Effects of Different Defatting Methods of Black Soldier Fly (Hermetia illucens) Larvae Meal on the Metabolic Energy and Nutrient Digestibility in Young Laying Hens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Defatted BSFM
2.2. Metabolic Trial Design
2.3. Nutrient Composition Analysis of Samples
2.4. Calculation of Nutrient Digestibility and Metabolic Energy
2.5. Statistical Analyses
3. Results
3.1. Comparison of Nutrient Composition between Different Defatting Methods
3.2. Nutrient Digestibility, AME, and AMEn of BSFM Processed with Different Defatting Methods
3.3. Digestibility of Essential Amino Acids in BSFM Processed with Different Defatting Methods
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beller, S.; Grundmann, S.M.; Pies, K.; Most, E.; Schuchardt, S.; Seel, W.; Simon, M.C.; Eder, K.; Ringseis, R. Effect of replacing soybean meal with Hermetia illucens meal on cecal microbiota, liver transcriptome, and plasma metabolome of broilers. Poult. Sci. 2024, 103, 103635. [Google Scholar] [CrossRef] [PubMed]
- Shang, R.; Chen, L.; Xin, Y.; Wang, G.; Li, R.; Li, S.; Li, L. Evaluation of rosmarinic acid on broiler growth performance, serum biochemistry, liver antioxidant activity, and muscle tissue composition. Animals 2022, 12, 3313. [Google Scholar] [CrossRef] [PubMed]
- Aksoy, M.Y.; Eljack, R.; Aksoy, J.; Beck, B.H. Frass from black soldier fly larvae, Hermetia illucens, as a possible functional dietary ingredient in channel catfish feed. Fishes 2023, 8, 542. [Google Scholar] [CrossRef]
- Shang, R.S.; Man, L.; Wang, G.Y.; Li, M.F.; Liu, C.J.; Li, L.S. Influences of partial substitution of fish meal with defatted black soldier fly (Hermetia illucens) larvae meal in diets on growth performance, biochemical parameters, and body composition of juvenile Chinese soft-shelled turtles (Pelodiscus sinensis). Aquac. Nutr. 2022, 1, 4278137. [Google Scholar] [CrossRef]
- Chobanova, S.; Karkelanov, N.; Mansbridge, S.C.; Whiting, I.M.; Simic, A.; Rose, S.P.; Pirgozliev, V.R. Defatted black soldier fly larvae meal as an alternative to soybean meal for broiler chickens. Poultry 2023, 2, 430–441. [Google Scholar] [CrossRef]
- Attia, Y.A.; Bovera, F.; Asiry, K.A.; Alqurashi, S.; Alrefaei, M.S. Fish and black soldier fly meals as partial replacements for soybean meal can affect sustainability of productive performance, blood constituents, gut microbiota, and nutrient excretion of broiler chickens. Animals 2023, 13, 2759. [Google Scholar] [CrossRef]
- Chu, X.H.; Li, M.M.; Wang, G.Y.; Wang, K.M.; Shang, R.S.; Wang, Z.Y.; Li, L.S. Evaluation of the low inclusion of full-fatted Hermetia illucens larvae meal for layer chickens: Growth performance, nutrient digestibility, and gut health. Front. Vet. Sci. 2020, 7, 585843. [Google Scholar] [CrossRef]
- Prakoso, V.A.; Irawan, A.; Iswantari, A.; Maulana, F.; Samsudin, R.; Jayanegara, A. Evaluation of dietary inclusion of black soldier fly (Hermetia illucens) larvae on fish production performance: A meta-analysis. J. Insects. Food. Feed. 2022, 8, 1373–1384. [Google Scholar] [CrossRef]
- Khaemba, C.N.; Kidoido, M.M.; Owuor, G.; Tanga, C.M. Consumers’ perception towards eggs from laying hens fed commercial black soldier fly (Hermetia illucens) larvae meal-based feeds. Poultr. Sci. 2022, 101, 101645. [Google Scholar] [CrossRef]
- Mahmoud, A.E.; Morel, P.C.H.; Potter, M.A.; Ravindran, V. The apparent metabolisable energy and ileal amino digestibility of black soldier fly (Hermetia illucens) larvae meal for broiler chickens. Br. Poult. Sci. 2023, 64, 377–383. [Google Scholar] [CrossRef]
- De Marco, M.; Martínez, S.; Hernandez, F.; Madrid, J.; Gai, F.; Rotolo, L.; Belforti, M.; Bergero, D.; Katz, H.; Dabbou, S. Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: Apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Anim. Feed Sci. Technol. 2015, 209, 211–218. [Google Scholar] [CrossRef]
- Schiavone, A.; De Marco, M.; Martínez, S.; Dabbou, S.; Renna, M.; Madrid, J.; Hernandez, F.; Rotolo, L.; Costa, P.; Gai, F.; et al. Nutritional value of a partially defatted and a highly defatted black soldier fly larvae (Hermetia illucens L.) meal for broiler chickens: Apparent nutrient digestibility, apparent metabolizable energy and apparent ileal amino acid digestibility. J. Anim. Sci. Biotechnol. 2017, 8, 51. [Google Scholar] [CrossRef] [PubMed]
- Matin, N.; Utterback, P.L.; Parsons, C.M. Phosphorus digestibility and relative phosphorus bioavailability in two dried black soldier fly larvae meals and a defatted black soldier fly larvae meal in broiler chickens. Poult. Sci. 2021, 100, 101221. [Google Scholar] [CrossRef] [PubMed]
- Shen, T. Evaluation of Effective Metabolizable Energy and Ileal Amino Acid Digestibility of Fermented Rapeseed Meal for Broiler Chickens. MA Thesis, Hunan Agricultural University, Hunan, China, 2018. [Google Scholar]
- Kong, F.; Huang, H.F.; Yang, C.; Lei, F.F.; He, D.P.; Zheng, J.C. Process optimization and quality comparison of black soldier fly larvae oils extracted by different methods. China Oils Fats 2021, 46, 15–20. [Google Scholar]
- Cabaraux, J.F.; Abdollahi, M.R.; Zaefarian, F.; Chrystal, P.V.; Ravindran, V. Influence of broiler age on the apparent metabolizable energy of cereal grains determined using the substitution method. Animals 2022, 12, 183. [Google Scholar] [CrossRef]
- GB/T 6435-2014; Determination of Moisture in Feedstuffs. State Administration for Market Regulation, China National Standardization Administration Committee: Beijing, China, 2014.
