Roe Deer Reproduction in Western Poland: The Late Autumn Rut Phenomenon
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Area and Sampling Time
2.2. Characterization of the Body Mass and Age of Roe Deer Female
2.3. Characterization of Female Reproductive Potential
2.4. Uterus Analysis
2.5. Ovarian Activity
2.6. Climate Conditions
2.7. Data Analysis
3. Results
3.1. Number and Age of Collected Animals
3.2. Morphometric Analysis of the Reproductive System
3.3. Presence of Corpora Lutea
3.4. Presence of Ovarian Follicles
3.5. The Occurrence of Pregnancy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kamieniarz, R.; Panek, M. Zwierzęta Łowne w Polsce Na Przełomie XX i XXI Wieku; Stacja Badawcza PZŁ—OHZ w Czempiniu: Czempiń, Poland, 2008. [Google Scholar]
- Reimoser, F.; Reimoser, S. Long-Term Trends of Hunting Bags and Wildlife Populations in Central Europe. Beiträge Zur Jagd Wildforschung 2016, 41, 29–43. [Google Scholar]
- Lorenzini, R.; Hewison, M.; Gaillard, J.M.; Garofalo, L.; Rossi, L.; Morellet, N.; Verheyden, H.; Lovari, S.; Lister, A.M.; Mattioli, S. European Roe Deer Capreolus Capreolus (Linnaeus, 1758). In Handbook of the Mammals of Europe; Hackländer, K., Zachos, F.E., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–25. ISBN 978-3-319-65038-8. [Google Scholar]
- Wasilewski, M. Wpływ Mozaiki Polno-Leśnej Na Sposób Użytkowania Terenu Przez Sarny (Capreolus Capreolus Linnaeus, 1758); Wydawnictwo SGGW: Warszawa, Poland, 2001. [Google Scholar]
- Gryz, J.; Krauze-Gryz, D.; Jasińska, K.D. Alien vs. Native—Influence of Fallow Deer (Dama dama) Introduction on the Native Roe Deer (Capreolus capreolus) Population. Forests 2024, 15, 1014. [Google Scholar] [CrossRef]
- Kamieniarz, R.; Szymański, M.; Dyderski, M.K.; Górecki, G.; Jaśkowski, B.M.; Skorupski, M.; Skubis, J.; Woźna-Wysocka, M.; Zalewski, D. Less and Less Roe Deer in the Forest—Population. Sylwan 2024, 168, 408–422. [Google Scholar]
- Kamieniarz, R. Struktura Krajobrazu Rolniczego a Funkcjonowanie Populacji Sarny Polnej; Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu: Poznań, Poland, 2013. [Google Scholar]
- Wajdzik, M.; Skubis, J.; Nasiadka, P.; Szyjka, K.; Borecki, S. Phenotypic Characteristics of Roe Deer Bucks (Capreolus capreolus) in the Opolskie Region, South-Western Poland. Acta Sci. Pol. Technol. Aliment. 2015, 14, 347–358. [Google Scholar] [CrossRef]
- Wajdzik, M.; Konieczny, G.; Nasiadka, P.; Szyjka, K.; Skubis, J. Wpływ Lesistości i Rodzaju Gleb Na Jakość Osobnicza Rogaczy Sarny Na Terenie Kielecczyzny. Sylwan 2016, 160, 424–432. [Google Scholar]
- Fruziński, B.; Łabudzki, L. Demographic Processes in a Forest Roe Deer Population. Acta Theriol. (Warsz.) 1982, 27, 365–375. [Google Scholar] [CrossRef]
- Kałuziński, J. Dynamics and Structure of a Field Roe Deer Population. Acta Theriol. (Warsz.) 1982, 27, 385–408. [Google Scholar] [CrossRef]
- Pielowski, Z.; Bresiński, W. Population Characteristics of Roe Deer Inhabiting a Small Forest. Acta Theriol. (Warsz.) 1982, 27, 409–425. [Google Scholar] [CrossRef]
- Zych, J. Analiza Obserwacji Letnich Zwierzyny Na Terenie RDLP w Pile w Latach 2013-20. Zach. Porad. Low. 2020, 3, 5–7. [Google Scholar]
- Flint, A.P.F.; Krzywinski, A.; Sempéré, A.J.; Mauget, R.; Lacroix, A. Luteal Oxytocin and Monoestry in the Roe Deer Capreolus Capreolus. J. Reprod. Fertil. 1994, 101, 651–656. [Google Scholar] [CrossRef]
