X.H. Research progress on the effect and mechanism of heat stress on pork quality. Chin. Livest. Vet. Med. 2013, 40, 96–99. [Google Scholar]
- Ma, X.B.; Su, L.; Lin, Z.Q.; Xin, X.; Yi, L.Q.; Zhao, Y.J.; Jin, Y. Glycolysis potential of muscle in different breeds of mutton sheep and its correlation with meat quality. Food Sci. 2015, 36, 1–4. [Google Scholar]
- Wei, Y.; Li, X.; Zhang, D.; Liu, Y. Comparison of Protein Differences between High- and Low-Quality Goat and Bovine Parts Based on iTRAQ Technology. Food Chem. 2019, 289, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Joo, S.-T.; Ryu, Y.-C. Skeletal Muscle Fiber Type and Myofibrillar Proteins in Relation to Meat Quality. Meat Sci. 2010, 86, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Brooke, M.H.; Kaiser, K.K. Muscle Fiber Types: How Many and What Kind? Arch. Neurol. 1970, 23, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.-D.; Jeong, J.-Y.; Jung, E.; Yang, H.-S.; Lim, H.; Joo, S.-T. The Influence of Fiber Size Distribution of Type IIB on Carcass Traits and Meat Quality in Pigs. Meat Sci. 2013, 94, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Choe, J.G.; Kim, B.C. Association of Blood Glucose, Blood Lactate, Serum Cortisol Levels, Muscle Metabolites, Muscle Fiber Type Composition, and Pork Quality Traits. Meat Sci. 2014, 97, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Li, H.; Xue, X.; Duan, Y.; Hua, X.; Jin, Y. Muscle Fiber Types, Characteristics and Meat Quality. Adv. Mater. Res. 2013, 634–638, 1263–1267. [Google Scholar] [CrossRef]
- Alowaimer, A.N.; Suliman, G.M.; Sami, A.; Picard, B.; Hocquette, J.-F. Chemical Composition and Structural Characteristics of Arabian Camel (Camelus dromedarius) m. Longissimus Thoracis. Meat Sci. 2014, 96, 1233–1241. [Google Scholar] [CrossRef]
- Abdelhadi, O.; Babiker, S.A.; Picard, B.; Jurie, C.; Jailler, R.; Hocquette, J.-F.; Faye, B. Effect of Season on Contractile and Metabolic Properties of Desert Camel Muscle (Camelus dromedarius). Meat Sci. 2012, 90, 139–144. [Google Scholar] [CrossRef]
- Melody, J.L.; Lonergan, S.M.; Rowe, L.J.; Huiatt, T.W.; Mayes, M.S.; Huff-Lonergan, E.J. Early Postmortem Biochemical Factors Influence Tenderness and Water-Holding Capacity of Three Porcine Muscles1. J. Anim. Sci. 2004, 82, 1195–1205. [Google Scholar] [CrossRef]
- Nair, M.N.; Canto, A.C.V.C.S.; Rentfrow, G.; Suman, S.P. Muscle-Specific Effect of Aging on Beef Tenderness. LWT 2019, 100, 250–252. [Google Scholar] [CrossRef]
- Wheeler, T.L.; Koohmaraie, M. The Extent of Proteolysis Is Independent of Sarcomere Length in Lamb Longissimus and Psoas Major. J. Anim. Sci. 1999, 77, 2444. [Google Scholar] [CrossRef]
