Effects of Bile Acid Supplementation on Lactation Performance, Nutrient Intake, Antioxidative Status, and Serum Biochemistry in Mid-Lactation Dairy Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Ethical Statement
2.2. Preparation for BAs
2.3. Experimental Design and Diets
2.4. Sample Collection and Index Determination
2.4.1. Feed Intake Sampling and Calculations
2.4.2. Milk Sampling and Analysis
2.4.3. Blood Collection and Sampling Analysis
2.4.4. Antioxidant Capacity
2.4.5. Statistical Analysis
3. Results
3.1. Effect of BAs on Growth Performance in Mid-Lactation Cows
3.2. Effect of BAs on Milk Composition in Mid-Lactation Cows
3.3. Effect of BAs on Serum Biomarkers in Mid-Lactation Cows
3.4. Effect of BAs on Serum Antioxidant Indices in Mid-Lactation Dairy Cows
4. Discussion
Effect of BAs on the Growth Performance of Mid-Lactation Cows
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prasad, A.S. Zinc: An Antioxidant and Anti-Inflammatory Agent: Role of Zinc in Degenerative Disorders of Aging. J. Trace Elem. Med. Biol. 2014, 28, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Castillo, C.; Hernández, J.; Valverde, I.; Pereira, V.; Sotillo, J.; Alonso, M.L.; Benedito, J.L. Plasma Malonaldehyde (MDA) and Total Antioxidant Status (TAS) during Lactation in Dairy Cows. Res. Vet. Sci. 2006, 80, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Xiao, M. Selenium and Antioxidant Status in Dairy Cows at Different Stages of Lactation. Biol. Trace Elem. Res. 2016, 171, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Pilarczyk, B.; Jankowiak, D.; Tomza-Marciniak, A.; Pilarczyk, R.; Sablik, P.; Drozd, R.; Tylkowska, A.; Skólmowska, M. Selenium Concentration and Glutathione Peroxidase (GSH-Px) Activity in Serum of Cows at Different Stages of Lactation. Biol. Trace Elem. Res. 2012, 147, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Castillo, C.; Hernandez, J.; Bravo, A.; Lopez-Alonso, M.; Pereira, V.; Benedito, J.L. Oxidative Status during Late Pregnancy and Early Lactation in Dairy Cows. Vet. J. 2005, 169, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Ma, X.; Jiang, M.; Yang, T.; Lin, M.; Zhao, G.; Zhan, K. Effects of Tea Tree Oil on Production Performance, Serum Parameter Indices, and Immunity in Postpartum Dairy Cows. Animals 2023, 13, 682. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.M.; Ma, J.; Wang, Z.; Zou, H.; Hu, R.; Peng, Q. Betaine Supplementation Improves the Production Performance, Rumen Fermentation, and Antioxidant Profile of Dairy Cows in Heat Stress. Animals 2020, 10, 634. [Google Scholar] [CrossRef]
- Xu, C.Z.; Wang, H.F.; Yang, J.Y.; Wang, J.H.; Duan, Z.Y.; Wang, C.; Liu, J.X.; Lao, Y. Effects of Feeding Lutein on Production Performance, Antioxidative Status, and Milk Quality of High-Yielding Dairy Cows. J. Dairy Sci. 2014, 97, 7144–7150. [Google Scholar] [CrossRef]
- Huang, Y.; Yan, Q.; Jiang, M.; Guo, S.; Li, H.; Lin, M.; Zhan, K.; Zhao, G.; Duan, J. Astragalus membranaceus Additive Improves Serum Biochemical Parameters and Reproductive Performance in Postpartum Dairy Cows. Front. Vet. Sci. 2022, 9, 952137. [Google Scholar] [CrossRef]