- Hermes, R.; Hildebrandt, T.B.; Göritz, F.; Jewgenow, K.; Lengwinat, T.; Hofmann, R.R. Ultrasonography of the Ovaries and Uterus and Grey Scale Analysis of the Endometrium during Embryonic Diapause in European Roe Deer. Acta Theriol. (Warsz.) 2000, 45, 559–572. [Google Scholar] [CrossRef]
- Bischoff, T.L.W. Entwickelungsgeschichte Des Rehes; Leopold Classic Library: Giessen, Germany, 1854. [Google Scholar]
- Sempere, A. Plasma Progesterone Levels in the Roe Deer, Capreolus capreolus. Reproduction 1977, 50, 365–366. [Google Scholar] [CrossRef]
- Renfree, M.B.; Shaw, G. Diapause. Annu. Rev. Physiol. 2000, 62, 353–375. [Google Scholar] [CrossRef] [PubMed]
- Rüegg, A.B.; Ulbrich, S.E. Embryonic Diapause in the European Roe Deer—Slowed, but Not Stopped. Animal 2023, 17, 100829. [Google Scholar] [CrossRef] [PubMed]
- Rüegg, A.B.; van der Weijden, V.A.; de Sousa, J.A.; von Meyenn, F.; Pausch, H.; Ulbrich, S.E. Developmental Progression Continues during Embryonic Diapause in the Roe Deer. Commun. Biol. 2024, 7, 270. [Google Scholar] [CrossRef]
- Lambert, R.T.; Ashworth, C.J.; Beattie, L.; Gebbie, F.E.; Hutchinson, J.S.M.; Kyle, D.J.; Racey, P.A. Temporal Changes in Reproductive Hormones and Conceptus-Endometrial Interactions during Embryonic Diapause and Reactivation of the Blastocyst in European Roe Deer (Capreolus capreolus). Reproduction 2001, 121, 863–871. [Google Scholar] [CrossRef]
- van der Weijden, V.A.; Ulbrich, S.E. Embryonic Diapause in Roe Deer: A Model to Unravel Embryo-Maternal Communication during Pre-Implantation Development in Wildlife and Livestock Species. Theriogenology 2020, 158, 105–111. [Google Scholar] [CrossRef]
- Aitken, R.J. Delayed Implantation in Roe Deer (Capreolus capreolus). J. Reprod. Fertil. 1974, 39, 225–233. [Google Scholar] [CrossRef]
- Sempéré, A.J.; Blanvillain, C.; Mauget, R.; Lacroix, A.; Chemineau, P. Effects of Melatonin Implantation or Artificial Long Days on Seasonal Ovulatory Activity in Roe Deer (Capreolus capreolus L.). Anim. Reprod. Sci. 1995, 38, 127–136. [Google Scholar] [CrossRef]
- Majzinger, I. Reproduction Biology of the Roe Deer (Capreolus capreolus) and Newer Domestic Data about the Offspring and Losses. Magy Allatorvosok Lapja 2013, 135, 473–480. [Google Scholar]
- Flajšman, K.; Pokorny, B.; Chirichella, R.; Bottero, E.; Mattioli, L.; Apollonio, M. I Can Produce More Offspring as You Can Imagine: First Records on Exceptionally Large Litters in Roe Deer in Central/Southern Europe. Eur. J. Wildl. Res. 2017, 63, 42. [Google Scholar] [CrossRef]
- Strandgaard, H. The Roe-Deer (Capreolus capreolus) Population at Kalo and the Factors Regulating Its Size. Dan. Rev. Game Biol. 1972, 7, 6–205. [Google Scholar]
- Anderson, G.J.; Bernardello, G.; Opel, M.R.; Santos-Guerra, A.; Anderson, M. Reproductive Biology of the Dioecious Canary Islands Endemic Withania Aristata (Solanaceae). Am. J. Bot. 2006, 93, 1295–1305. [Google Scholar] [CrossRef] [PubMed]
- Flint, A.P.F.; Krzywiński, A. Sex Differences in Time Budgeting in Roe Deer During the Rut. Acta Theriol. 1997, 42, 313–320. [Google Scholar] [CrossRef]
- Andersen, R.; Linnell, J. Variation in Maternal Investment in a Small Cervid; the Effects of Cohort, Sex, Litter Size and Time of Birth in Roe Deer (Capreolus capreolus) Fawns. Oecologia 1997, 109, 74–79. [Google Scholar] [CrossRef]
- Djaków, P. Najcieplejszy Rok w Polskiej Historii Pomiarów. Available online: https://naukaoklimacie.pl/aktualnosci/najcieplejszy-rok-w-polskiej-historii-pomiarow-130 (accessed on 12 August 2023).