- Brooke, M.H.; Kaiser, K.K. Three “myosin adenosine triphosphatase” systems: The nature of their pH lability and sulfhydryl dependence. J. Histochem. Cytochem. 1970, 18, 670–672. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Lefaucheur, L. A Second Look into Fibre Typing—Relation to Meat Quality. Meat Sci. 2010, 84, 257–270. [Google Scholar] [CrossRef]
- Haun, C.T.; Vann, C.G.; Mobley, C.B.; Osburn, S.C.; Mumford, P.W.; Roberson, P.A.; Romero, M.A.; Fox, C.D.; Parry, H.A.; Kavazis, A.N.; et al. Pre-Training Skeletal Muscle Fiber Size and Predominant Fiber Type Best Predict Hypertrophic Responses to 6 Weeks of Resistance Training in Previously Trained Young Men. Front. Physiol. 2019, 10, 297. [Google Scholar] [CrossRef]
- Reed, S.; Raja, J.; Hoffman, M.L.; Zinn, S.A.; Govoni, K.E. Poor Maternal Nutrition Inhibits Muscle Development in Ovine Offspring. J. Anim. Sci. Biotechnol. 2014, 5, 43. [Google Scholar] [CrossRef]
- Kadim, I.T.; Mahgoub, O.; Al-Marzooqi, W.; AlZadjali, S.A.; Annamalai, K.; Mansour, M.H. Effects of Age on Composition and Quality of Muscle Longissimus Thoracis of the Omani Arabian Camel (Camelus dromedaries). Meat Sci. 2006, 73, 619–625. [Google Scholar] [CrossRef]
- Maltin, C.A.; Balcerzak, D.; Tilley, R.; Delday, M.I. Determinants of Meat Quality: Tenderness. Proc. Nutr. Soc. 2003, 62, 337–347. [Google Scholar] [CrossRef]
- Ruusunen, M.; Puolanne, E. Histochemical Properties of Fibre Types in Muscles of Wild and Domestic Pigs and the Effect of Growth Rate on Muscle Fibre Properties. Meat Sci. 2004, 67, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Allen, D.L.; Yasui, W.; Tanaka, T.; Ohira, Y.; Nagaoka, S.; Sekiguchi, C.; Hinds, W.E.; Roy, R.R.; Edgerton, V.R. Myonuclear Number and Myosin Heavy Chain Expression in Rat Soleus Single Muscle Fibers after Spaceflight. J. Appl. Physiol. 1996, 81, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Bai, Y.; Wang, C.; Zhang, T.; Su, R.; Wang, B.; Duan, Y.; Sun, L.; Jin, Y.; Su, L. Effects of Probiotics Supplementation on the Intestinal Metabolites, Muscle Fiber Properties, and Meat Quality of Sonid Lamb. Animals 2023, 13, 762. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liang, R.; Mao, Y.; Yang, X.; Luo, X.; Qian, Z.; Zhang, Y.; Zhu, L. Effect of Dietary Resveratrol Supplementation on Muscle Fiber Types and Meat Quality in Beef Cattle. Meat Sci. 2022, 194, 108986. [Google Scholar] [CrossRef] [PubMed]
