Bergamot Polyphenolic Fraction for the Control of Flupyradifurone-Induced Poisoning in Honeybees
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of the Experimental Groups
2.2. Preparation of BPF
2.3. BPF Analysis
2.4. Concentration and Doses of FLU and BPF Treatments
2.5. Food Consumption and Abnormal Behaviors
2.6. Statistical Analysis
3. Results
3.1. BPF Analysis
3.2. Survival Probability
3.3. Abnormal Behavior Pattern
3.4. Consumption of Treatments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morse, R.A.; Calderone, N.W. The Value of Honey Bees As Pollinators of U.S. Crops in 2000. Bee Cult. 2000, 128, 1–15. [Google Scholar]
- Aliouane, Y.; El Hassani, A.K.; Gary, V.; Armengaud, C.; Lambin, M.; Gauthier, M. Subchronic exposure of honeybees to sublethal doses of pesticides: Effects on behavior. Environ. Toxicol. Chem. An Int. J. 2009, 28, 113–122. [Google Scholar] [CrossRef]
- Tison, L.; Hahn, M.-L.; Holtz, S.; Rößner, A.; Greggers, U.; Bischoff, G.; Menzel, R. Honey bees’ behavior is impaired by chronic exposure to the neonicotinoid thiacloprid in the field. Environ. Sci. Technol. 2016, 50, 7218–7227. [Google Scholar] [CrossRef]
- Sapbamrer, R.; Kitro, A.; Panumasvivat, J.; Assavanopakun, P. Important role of the government in reducing pesticide use and risk sustainably in Thailand: Current situation and recommendations. Front. Public Health 2023, 11, 1141142. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Situation of Pesticide Management in Agriculture and Public Health: Report of a 2018 WHO–FAO Survey; Food and Agriculture Organization: Rome, Italy, 2019; ISBN 9251319693. [Google Scholar]
- Demortain, D. The science behind the ban: The outstanding impact of ecotoxicological research on the regulation of neonicotinoids. Curr. Opin. Insect Sci. 2021, 46, 78–82. [Google Scholar] [CrossRef]
- Simon-Delso, N.; Amaral-Rogers, V.; Belzunces, L.P.; Bonmatin, J.-M.; Chagnon, M.; Downs, C.; Furlan, L.; Gibbons, D.W.; Giorio, C.; Girolami, V. Systemic insecticides (neonicotinoids and fipronil): Trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res. 2015, 22, 5–34. [Google Scholar] [CrossRef] [PubMed]
- Bass, C.; Denholm, I.; Williamson, M.S.; Nauen, R. The global status of insect resistance to neonicotinoid insecticides. Pestic. Biochem. Physiol. 2015, 121, 78–87. [Google Scholar] [CrossRef]
- Thompson, H.M. The use of the Hazard Quotient approach to assess the potential risk to honeybees (Apis mellifera) posed by pesticide residues detected in bee-relevant matrices is not appropriate. Pest Manag. Sci. 2021, 77, 3934–3941. [Google Scholar] [CrossRef]
- Hesselbach, H.; Scheiner, R. The novel pesticide flupyradifurone (Sivanto) affects honeybee motor abilities. Ecotoxicology 2019, 28, 354–366. [Google Scholar] [CrossRef]
- Carleton, J. Environmental Fate and Ecological Risk Assessment for Foliar, soil Drench, and Seed Treatment Uses of the New Insecticide Flupyradifurone (BYI 02960); United States Environmental Protection Agency: Washington, DC, USA, 2014.