- De Rensis, F.; Saleri, R.; Garcia-Ispierto, I.; Scaramuzzi, R.; López-Gatius, F. Effects of Heat Stress on Follicular Physiology in Dairy Cows. Animals 2021, 11, 3406. [Google Scholar] [CrossRef]
- Naranjo-Gómez, J.S.; Uribe-García, H.F.; Herrera-Sánchez, M.P.; Lozano-Villegas, K.J.; Rodríguez-Hernández, R.; Rondón-Barragán, I.S. Heat Stress on Cattle Embryo: Gene Regulation and Adaptation. Heliyon 2021, 7, e06570. [Google Scholar] [CrossRef]
- Boni, R. Heat Stress, a Serious Threat to Reproductive Function in Animals and Humans. Mol. Reprod. Dev. 2019, 86, 1307–1323. [Google Scholar] [CrossRef]
- Krebs, C.J. Ekologia. Eksperymentalna Analiza Rozmieszczenia i Liczebności; Wydawnictwo Naukowe PWN S.A.: Warszawa, Poland, 2011. [Google Scholar]
- Zalewski, D.; Margiel, E.; Erynk, I.; Jakubowski, M. Verification of the Traditional Hunters’ Method of Age Determination in Roe Deer (Capreolus capreolus L.) Bucks in Comparison with the Histological Analysis of Mandible Teeth: Molar M1 and Incisor I1. Sylwan 2009, 153, 86–98. [Google Scholar]
- Flajšman, K.; Jerina, K.; Pokorny, B. Age-Related Effects of Body Mass on Fertility and Litter Size in Roe Deer. PLoS ONE 2017, 12, e0175579. [Google Scholar] [CrossRef]
- Czernecki, B.; Glogowski, A.; Nowosad, J. Climate: An R Package to Access Free In-Situ Meteorological and Hydrological Datasets for Environmental Assessment. Sustainability 2020, 12, 394. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S. Comment on ‘Candidate Distributions for Climatological Drought Indices (SPI and SPEI)’ by James, H. Stagge et Al. Int. J. Climatol. 2015, 36, 2120–2131. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized Precipitation Evapotranspiration Index (SPEI) Revisited: Parameter Fitting, Evapotranspiration Models, Tools, Datasets and Drought Monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Oksanen, A.J.; Blanchet, F.G.; Kindt, R.; Legen, P.; Minchin, P.R.; Hara, R.B.O.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H. Community Ecology Package. 2024. Available online: https://cran.r-project.org/package=vegan (accessed on 26 August 2024).
- Brooks, M.E.; Kristensen, K.; van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Mächler, M.; Bolker, B.M. GlmmTMB Balances Speed and Flexibility among Packages for Zero-Inflated Generalized Linear Mixed Modeling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef]
- Hartig, F.; DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R Package Version 0.2.7. 2020. Available online: https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html (accessed on 26 August 2024).
- Shmueli, G.; Minka, T.P.; Kadane, J.B.; Borle, S.; Boatwright, P. A Useful Distribution for Fitting Discrete Data: Revival of the Conway–Maxwell–Poisson Distribution. J. R. Stat. Soc. Ser. C Appl. Stat. 2005, 54, 127–142. [Google Scholar] [CrossRef]
- Nakagawa, S.; Schielzeth, H. A General and Simple Method for Obtaining R2 from Generalized Linear Mixed-Effects Models. Methods Ecol. Evol. 2013, 4, 133–142. [Google Scholar] [CrossRef]
- Bartoń, K. MuMIn: Multi-Model Inference. Available online: https://doi.org/10.32614/CRAN.package.MuMIn (accessed on 12 October 2017).