- Rant, W.; Radzik-Rant, A.; Świątek, M.; Niżnikowski, R.; Szymańska, Ż.; Bednarczyk, M.; Orłowski, E.; Morales-Villavicencio, A.; Ślęzak, M. The Effect of Aging and Muscle Type on the Quality Characteristics and Lipid Oxidation of Lamb Meat. Arch. Anim. Breed. 2019, 62, 383–391. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, S.; Sun, B.; Xie, P.; Wen, K.; Xu, C. Changes in Physical Meat Traits, Protein Solubility, and the Microstructure of Different Beef Muscles during Post-Mortem Aging. Foods 2020, 9, 806. [Google Scholar] [CrossRef] [PubMed]
- Sjöstróm, M.; Squire, J.M. Fine Structure of the A-Band in Cryo-Sections. J. Mol. Biol. 1977, 109, 49–68. [Google Scholar] [CrossRef] [PubMed]
- Maqsood, S.; Abushelaibi, A.; Manheem, K.; Kadim, I.T. Characterisation of the Lipid and Protein Fraction of Fresh Camel Meat and the Associated Changes during Refrigerated Storage. J. Food Compos. Anal. 2015, 41, 212–220. [Google Scholar] [CrossRef]
- Jeong, J.-Y.; Hur, S.; Yang, H.-S.; Moon, S.; Hwang, Y.-H.; Park, G.B.; Joo, S.-T. Discoloration Characteristics of 3 Major Muscles from Cattle during Cold Storage. J. Food Sci. 2009, 74, C1–C5. [Google Scholar] [CrossRef]
- Ryu, Y.-C.; Kim, B.C. The Relationship between Muscle Fiber Characteristics, Postmortem Metabolic Rate, and Meat Quality of Pig Longissimus Dorsi Muscle. Meat Sci. 2005, 71, 351–357. [Google Scholar] [CrossRef]
- Chang, K.-C.; Da Costa, N.; Blackley, R.; Southwood, O.I.; Evans, G.; Plastow, G.; Wood, J.; Richardson, R. Relationships of Myosin Heavy Chain Fibre Types to Meat Quality Traits in Traditional and Modern Pigs. Meat Sci. 2003, 64, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Yin, F.; Ru, A.; Tian, W.; Li, J.; Guiyan, Z.; Chen, Q.; Chai, R.; Xiao, K.; Zhu, C.; et al. Muscle Fiber Composition Affects the Postmortem Redox Characteristics of Yak Beef. Food Chem. 2022, 397, 133797. [Google Scholar] [CrossRef] [PubMed]
Genes | Primer Sequences (5′→3′) | Product Size, bp | Accession NO. |
---|---|---|---|
MYH7 | F: CTGTCCAAGTTCCGCAAGGTG R: TGGCAAATCTACTCCTCATTCAAGC | 143 | XM_032481727.1 |
MYH2 | F: AAGAACATGGAACAGACGGTGAAG R: TGCTCACTCTCAACCTCTCCTTC | 159 | XM_032498795.1 |
MYH4 | F: CGACATTGACCACACCCAGTAC R: GCTTTTCATCTCGCATCTCCTCTAG | 95 | XM_032498791.1 |
MYH1 | F: TGCCAAATGTGCTTCCCTTGAG R: TTTCCATTCTGCTAGGACCTTATCG | 148 | XM_032498792.1 |
GAPDH | F: CTCTGGCAAAGTGGACATTGTTG R: TGGGTGGAATCATACTGGAACATG | 87 | XM_032472950.1 |
Measurement | Muscle | ||
---|---|---|---|
LT | PM | ST | |
Proportion (%) | |||
Type I | 29.50 ± 1.06 Ca | 45.67 ± 1.34 Aa | 40.69 ± 0.67 Ba |
Type IIA | 34.36 ± 1.95 Ab | 27.59 ± 1.44 Bb | 24.55 ± 0.23 Bc |
Type IIB | 36.14 ± 1.38 Ab | 26.74 ± 0.76 Bb | 34.76 ± 0.56 Ab |
Area (μm2) | |||
Type I | 3365.31 ± 530.23 Ac | 3409.66 ± 449.23 Ab | 3649.93 ± 664.54 Ac |
Type IIA | 5521.98 ± 379.66 Ab | 3814.32 ± 565.07 Cb | 4480.07 ± 444.73 Bb |