- Nauen, R.; Jeschke, P.; Velten, R.; Beck, M.E.; Ebbinghaus-Kintscher, U.; Thielert, W.; Wölfel, K.; Haas, M.; Kunz, K.; Raupach, G. Flupyradifurone: A brief profile of a new butenolide insecticide. Pest Manag. Sci. 2015, 71, 850–862. [Google Scholar] [CrossRef]
- Tosi, S.; Nieh, J.C.; Brandt, A.; Colli, M.; Fourrier, J.; Giffard, H.; Hernández-López, J.; Malagnini, V.; Williams, G.R.; Simon-Delso, N. Long-term field-realistic exposure to a next-generation pesticide, flupyradifurone, impairs honey bee behaviour and survival. Commun. Biol. 2021, 4, 805. [Google Scholar] [CrossRef] [PubMed]
- Hesselbach, H.; Scheiner, R. Effects of the novel pesticide flupyradifurone (Sivanto) on honeybee taste and cognition. Sci. Rep. 2018, 8, 4954. [Google Scholar] [CrossRef] [PubMed]
- Tosi, S.; Nieh, J.C. Lethal and sublethal synergistic effects of a new systemic pesticide, flupyradifurone (Sivanto®), on honeybees. Proc. R. Soc. B 2019, 286, 20190433. [Google Scholar] [CrossRef] [PubMed]
- Štrbac, F.; Krnjajić, S.; Maurelli, M.P.; Stojanović, D.; Simin, N.; Orčić, D.; Ratajac, R.; Petrović, K.; Knežević, G.; Cringoli, G. A potential anthelmintic phytopharmacological source of Origanum vulgare (L.) essential oil against gastrointestinal nematodes of sheep. Animals 2022, 13, 45. [Google Scholar] [CrossRef]
- Štrbac, F.; Krnjajić, S.; Stojanović, D.; Ratajac, R.; Simin, N.; Orčić, D.; Rinaldi, L.; Ciccone, E.; Maurelli, M.P.; Cringoli, G. In vitro and in vivo anthelmintic efficacy of peppermint (Mentha x piperita L.) essential oil against gastrointestinal nematodes of sheep. Front. Vet. Sci. 2023, 10, 1232570. [Google Scholar] [CrossRef] [PubMed]
- Salerno, R.; Casale, F.; Calandruccio, C.; Procopio, A. Characterization of flavonoids in Citrus bergamia (Bergamot) polyphenolic fraction by liquid chromatography–high resolution mass spectrometry (LC/HRMS). PharmaNutrition 2016, 4, S1–S7. [Google Scholar] [CrossRef]
- Mannucci, C.; Navarra, M.; Calapai, F.; Squeri, R.; Gangemi, S.; Calapai, G. Clinical pharmacology of Citrus bergamia: A systematic review. Phyther. Res. 2017, 31, 27–39. [Google Scholar] [CrossRef]
- Maiuolo, J.; Carresi, C.; Gliozzi, M.; Musolino, V.; Scarano, F.; Coppoletta, A.R.; Guarnieri, L.; Nucera, S.; Scicchitano, M.; Bosco, F. Effects of bergamot polyphenols on mitochondrial dysfunction and sarcoplasmic reticulum stress in diabetic cardiomyopathy. Nutrients 2021, 13, 2476. [Google Scholar] [CrossRef]
- Mirarchi, A.; Mare, R.; Musolino, V.; Nucera, S.; Mollace, V.; Pujia, A.; Montalcini, T.; Romeo, S.; Maurotti, S. Bergamot polyphenol extract reduces hepatocyte neutral fat by increasing beta-oxidation. Nutrients 2022, 14, 3434. [Google Scholar] [CrossRef]
- Bava, R.; Castagna, F.; Ruga, S.; Caminiti, R.; Nucera, S.; Bulotta, R.M.; Naccari, C.; Britti, D.; Mollace, V.; Palma, E. Protective Role of Bergamot Polyphenolic Fraction (BPF) against Deltamethrin Toxicity in Honeybees (Apis mellifera). Animals 2023, 13, 3764. [Google Scholar] [CrossRef]
- Medrzycki, P.; Giffard, H.; Aupinel, P.; Belzunces, L.P.; Chauzat, M.-P.; Classen, C.; Colin, M.E.; Dupont, T.; Girolami, V.; Johnson, R. Standard methods for toxicology research in Apis mellifera. J. Apic. Res. 2013, 52, 1–60. [Google Scholar] [CrossRef]
- Williams, G.R.; Alaux, C.; Costa, C.; Csaki, T.; Doublet, V.; Eisenhardt, D.; Fries, I.; Kuhn, R.; McMahon, D.P.; Medrzycki, P. Standard methods for maintaining adult Apis mellifera in cages under in vitro laboratory conditions. J. Apic. Res. 2013, 52, 1–36. [Google Scholar] [CrossRef]
- Gao, J.; Guo, Y.; Chen, J.; Diao, Q.-Y.; Wang, Q.; Dai, P.-L.; Zhang, L.; Li, W.-M.; Wu, Y.-Y. Acute oral toxicity, apoptosis, and immune response in nurse bees (Apis mellifera) induced by flupyradifurone. Front. Physiol. 2023, 14, 1150340. [Google Scholar] [CrossRef] [PubMed]
- Gioffrè, G.; Ursino, D.; Labate, M.L.C.; Giuffrè, A.M. The peel essential oil composition of bergamot fruit (Citrus bergamia, Risso) of Reggio Calabria (Italy): A review. Emirates J. Food Agric. 2020, 32, 835–845. [Google Scholar] [CrossRef]
- OECD/OCDE. Honey bee (Apis mellifera L.), chronic oral toxicity test (10-day feeding). In OECD Guideline 245 for the Testing of Chemicals; OECD: Paris, France, 2017. [Google Scholar]
- Available online: https://www.iso.org/home.html (accessed on 28 December 2023).