- Moate, P.J.; Williams, S.R.O.; Hannah, M.C.; Eckard, R.J.; Auldist, M.J.; Ribaux, B.E.; Jacobs, J.L.; Wales, W.J. Effects of Feeding Algal Meal High in Docosahexaenoic Acid on Feed Intake, Milk Production, and Methane Emissions in Dairy Cows. J. Dairy Sci. 2013, 96, 3177–3188. [Google Scholar] [CrossRef]
- Faciola, A.P.; Broderick, G.A. Effects of Feeding Lauric Acid or Coconut Oil on Ruminal Protozoa Numbers, Fermenta-tion Pattern, Digestion, Omasal Nutrient Flow, and Milk Production in Dairy Cows. J. Dairy Sci. 2014, 97, 5088–5100. [Google Scholar] [CrossRef]
- Reschly, E.J.; Ai, N.; Ekins, S.; Welsh, W.J.; Hagey, L.R.; Hofmann, A.F.; Krasowski, M.D. Evolution of the Bile Salt Nuclear Receptor FXR in Vertebrates. J. Lipid Res. 2008, 49, 1577–1587. [Google Scholar] [CrossRef]
- Alrefai, W.A.; Gill, R.K. Bile Acid Transporters: Structure, Function, Regulation and Pathophysiological Implications. Pharm. Res. 2007, 24, 1803–1823. [Google Scholar] [CrossRef] [PubMed]
- Ljubuncic, P.; Tanne, Z.; Bomzon, A. Ursodeoxycholic Acid Sup- Presses Extent of Lipid Peroxidation in Diseased Liver in Experimen- Tal Cholestatic Liver Disease. Dig. Dis. Sci. 2000, 45, 1921–1928. [Google Scholar] [CrossRef] [PubMed]
- Mitsuyoshi, H.; Nakashima, T.; Sumida, Y.; Yoh, T.; Nakajima, Y.; Ishikawa, H.; Inaba, K.; Sakamoto, Y.; Okanoue, T.; Kashima, K. Ursodeoxycholic Acid Protects Hepatocytes against Oxidative Injury via Induction of Antioxidants. Biochem. Biophys. Res. Commun. 1999, 263, 537–542. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, S.H.; Attia, A.I.; Reda, F.M.; Ismail, I.E. Impact of Dietary Supplemental Bile Salts on Growth Performance, Carcass, Immunity and Antioxidant Parameters and Bacteriology of Broiler Chicks. Ital. J. Anim. Sci. 2020, 19, 1406–1416. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Hu, Y.; Cheng, J.; Cheng, X.; Cheng, P.; Cui, Z. Dietary Bile Acid Supplementation Reveals Beneficial Effects on Intestinal Healthy Status of Tongue Sole (Cynoglossus semiliaevis). Fish Shellfish Immunol. 2021, 116, 52–60. [Google Scholar] [CrossRef]
- Lin, D.-L.; Chang, H.-C.; Chen, C.-Y. Identification and Quantitation of Bile Acids in Bear Bile by HPLC. J. Food Drug Anal. 2020, 8, 10. [Google Scholar] [CrossRef]
- Maisonnier, S.; Gomez, J.; Bree, A.; Berri, C.; Baeza, E.; Carre, B. Effects of Microflora Status, Dietary Bile Salts and Guar Gum on Lipid Digestibility, Intestinal Bile Salts, and Histomorphology in Broiler Chickens. Poult. Sci. 2003, 82, 805–814. [Google Scholar] [CrossRef]
- Parsaie, S.; Shariatmadari, F.; Zamiri, M.J.; Khajeh, K. Influence of Wheat-Based Diets Supplemented with Xylanase, Bile Acid and Antibiotics on Performance, Digestive Tract Measurements and Gut Morphology of Broilers Compared with a Maize-Based Diet. Br. Poult. Sci. 2007, 48, 594–600. [Google Scholar] [CrossRef]