Type IIB | 7520.45 ± 1049.13 Aa | 6623.99 ± 869.38 Ba | 6966.12 ± 874.18 ABa |
Genes | LT | PM | ST |
---|---|---|---|
MYH7 | 13.42 ± 2.01 Cb | 63.90 ± 9.95 Aa | 37.83 ± 8.7 Ba |
MYH2 | 18.12 ± 2.68 Ab | 15.91 ± 1.66 ABb | 11.30 ± 2.39 Bb |
MYH4 | 31.48 ± 8.72 Aa | 15.44 ± 2.38 Bb | 28.04 ± 5.22 Aab |
MYH1 | 36.98 ± 8.77 Aa | 4.75 ± 2.14 Cb | 22.83 ± 3.26 Bab |
Time (h) | pH (LT) | pH (PM) | pH (ST) |
---|---|---|---|
1 | 6.01 ± 0.13 Ba | 6.31 ± 0.03 Aa | 6.15 ± 0.18 Aa |
6 | 5.76 ± 0.04 Bb | 5.97 ± 0.11 Ab | 5.98 ± 0.12 Aab |
24 | 5.79 ± 0.10 Ab | 5.87 ± 0.06 Abc | 5.88 ± 0.05 Abc |
72 | 5.70 ± 0.04 Ab | 5.79 ± 0.07 Ac | 5.77 ± 0.10 Abc |
120 | 5.64 ± 0.06 Bb | 5.74 ± 0.03 Ac | 5.68 ± 0.06 ABc |
Time (h) | LT | PM | ST |
---|---|---|---|
1 | 79.15 ± 3.68 Ab | 64.13 ± 2.74 Bc | 67.33 ± 2.64 Bb |
6 | 85.14 ± 4.95 Aa | 76.80 ± 1.71 Bb | 75.19 ± 3.78 Ba |
24 | 87.41 ± 2.85 Aa | 79.54 ± 2.21 Ba | 78.14 ± 1.86 Ba |
72 | 73.56 ± 2.71 Ab | 64.19 ± 3.31 Bd | 64.32 ± 0.75 Bc |
120 | 70.25 ± 4.93 Ac | 60.85 ± 1.69 Ce | 63.65 ± 2.28 Bc |
Time (h) | LT | PM | ST |
---|---|---|---|
1 | 29.85 ± 1.29 Ac | 28.87 ± 1.38 Ab | 31.55 ± 1.30 Ac |
6 | 28.66 ± 0.77 Ac | 31.04 ± 1.27 Ab | 31.83 ± 3.16 Ac |
24 | 31.87 ± 3.11 Bbc | 37.34 ± 1.41 Aa | 35.74 ± 2.12 ABb |
72 | 38.24 ± 2.83 ABa | 36.28 ± 1.17 Ba | 40.64 ± 1.62 Aa |
120 | 36.04 ± 3.50 ABab | 34.47 ± 2.96 Ba | 38.60 ± 1.13 Aab |
Color | Muscle Type | LT | PM | ST |
---|---|---|---|---|
L* | 1 h | 30.78 ± 1.03 Ab | 25.56 ± 1.01 Bb | 27.64 ± 0.31 Bc |
6 h | 31.57 ± 0.84 Aab | 26.47 ± 2.40 Bab | 28.23 ± 0.32 Bb | |
24 h | 32.70 ± 2.50 Aa | 27.57 ± 1.29 Ca | 28.99 ± 0.18 Ba | |
72 h | 32.22 ± 0.66 Aa | 28.10 ± 0.09 Ba | 29.23 ± 0.39 Bd | |
120 h | 32.08 ± 0.77 Aa | 28.03 ± 1.62 Ca | 29.01 ± 0.04 Bb | |
a* | 1 h | 9.67 ± 0.65 Ba | 13.67 ± 1.19 Aa | 12.11 ± 1.62 Aa |
6 h | 12.02 ± 0.90 Bb | 16.23 ± 2.26 Ab | 13.16 ± 0.36 Ba | |
24 h | 8.84 ± 1.00 Bb | 12.99 ± 2.15 Ab | 8.86 ± 0.11 Bb | |
72 h | 9.01 ± 1.37 Bb | 13.06 ± 0.89 Ab | 7.94 ± 0.12 Bb | |
120 h | 8.38 ± 0.10 Bb | 10.20 ± 0.79 Ac | 7.55 ± 1.03 Bb | |
b* | 1 h | 4.24 ± 0.45 Bb | 5.63 ± 1.16 Ab | 4.60 ± 0.10 ABb |
6 h | 4.96 ± 0.83 Cab | 7.34 ± 0.70 Aa | 6.19 ± 0.31 Ba | |
24 h | 5.37 ± 0.33 Ba | 7.26 ± 0.65 Aa | 6.42 ± 0.52 Ba | |
72 h | 5.66 ± 1.01 Ca | 7.50 ± 0.76 Aa | 6.70 ± 0.19 Ba | |
120 h | 5.84 ± 0.75 Ca | 8.18 ± 1.13 Aa | 6.93 ± 0.27 Ba |
Item | Time | LT | PM | ST |
---|---|---|---|---|
Glucose (mmol/gprot) | 1 h | 3.91 ± 0.24 Aa | 2.81 ± 0.33 Ba | 3.80 ± 0.31 Aa |
6 h | 2.53 ± 0.46 Ab | 1.12 ± 0.12 Bb | 2.95 ± 0.66 Ab | |
24 h | 2.03 ± 0.11 Bc | 0.79 ± 0.32 Cbc | 2.68 ± 0.39 Ab | |
72 h | 1.56 ± 0.37 Acd | 0.46 ± 0.21 Bc | 1.96 ± 0.56 Ac | |