- Faheem, M.; Aslam, M.; Razaq, M. Pollination ecology with special reference to insects a review. J. Res. Sci. 2004, 4, 395–409. [Google Scholar]
- Sánchez-Bayo, F.; Wyckhuys, K.A.G. Further evidence for a global decline of the entomofauna. Austral Entomol. 2021, 60, 9–26. [Google Scholar] [CrossRef]
- van Lexmond, M.B.; Bonmatin, J.-M.; Goulson, D.; Noome, D.A. Worldwide integrated assessment on systemic pesticides: Global collapse of the entomofauna: Exploring the role of systemic insecticides. Environ. Sci. Pollut. Res. 2015, 22, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Gay, H. Before and after Silent Spring: From chemical pesticides to biological control and integrated pest management—Britain, 1945–1980. Ambix 2012, 59, 88–108. [Google Scholar] [CrossRef]
- Rice-Evans, C.; Miller, N.; Paganga, G. Antioxidant properties of phenolic compounds. Trends Plant Sci. 1997, 2, 152–159. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, S.Y. Antioxidant activity and phenolic compounds in selected herbs. J. Agric. Food Chem. 2001, 49, 5165–5170. [Google Scholar] [CrossRef]
- Hybl, M.; Mraz, P.; Sipos, J.; Pridal, A. Effects of phenolic bioactive substances on reducing mortality of bees (Apis mellifera) intoxicated by thiacloprid. In Proceedings of the MendelNet, Brno, Czech Republic, 6–7 November 2019; pp. 6–7. [Google Scholar]
- Liao, L.-H.; Wu, W.-Y.; Berenbaum, M.R. Impacts of dietary phytochemicals in the presence and absence of pesticides on longevity of honey bees (Apis mellifera). Insects 2017, 8, 22. [Google Scholar] [CrossRef] [PubMed]
- Ardalani, H.; Vidkjaer, N.H.; Laursen, B.B.; Kryger, P.; Fomsgaard, I.S. Dietary quercetin impacts the concentration of pesticides in honey bees. Chemosphere 2021, 262, 127848. [Google Scholar] [CrossRef] [PubMed]
- Liao, L.-H.; Pearlstein, D.J.; Wu, W.-Y.; Kelley, A.G.; Montag, W.M.; Hsieh, E.M.; Berenbaum, M.R. Increase in longevity and amelioration of pesticide toxicity by natural levels of dietary phytochemicals in the honey bee, Apis mellifera. PLoS ONE 2020, 15, e0243364. [Google Scholar] [CrossRef] [PubMed]
- Sicari, V.; Pellicanò, T.M.; Giuffrè, A.M.; Zappia, C.; Capocasale, M. Bioactive compounds and antioxidant activity of citrus juices produced from varieties cultivated in Calabria. J. Food Meas. Charact. 2016, 10, 773–780. [Google Scholar] [CrossRef]
- Raspo, M.A.; Vignola, M.B.; Andreatta, A.E.; Juliani, H.R. Antioxidant and antimicrobial activities of citrus essential oils from Argentina and the United States. Food Biosci. 2020, 36, 100651. [Google Scholar] [CrossRef]
- Jing, L.; Lei, Z.; Li, L.; Xie, R.; Xi, W.; Guan, Y.; Sumner, L.W.; Zhou, Z. Antifungal activity of citrus essential oils. J. Agric. Food Chem. 2014, 62, 3011–3033. [Google Scholar] [CrossRef]
Group | Flupyradifurone (FLU) | Bergamot Polyphenolic Fraction (BPF) | Sucrose Solution |
---|---|---|---|
CTRL | - | - | 50% w/v |
FLU 50 | 50 mg/L | - | 50% w/v |
FLU 100 | 100 mg/L | - | 50% w/v |
BPF 1 | - | 1 mg/kg | 50% w/v |