- Alzawqari, M.; Moghaddam, H.N.; Kermanshahi, H.; Raji, A.R. The Effect of Desiccated Ox Bile Supplementation on Performance, Fat Digestibility, Gut Morphology and Blood Chemistry of Broiler Chickens Fed Tallow Diets. J. Appl. Anim. Res. 2011, 39, 169–174. [Google Scholar] [CrossRef]
- Cao, A.Z.; Lai, W.Q.; Zhang, W.W.; Dong, B.; Lou, Q.Q.; Han, M.M.; He, D.T.; Gai, X.R.; Sun, Y.B.; Zhang, L.Y. Effects of Porcine Bile Acids on Growth Performance, Antioxidant Capacity, Blood Metabolites and Nutrient Digestibility of Weaned Pigs. Anim. Feed Sci. Technol. 2021, 276, 114931. [Google Scholar] [CrossRef]
- Sun, P.; Wang, J.; Liu, W.; Bu, D.P.; Liu, S.J.; Zhang, K.Z. Hydroxy-Selenomethionine: A Novel Organic Selenium Source That Improves Antioxidant Status and Selenium Concentrations in Milk and Plasma of Mid-Lactation Dairy Cows. J. Dairy Sci. 2017, 100, 9602–9610. [Google Scholar] [CrossRef] [PubMed]
- Hachemi, M.A.; Sexton, J.R.; Briens, M.; Whitehouse, N.L. Efficacy of Feeding Hydroxy-Selenomethionine on Plasma and Milk Selenium in Mid-Lactation Dairy Cows. J. Dairy Sci. 2023, 106, 2374–2385. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, A.F.; Hagey, L.R. Bile Acids: Chemistry, Pathochemistry, Biology, Pathobiology, and Therapeutics. Cell. Mol. Life Sci. 2008, 65, 2461–2483. [Google Scholar] [CrossRef]
- Shneider, B.L. Intestinal Bile Acid Transport: Biology, Physiology, and Pathophysiology. J. Pediatr. Gastroenterol. Nutr. 2001, 32, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Sagada, G.; Wang, C.; Liu, R.; Li, Q.; Zhang, C.; Yan, Y. Exogenous Bile Acids Regulate Energy Metabolism and Improve the Health Condition of Farmed Fish. Aquaculture 2023, 562, 738852. [Google Scholar] [CrossRef]
- Cai, J.; Rimal, B.; Jiang, C.; Chiang, J.Y.L.; Patterson, A.D. Bile Acid Metabolism and Signaling, the Microbiota, and Metabolic Disease. Pharmacol. Ther. 2022, 237, 108238. [Google Scholar] [CrossRef]
- Yin, C.; Tang, S.; Liu, L.; Cao, A.; Xie, J.; Zhang, H. Effects of Bile Acids on Growth Performance and Lipid Metabolism during Chronic Heat Stress in Broiler Chickens. Animals 2021, 11, 630. [Google Scholar] [CrossRef]
- Yang, B.; Huang, S.; Zhao, G.; Ma, Q. Dietary Supplementation of Porcine Bile Acids Improves Laying Performance, Se-rum Lipid Metabolism and Cecal Microbiota in Late-Phase Laying Hens. Anim. Nutr. 2022, 11, 283–292. [Google Scholar] [CrossRef]
- Zhou, Y.; Wei, X.; Zi, Z.; Zou, B.; Xia, S.; Lu, N.; Lei, H.; Lu, Y.; Parvizi, N.; Xia, D. Potassium Diformate Influences Gene Expression of GH/IGF-I Axis and Glucose Homeostasis in Weaning Piglets. Livest. Sci. 2015, 172, 85–90. [Google Scholar] [CrossRef]
- Montoya, B.; Tóth, Z.; Lendvai, Á.Z.; Stier, A.; Criscuolo, F.; Zahn, S.; Bize, P. Does IGF-1 Shape Life-History Trade-Offs? Opposite Associations of IGF-1 with Telomere Length and Body Size in a Free-Living Bird. Front. Ecol. Evol. 2022, 10, 853674. [Google Scholar] [CrossRef]
Item | % |
---|---|
Powder mix 1 | 22.73 |
Expanded soybean meal | 2.19 |
Soybean hulls | 2.19 |
Whole cottonseed | 4.39 |