- Lenth, R. Emmeans: Estimated Marginal Means, Aka Least-Squares Means. Available online: https://cran.r-project.org/web/packages/emmeans/index.html (accessed on 12 October 2017). [CrossRef]
- Lüdecke, D. Ggeffects: Tidy Data Frames of Marginal Effects from Regression Models. J. Open Source Softw. 2018, 3, 772. [Google Scholar] [CrossRef]
- Flajšman, K.; Borowik, T.; Pokorny, B.; Jędrzejewska, B. Effects of Population Density and Female Body Mass on Litter Size in European Roe Deer at a Continental Scale. Mammal Res. 2018, 63, 91–98. [Google Scholar] [CrossRef]
- Sommer, R.S.; Fahlke, J.M.; Schmolcke, U.; Benecke, N.; Zachos, F.E. Quaternary History of the European Roe Deer Capreolus Capreolus. Mamm. Rev. 2009, 39, 1–16. [Google Scholar] [CrossRef]
- Burbaitė, L.; Csányi, S. Roe Deer Population and Harvest Changes in Europe. Estonian J. Ecol. 2009, 58, 169–180. [Google Scholar] [CrossRef]
- Chirichella, R.; Pokorny, B.; Bottero, E.; Flajšman, K.; Mattioli, L.; Apollonio, M. Factors Affecting Implantation Failure in Roe Deer. J. Wildl. Manag. 2019, 83, 599–609. [Google Scholar] [CrossRef]
- Pielowski, Z. Sarna; Wydawnictwo Świat: Warszawa, Poland, 1999. [Google Scholar]
- Andersen, R.; Linnell, J.D.C. Irruptive Potential in Roe Deer: Density-Dependent Effects on Body Mass and Fertility. J. Wildl. Manag. 2000, 64, 698. [Google Scholar] [CrossRef]
- Andersen, R.; Linnell, J.D. Ecological Correlates of Mortality of Roe Deer Fawns in a Predator-Free Environment. Can. J. Zool. 1998, 76, 1217–1225. [Google Scholar] [CrossRef]
- Vincent, J.P.; Bideau, E.; Hewison, A.J.M.; Angibault, J.M. The Influence of Increasing Density on Body Weight, Kid Production, Home Range and Winter Grouping in Roe Deer (Capreolus capreolus). J. Zool. 1995, 236, 371–382. [Google Scholar] [CrossRef]
- Focardi, S.; Pelliccioni, E.; Petrucco, R.; Toso, S. Spatial Patterns and Density Dependence in the Dynamics of a Roe Deer (Capreolus capreolus) Population in Central Italy. Oecologia 2002, 130, 411–419. [Google Scholar] [CrossRef]
- Panek, M.; Kamieniarz, R. Vole Fluctuations, Red Fox Responses, Predation on Fawns, and Roe Deer Dynamics in a Temperate Latitude. Mammal Res. 2017, 62, 341–349. [Google Scholar] [CrossRef]
- Hewison, A.J.M.; Gaillard, J.M. Phenotypic Quality and Senescence Affect Different Components of Reproductive Output in Roe Deer. J. Anim. Ecol. 2001, 70, 600–608. [Google Scholar] [CrossRef]
- Gaillard, J.-M.; Delorme, D.; Boutin, J.-M.; Van Laere, G.; Boisaubert, B. Body Mass of Roe Deer Fawns during Winter in 2 Contrasting Populations. J. Wildl. Manag. 1996, 60, 29. [Google Scholar] [CrossRef]
- Kjellander, P.; Gaillard, J.-M.; Hewison, A.J. Density-Dependent Responses of Fawn Cohort Body Mass in Two Contrasting Roe Deer Populations. Oecologia 2006, 146, 521–530. [Google Scholar] [CrossRef]