BPF 2 | - | 2 mg/kg | 50% w/v |
BPF 5 | - | 5 mg/kg | 50% w/v |
FLU 50 + BPF 1 | 50 mg/L | 1 mg/kg | 50% w/v |
FLU50 + BPF 2 | 50 mg/L | 2 mg/kg | 50% w/v |
FLU 50 + BPF 5 | 50 mg/L | 5 mg/kg | 50% w/v |
FLU 100 + BPF 1 | 100 mg/L | 1 mg/kg | 50% w/v |
FLU 100 + BPF 2 | 100 mg/L | 2 mg/kg | 50% w/v |
FLU 100 +BPF 5 | 100 mg/L | 5 mg/kg | 50% w/v |
Treatment | Day | Survival (%) | Mortality (%) |
---|---|---|---|
CTRL | 1 | 100 ± 0 | 0 ± 0 |
2 | 100 ± 0 | 0 ± 0 | |
3 | 91.6 ± 0.03 | 8.4 ± 0.03 | |
BPF 1 | 1 | 98.8 ± 0.03 | 1.2 ± 0.03 |
2 | 97.1 ± 0.03 | 2.9 ± 0.03 | |
3 | 90.1 ± 0.03 | 9.9 ± 0.03 | |
BPF 2 | 1 | 98.2 ± 0.05 | 1.8 ± 0.05 |
2 | 96.5 ± 0.03 | 3.5 ± 0.03 | |
3 | 89.6 ± 0.02 | 10.4 ± 0.02 | |
BPF 5 | 1 | 98.4 ± 0 | 1.6 ± 0 |
2 | 96.2 ± 0.41 | 3.8 ± 0.41 | |
3 | 88.1 ± 0.03 | 12.9 ± 0.03 | |
FLU 50 | 1 | 93.4 ± 0.13 | 6.6 ± 0.13 |
2 | 86.4 ± 0.06 | 13.6 ± 0.06 | |
3 | 54.2 ± 0.37 | 45.8 ± 0.37 | |
FLU 100 | 1 | 15.3 ± 0.03 | 84.7 ± 0.03 |
2 | 0 ± 0 | 100 ± 0 | |
3 | / | / | |
FLU 50 + BPF 1 | 1 | 94.2 ± 0.05 | 5.8 ± 0.05 |
2 | 89.4 ± 0.08 | 10.6 ± 0.08 | |
3 | 77.7 ± 0.09 | 22.3 ± 0.09 | |
FLU 50 + BPF 2 | 1 | 95.5 ± 0.06 | 4.5 ± 0.06 |
2 | 90.6 ± 0.08 | 9.4 ± 0.08 | |
3 | 79.1 ± 0.15 | 20.9 ± 0.15 | |
FLU 50 + BPF 5 | 1 | 96.3 ± 0.41 | 3.7 ± 0.41 |
2 | 93.6 ± 0.13 | 6.4 ± 0.13 | |
3 | 82.0 ± 0.10 | 18 ± 0.10 | |
FLU 100 + BPF 1 | 1 | 73.6 ± 0.18 | 26.4 ± 0.18 |
2 | 26.4 ± 0.13 | 73.6 ± 0.13 | |
3 | 0 ± 0 | 100 ± 0 | |
FLU 100 + BPF 2 | 1 | 76.0 ± 0.15 | 24 ± 0.15 |
2 | 26.1 ± 0.16 | 73.9 ± 0.16 | |
3 | 5.2 ± 0.53 | 94.8 ± 0.53 | |
FLU 100 + BPF 5 | 1 | 77.1 ± 0.18 | 22.9 ± 0.18 |
2 | 28.9 ± 0.21 | 71.1 ± 0.21 | |
3 | 0 ± 0 | 100 ± 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bava, R.; Lupia, C.; Castagna, F.; Ruga, S.; Nucera, S.; Caminiti, R.; Bulotta, R.M.; Naccari, C.; Carresi, C.; Musolino, V.; et al. Bergamot Polyphenolic Fraction for the Control of Flupyradifurone-Induced Poisoning in Honeybees. Animals 2024, 14, 608. https://doi.org/10.3390/ani14040608
Bava R, Lupia C, Castagna F, Ruga S, Nucera S, Caminiti R, Bulotta RM, Naccari C, Carresi C, Musolino V, et al. Bergamot Polyphenolic Fraction for the Control of Flupyradifurone-Induced Poisoning in Honeybees. Animals. 2024; 14(4):608. https://doi.org/10.3390/ani14040608
Chicago/Turabian StyleBava, Roberto, Carmine Lupia, Fabio Castagna, Stefano Ruga, Saverio Nucera, Rosamaria Caminiti, Rosa Maria Bulotta, Clara Naccari, Cristina Carresi, Vincenzo Musolino, and et al. 2024. "Bergamot Polyphenolic Fraction for the Control of Flupyradifurone-Induced Poisoning in Honeybees" Animals 14, no. 4: 608. https://doi.org/10.3390/ani14040608
APA StyleBava, R., Lupia, C., Castagna, F., Ruga, S., Nucera, S., Caminiti, R., Bulotta, R. M., Naccari, C., Carresi, C., Musolino, V., Statti, G., Britti, D., Mollace, V., & Palma, E. (2024). Bergamot Polyphenolic Fraction for the Control of Flupyradifurone-Induced Poisoning in Honeybees. Animals, 14(4), 608. https://doi.org/10.3390/ani14040608