Alfalfa | 3.95 |
Oats | 3.29 |
Alfalfa silage | 6.58 |
Alfalfa corn | 48.25 |
Molasses | 2.19 |
Yeast | 0.07 |
Fat powder | 0.66 |
Lysine | 0.02 |
Sodium bicarbonate | 0.64 |
Sodium chloride | 1.21 |
Methionine | 0.07 |
Urea | 0.18 |
Vitamin and mineral mix 2 | 1.39 |
Nutrient composition | |
NEL 3 (MJ/kg) | 6.78 |
CP | 16.15 |
NDF | 33.51 |
ADF | 21.72 |
Ash | 7.12 |
Ca | 0.42 |
P | 0.25 |
EE | 3.75 |
Item | Day | BA Addition, g/head/d | SEM | p Value | |||
---|---|---|---|---|---|---|---|
0 | 6 | 12 | 18 | ||||
DMI (kg/d) | 1–28 | 25.01 | 26.61 | 25.50 | 26.27 | 0.26 | 0.111 |
29–56 | 23.92 | 24.79 | 24.56 | 25.47 | 0.26 | 0.225 | |
57–84 | 22.42 b | 23.42 ab | 23.71 ab | 24.20 a | 0.23 | 0.041 | |
Milk yield (kg/d) | 1–28 | 36.50 | 37.87 | 36.62 | 38.34 | 0.48 | 0.444 |
29–56 | 35.22 | 36.50 | 35.27 | 36.74 | 0.44 | 0.492 | |
57–84 | 33.48 | 35.43 | 34.11 | 34.39 | 0.44 | 0.472 | |
4% FCM (kg/d) 1 | 1–28 | 33.87 | 35.83 | 34.39 | 34.16 | 0.82 | 0.848 |
29–56 | 33.24 | 34.78 | 33.84 | 34.31 | 0.81 | 0.923 | |
57–84 | 31.01 | 35.17 | 32.22 | 31.96 | 1.04 | 0.544 | |
Feed efficiency 2 | 1–28 | 1.50 | 1.40 | 1.47 | 1.47 | 0.03 | 0.681 |
29–56 | 1.49 | 1.41 | 1.40 | 1.41 | 0.03 | 0.740 | |
57–84 | 1.55 | 1.49 | 1.42 | 1.40 | 0.03 | 0.397 |
Item | Day | BA Addition, g/head/d | SEM | p Value | |||
---|---|---|---|---|---|---|---|
0 | 6 | 12 | 18 | ||||
Milk fat (%) | 1–28 | 3.89 | 3.92 | 3.96 | 3.98 | 0.04 | 0.896 |
29–56 | 3.90 | 3.94 | 3.96 | 3.98 | 0.05 | 0.939 | |
57–84 | 3.82 | 3.87 | 3.91 | 3.89 | 0.03 | 0.781 | |
Milk protein (%) | 1–28 | 3.25 b | 3.27 b | 3.28 b | 3.38 a | 0.02 | 0.040 |
29–56 | 3.19 | 3.26 | 3.27 | 3.36 | 0.02 | 0.980 | |
57–84 | 3.12 | 3.19 | 3.18 | 3.27 | 0.02 | 0.132 | |
Milk lactose (%) | 1–28 | 5.07 | 5.08 | 5.08 | 5.09 | 0.01 | 0.928 |
29–56 | 5.04 | 5.06 | 5.04 | 5.05 | 0.02 | 0.980 | |
57–84 | 4.88 | 4.91 | 4.89 | 4.93 | 0.02 | 0.782 | |
SCC (×103/mL) | 1–28 | 50.33 | 48.78 | 51.63 | 53.27 | 2.58 | 0.939 |
29–56 | 51.64 | 47.88 | 50.66 | 50.89 | 2.89 | 0.971 | |
57–84 | 52.62 | 50.98 | 49.92 | 50.36 | 2.94 | 0.989 |
Item | Day | BA Addition, g/head/d | SEM | p Value | |||
---|---|---|---|---|---|---|---|
0 | 6 | 12 | 18 | ||||
TP (g/L) | 28 | 61.91 | 69.45 | 67.21 | 61.13 | 1.68 | 0.225 |
56 | 66.99 | 61.36 | 60.66 | 52.22 | 2.26 | 0.142 | |
84 | 26.52 b | 35.69 ab | 37.72 a | 41.79 a | 1.75 | 0.013 | |
ALB (g/L) | 28 | 31.49 | 36.05 | 34.80 | 31.82 | 0.86 | 0.163 |
56 | 35.36 | 30.47 | 31.52 | 27.74 | 1.07 | 0.085 | |
84 | 14.72 b | 18.47 ab | 19.52 a | 22.90 a | 0.82 | 0.004 | |
GLB (g/L) | 28 | 30.42 | 36.07 | 32.40 | 29.31 | 1.15 | 0.170 |
56 | 31.63 | 30.90 | 29.15 | 24.48 | 1.36 | 0.247 | |
84 | 11.80 | 17.22 | 18.21 | 18.88 | 1.14 | 0.109 | |
TC (mmol/L) | 28 | 7.01 | 8.73 | 8.07 | 7.14 | 0.27 | 0.069 |
56 | 8.41 a | 7.32 ab | 7.59 ab | 6.01 b | 0.29 | 0.031 | |
84 | 5.20 | 4.32 | 4.68 | 4.74 | 0.19 | 0.469 | |
TG (mmol/L) | 28 | 0.18 | 0.20 | 0.18 | 0.17 | 0.01 | 0.396 |
56 | 0.19 a | 0.17 b | 0.17 b | 0.14 c | 0.01 | 0.048 | |