- Pettorelli, N.; Dray, S.; Gaillard, J.-M.; Chessel, D.; Duncan, P.; Illius, A.; Guillon, N.; Klein, F.; Van Laere, G. Spatial Variation in Springtime Food Resources Influences the Winter Body Mass of Roe Deer Fawns. Oecologia 2003, 137, 363–369. [Google Scholar] [CrossRef]
- Aanes, R.; Andersen, R. The Effects of Sex, Time of Birth, and Habitat on the Vulnerability of Roe Deer Fawns to Red Fox Predation. Can. J. Zool. 1996, 74, 1857–1865. [Google Scholar] [CrossRef]
- Kjellander, P.; Nordström, J. Cyclic Voles, Prey Switching in Red Fox, and Roe Deer Dynamics—A Test of the Alternative Prey Hypothesis. Oikos 2003, 101, 338–344. [Google Scholar] [CrossRef]
- Jarnemo, A.; Liberg, O. Red Fox Removal and Roe Deer Fawn Survival—A 14-Year Study. J. Wildl. Manag. 2010, 69, 1090–1098. [Google Scholar] [CrossRef]
- Panzacchi, M.; Linnell, J.D.C.; Odden, M.; Odden, J.; Andersen, R. Habitat and Roe Deer Fawn Vulnerability to Red Fox Predation. J. Anim. Ecol. 2009, 78, 1124–1133. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, R.R. Evolutionary Steps of Ecophysiological Adaptation and Diversification of Ruminants: A Comparative View of Their Digestive System. Oecologia 1989, 78, 443–457. [Google Scholar] [CrossRef]
- Parker, K.L.; Barboza, P.S.; Gillingham, M.P. Nutrition Integrates Environmental Responses of Ungulates. Funct. Ecol. 2009, 23, 57–69. [Google Scholar] [CrossRef]
- Bronson, F.H. Climate Change and Seasonal Reproduction in Mammals. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 3331–3340. [Google Scholar] [CrossRef]
- Clutton-Brock, T.H.; Albon, S.D. Climatic Variation and Body Weight of Red Deer. J. Wildl. Manag. 1983, 47, 1197–1201. [Google Scholar] [CrossRef]
- Lang, L.I.; Wang, Z.Z.; Liu, B.; Shen, C.-Q.; Tu, J.-Y.; Wang, S.-C.; Lei, R.-L.; Peng, S.-Q.; Xiao, X.; Zhao, Y.-J.; et al. The Effects and Mechanisms of Heat Stress on Mammalian Oocyte and Embryo Development. J. Therm. Biol. 2024, 124, 103927. [Google Scholar] [CrossRef]
- Lenart, P. Podsumowanie Meteorologicznego Lata 2016 Roku w Polsce. Temperatura i Opady. Available online: https://lenartpawel.pl/podsumowanie-lata-meteorologicznego-2016-roku-w-polsce-temperatura-i-opady.html (accessed on 30 August 2024).
- Polsky, L.; von Keyserlingk, M.A.G. Invited Review: Effects of Heat Stress on Dairy Cattle Welfare. J. Dairy Sci. 2017, 100, 8645–8657. [Google Scholar] [CrossRef]
- Sammad, A.; Umer, S.; Shi, R.; Zhu, H.; Zhao, X.; Wang, Y. Dairy Cow Reproduction under the Influence of Heat Stress. J. Anim. Physiol. Anim. Nutr. 2020, 104, 978–986. [Google Scholar] [CrossRef] [PubMed]
- Badinga, L.; Collier, R.J.; Thatcher, W.W.; Wilcox, C.J. Effects of Climatic and Management Factors on Conception Rate of Dairy Cattle in Subtropical Environment. J. Dairy Sci. 1985, 68, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Szymański, M. Populacyjne Przyczyny Zmniejszenia Liczebności Sarny Europejskiej w Puszczy Zielonka; Poznan University of Life Sciences: Poznan, Poland, 2022. [Google Scholar]
Variable | Df | Variance | F | Pr (>F) |
---|---|---|---|---|
Season | 1 | 0.336 | 2.232 | 0.019 |