120 h | 1.24 ± 0.27 Ad | 0.47 ± 0.25 Bc | 1.59 ± 0.27 Ac | |
Muscle glycogen (mmol/gprot) | 1 h | 6.31 ± 0.58 Aa | 4.13 ± 0.21 Ba | 6.05 ± 0.19 Aa |
6 h | 3.67 ± 0.40 Ab | 2.51 ± 0.45 Bb | 3.67 ± 0.29 Ab | |
24 h | 2.06 ± 0.46 Ac | 1.77 ± 0.32 Bc | 2.71 ± 0.32 Ac | |
72 h | 1.56 ± 0.19 Ac | 1.43 ± 0.38 Ac | 1.64 ± 0.43 Ad | |
120 h | 1.29 ± 0.01 Ac | 1.39 ± 0.07 Ac | 1.53 ± 0.39 Ad | |
6PG (nmol/g prot) | 1 h | 2932.09 ± 206.46 Aa | 2562.29 ± 79.35 Ba | 2634.36 ± 103.03 Ba |
6 h | 1717.40 ± 15.45 Ab | 1008.98 ± 16.45 Bb | 1599.95 ± 30.01 Ab | |
24 h | 638.41 ± 26.36 Bc | 624.24 ± 38.62 Bc | 787.25 ± 42.02 Ac | |
72 h | 623.54 ± 25.19 Bc | 300.55 ± 6.62 Cd | 731.96 ± 42.90 Acd | |
120 h | 590.83 ± 34.70 Ac | 289.08 ± 64.90 Cd | 641.79 ± 2.88 Ad | |
Lactic acid (mmol/gprot) | 1 h | 0.84 ± 0.03 Ac | 0.41 ± 0.05 Cc | 0.57 ± 0.09 Bc |
6 h | 1.20 ± 0.01 Ab | 0.87 ± 0.02 Cb | 0.93 ± 0.03 Bb | |
24 h | 1.29 ± 0.03 Aa | 0.90 ± 0.07 Cb | 1.09 ± 0.05 Ba | |
72 h | 1.31 ± 0.04 Aa | 0.94 ± 0.12 Cb | 1.15 ± 0.07 Ba | |
120 h | 1.33 ± 0.02 Aa | 1.05 ± 0.03 Ca | 1.17 ± 0.04 Ba | |
GP (mmol/gprot) | 1 h | 27.14 ± 1.16 Aa | 19.41 ± 0.41 Ca | 24.41 ± 0.38 Ba |
6 h | 16.64 ± 0.81 Ab | 10.14 ± 0.91 Bb | 15.52 ± 0.59 Ab | |
24 h | 10.74 ± 0.93 Ac | 7.27 ± 0.65 Bc | 11.26 ± 0.63 Ac | |
72 h | 8.80 ± 0.38 Ad | 5.32 ± 0.76 Bd | 7.52 ± 0.85 Ad | |
120 h | 7.57 ± 0.02 Ad | 5.35 ± 0.14 Cd | 6.35 ± 0.79 Bd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, H.; Na, Q.; Wang, L.; Li, Y.; Zheng, Z.; Wu, Y.; Li, Y.; Hang, G.; Zhu, X.; Ji, R.; et al. Effects of Muscle Type and Aging on Glycolysis and Physicochemical Quality Properties of Bactrian camel (Camelus bactrianus) Meat. Animals 2024, 14, 611. https://doi.org/10.3390/ani14040611
Lyu H, Na Q, Wang L, Li Y, Zheng Z, Wu Y, Li Y, Hang G, Zhu X, Ji R, et al. Effects of Muscle Type and Aging on Glycolysis and Physicochemical Quality Properties of Bactrian camel (Camelus bactrianus) Meat. Animals. 2024; 14(4):611. https://doi.org/10.3390/ani14040611
Chicago/Turabian StyleLyu, Haodi, Qin Na, Linlin Wang, Yafei Li, Zengtuo Zheng, Yinga Wu, Yuanyuan Li, Gai Hang, Xiangwei Zhu, Rimutu Ji, and et al. 2024. "Effects of Muscle Type and Aging on Glycolysis and Physicochemical Quality Properties of Bactrian camel (Camelus bactrianus) Meat" Animals 14, no. 4: 611. https://doi.org/10.3390/ani14040611
APA StyleLyu, H., Na, Q., Wang, L., Li, Y., Zheng, Z., Wu, Y., Li, Y., Hang, G., Zhu, X., Ji, R., Guo, F., & Ming, L. (2024). Effects of Muscle Type and Aging on Glycolysis and Physicochemical Quality Properties of Bactrian camel (Camelus bactrianus) Meat. Animals, 14(4), 611. https://doi.org/10.3390/ani14040611