84 | 0.15 a | 0.11 b | 0.13 ab | 0.12 ab | 0.01 | 0.023 | |
HDL (mmol/L) | 28 | 3.88 | 4.48 | 4.38 | 3.91 | 0.11 | 0.121 |
56 | 4.60 a | 3.84 ab | 4.10 ab | 3.32 b | 0.14 | 0.011 | |
84 | 1.80 | 2.31 | 2.51 | 2.57 | 0.11 | 0.060 | |
LDL (mmol/L) | 28 | 1.43 | 1.74 | 1.57 | 1.46 | 0.05 | 0.128 |
56 | 1.68 | 1.58 | 1.58 | 1.31 | 0.06 | 0.090 | |
84 | 1.21 | 1.09 | 1.19 | 1.12 | 0.04 | 0.745 | |
Glu (mmol/L) | 28 | 3.19 | 3.47 | 3.40 | 3.06 | 0.08 | 0.273 |
56 | 2.99 | 2.94 | 2.63 | 2.68 | 0.08 | 0.304 | |
84 | 2.33 | 2.13 | 2.07 | 2.15 | 0.07 | 0.586 | |
TBA (μmol/L) | 28 | 72.12 | 55.34 | 71.90 | 68.52 | 4.44 | 0.506 |
56 | 59.73 | 44.77 | 51.82 | 43.55 | 3.43 | 0.321 | |
84 | 32.77 | 28.06 | 39.89 | 40.02 | 2.54 | 0.271 | |
LPS (U/mL) | 28 | 63.10 b | 70.83 a | 70.54 a | 71.73 a | 0.79 | <0.001 |
56 | 70.28 | 69.24 | 65.39 | 73.47 | 1.11 | 0.076 | |
84 | 63.10 b | 72.61 a | 78.42 a | 75.68 a | 1.46 | 0.001 | |
HSL (pg/mL) | 28 | 60.96 b | 61.52 b | 63.19 b | 66.61 a | 0.52 | <0.001 |
56 | 62.49 c | 66.20 b | 66.05 b | 69.87 a | 0.67 | 0.001 | |
84 | 61.11 c | 65.26 b | 66.21 b | 72.45 a | 0.75 | <0.001 |
Item | Day | BA Addition, g/head/d | SEM | p Value | |||
---|---|---|---|---|---|---|---|
0 | 6 | 12 | 18 | ||||
SOD (U/mL) | 28 | 69.03 c | 77.22 ab | 75.43 b | 78.62 a | 0.67 | <0.001 |
56 | 75.10 b | 76.79 b | 74.94 b | 81.51 a | 0.89 | 0.026 | |
84 | 78.07 b | 75.61 b | 76.32 b | 91.62 a | 1.26 | <0.001 | |
TAOC (U/mL) | 28 | 7.66 b | 8.49 ab | 8.38 ab | 8.90 a | 0.16 | 0.043 |
56 | 7.37 b | 8.41 ab | 8.19 ab | 8.93 a | 0.19 | 0.023 | |
84 | 7.49 b | 8.83 a | 8.64 ab | 9.11 a | 0.22 | 0.046 | |
GSH-Px (U/mL) | 28 | 349.49 b | 376.53 a | 373.98 a | 363.83 ab | 3.55 | 0.025 |
56 | 367.10 b | 378.58 b | 381.73 b | 408.75 a | 4.95 | 0.019 | |
84 | 385.96 b | 393.43 b | 388.89 b | 419.52 a | 3.71 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Yuan, C.; Yang, T.; Song, H.; Zhan, K.; Zhao, G. Effects of Bile Acid Supplementation on Lactation Performance, Nutrient Intake, Antioxidative Status, and Serum Biochemistry in Mid-Lactation Dairy Cows. Animals 2024, 14, 290. https://doi.org/10.3390/ani14020290
Chen Y, Yuan C, Yang T, Song H, Zhan K, Zhao G. Effects of Bile Acid Supplementation on Lactation Performance, Nutrient Intake, Antioxidative Status, and Serum Biochemistry in Mid-Lactation Dairy Cows. Animals. 2024; 14(2):290. https://doi.org/10.3390/ani14020290
Chicago/Turabian StyleChen, Yuhang, Cong Yuan, Tianyu Yang, Han Song, Kang Zhan, and Guoqi Zhao. 2024. "Effects of Bile Acid Supplementation on Lactation Performance, Nutrient Intake, Antioxidative Status, and Serum Biochemistry in Mid-Lactation Dairy Cows" Animals 14, no. 2: 290. https://doi.org/10.3390/ani14020290
APA StyleChen, Y., Yuan, C., Yang, T., Song, H., Zhan, K., & Zhao, G. (2024). Effects of Bile Acid Supplementation on Lactation Performance, Nutrient Intake, Antioxidative Status, and Serum Biochemistry in Mid-Lactation Dairy Cows. Animals, 14(2), 290. https://doi.org/10.3390/ani14020290