Year | 1 | 0.838 | 5.568 | 0.001 |
Body mass | 1 | 1.693 | 11.257 | 0.001 |
Age | 1 | 0.537 | 3.567 | 0.002 |
Season × Year | 1 | 0.403 | 2.676 | 0.009 |
Residual | 101 | 15.194 |
Season | 2015/2016 | 2016/2017 | ||||||
---|---|---|---|---|---|---|---|---|
Female | Number of All Observed CL | Female | Number of All Observed CL | |||||
N | After Ovulation | Total | Per One ♀ | N | After Ovulation | Total | Per One ♀ | |
autumn | 20 | 8 | 9 | 1.1 | 31 | 31 | 60 | 1.9 |
winter | 38 | 37 | 71 | 1.9 | 34 | 33 | 62 | 1.9 |
Total | 58 | 45 | 80 | 1.8 | 65 | 64 | 122 | 1.9 |
Response | Variable | Estimate | SE | z | Pr (>|z|) |
---|---|---|---|---|---|
Number of Corpora Lutea AICc = 258.0; AICc0 = 307.0; RE SD < 0.0001 R2m = 0.449, R2c = 0.449 | (Intercept) | −1.171 | 0.290 | −4.036 | 0.000 |
Body mass | 0.040 | 0.014 | 2.832 | 0.005 | |
Age | 0.034 | 0.020 | 1.730 | 0.084 | |
Season = winter | 1.021 | 0.175 | 5.824 | 0.000 | |
Year = 2016 | 1.029 | 0.172 | 5.997 | 0.000 | |
Season = winter × Year = 2016 | −1.059 | 0.194 | −5.451 | 0.000 | |
Presence of Corpora Lutea AICc = 60.3; AICc0 = 89.6; RE SD < 0.0001 R2m = 0.894, R2c = 0.894 | (Intercept) | −1.114 | 2.517 | −0.443 | 0.658 |
Body mass | −0.009 | 0.154 | −0.059 | 0.953 | |
Age | 0.293 | 0.207 | 1.419 | 0.156 | |
Season = winter | 3.534 | 1.172 | 3.016 | 0.003 | |
Year = 2016 | 23.510 | 19,890.000 | 0.001 | 0.999 | |
Season = winter × Year = 2016 | −23.450 | 19,890.000 | −0.001 | 0.999 | |
Number of Follicles AICc = 381.2; AICc0 = 385.4; RE SD < 0.0001 R2m = 0.043, R2c = 0.043 | (Intercept) | −0.621 | 0.497 | −1.250 | 0.211 |
Body mass | 0.062 | 0.030 | 2.026 | 0.043 | |
Year = 2016 | −0.387 | 0.167 | −2.314 | 0.021 | |
Probability of Follicle Presence AICc = AICc0 = 168.4; RE SD = 0.2674 R2m = 0.000, R2c = 0.017 | (Intercept) | 0.439 | 0.232 | 1.891 | 0.059 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamieniarz, R.; Szymański, M.; Woźna-Wysocka, M.; Jaśkowski, B.M.; Dyderski, M.K.; Pers-Kamczyc, E.; Skorupski, M. Roe Deer Reproduction in Western Poland: The Late Autumn Rut Phenomenon. Animals 2024, 14, 3078. https://doi.org/10.3390/ani14213078
Kamieniarz R, Szymański M, Woźna-Wysocka M, Jaśkowski BM, Dyderski MK, Pers-Kamczyc E, Skorupski M. Roe Deer Reproduction in Western Poland: The Late Autumn Rut Phenomenon. Animals. 2024; 14(21):3078. https://doi.org/10.3390/ani14213078
Chicago/Turabian StyleKamieniarz, Robert, Michał Szymański, Magdalena Woźna-Wysocka, Bartłomiej M. Jaśkowski, Marcin K. Dyderski, Emilia Pers-Kamczyc, and Maciej Skorupski. 2024. "Roe Deer Reproduction in Western Poland: The Late Autumn Rut Phenomenon" Animals 14, no. 21: 3078. https://doi.org/10.3390/ani14213078
APA StyleKamieniarz, R., Szymański, M., Woźna-Wysocka, M., Jaśkowski, B. M., Dyderski, M. K., Pers-Kamczyc, E., & Skorupski, M. (2024). Roe Deer Reproduction in Western Poland: The Late Autumn Rut Phenomenon. Animals, 14(21), 3078. https://doi.org/10.3390/ani14213078