- GB/T 6432-2018; Determination of Crude Protein in Feeds-Kjeldahl Method. State Administration for Market Regulation, China National Standardization Administration Committee: Beijing, China, 2018.
- GB/T 6433-2006; Determination of Crude Fat in Feeds. State Administration for Market Regulation, China National Standardization Administration Committee: Beijing, China, 2006.
- GB/T6434-2006; Feeding Stuffs-Determination of Crud Fiber Content-Method with Intermediate Filtration. State Administration for Market Regulation, China National Standardization Administration Committee: Beijing, China, 2006.
- GB/T 20806-2006; Determination of Neutral Detergent Fiber in Feedstuffs. State Administration for Market Regulation, China National Standardization Administration Committee: Beijing, China, 2006.
- NY/T 1459-2007; Determination of Acid Detergent Fiber in Feedstuff (ADF). Ministry of Agriculture of the People’s Republic of China: Beijing, China, 2007.
- GB/T 6436-2018; Determination of Calcium in Feeds. State Administration for Market Regulation, China National Standardization Administration Committee: Beijing, China, 2018.
- GB/T 6437-2018; Determination of Phosphorus in Feeds-Spectrophotometry. State Administration for Market Regulation, China National Standardization Administration Committee: Beijing, China, 2018.
- Madrid, J.; Martínez, S.; López, C.; Orengo, J.; López, M.J.; Hernández, F. Effects of low protein diets on growth performance, carcass traits and ammonia emission of barrows and gilts. Anim. Prod. Sci. 2013, 53, 146–153. [Google Scholar] [CrossRef]
- Cantero-Bahillo, E.; Del Hierro, J.N.; Hernández, D.M.; Fernández-Felipe, M.T.; Fornari, T.; Martín, D. Supercritical-CO2 for defatting and production of bioactive extracts from black soldier fly (Hermetia illucens) larvae. J. Insects Food Feed 2022, 8, 1441–1453. [Google Scholar] [CrossRef]
- Mai, H.C.; Dao, N.D.; Lam, T.D.; Nguyen, B.V.; Nguyen, D.C.; Bach, L.G. Purification process, physicochemical properties, and fatty acid composition of black soldier fly (Hermetia illucens Linnaeus) larvae oil. J. Am. Oil. Chem. Soc. 2019, 96, 1303–1311. [Google Scholar] [CrossRef]
- Thirumalaisamy, G.; Malik, P.K.; Kolte, A.P.; Trivedi, S.; Dhali, A.; Bhatta, R. Effect of silkworm (Bombyx mori) pupae oil supplementation on enteric methane emission and methanogens diversity in sheep. Anim. Biotechnol. 2020, 33, 128–140. [Google Scholar] [CrossRef]
- Li, S.L.; Ji, H.; Zhang, B.X.; Tian, J.J.; Zhou, J.S.; Yu, H.B. Influence of black soldier fly (Hermetia illucens) larvae oil on growth performance, body composition, tissue fatty acid composition and lipid deposition in juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture 2016, 465, 43–52. [Google Scholar] [CrossRef]
- Aldawood, F.K.; Munusamy, Y.; Kchaou, M.; Alquraish, M. Effect of elastomeric coating on the properties and performance of myristic acid (MA) phase change material (PCM) used for photovoltaic cooling. Coatings 2023, 13, 1606. [Google Scholar] [CrossRef]
- Javid, S.; Ather, H.; Hani, U.; Siddiqua, A.; Asif Ansari, S.M.; Shanmugarajan, D.; Yogish Kumar, H.; Arivuselvam, R.; Purohit, M.N.; Kumar, B.R.P. Discovery of novel myristic acid derivatives as n-myristoyltransferase inhibitors: Design, synthesis, analysis, computational studies and antifungal activity. Antibiotics 2023, 12, 1167. [Google Scholar] [CrossRef]
- Zawisza, P.; Szymczyk, B.; Arczewska-Włosek, A.; Szczepanik, K. Effects of partial replacement of soybean meal with defatted Hermetia illucens meal in the diet of laying hens on performance, dietary egg quality, and serum biochemical and redox indices. Animals 2023, 13, 527. [Google Scholar] [CrossRef]
- Cruz, V.A.; Ferreira, N.J.; Cornelio-Santiago, H.P.; Santos, G.M.T.; Oliveira, A.L. Oil extraction from black soldier fly (Hermetia illucens L.) larvae meal by dynamic and intermittent processes of supercritical CO2—Global yield, oil characterization, and solvent consumption. J. Supercrit. Fluid. 2023, 195, 105861. [Google Scholar] [CrossRef]
- Bogevik, A.S.; Seppänen-Laakso, T.; Samuelsen, T.A.; Thoresen, L. Fractionation of oil from black soldier fly larvae (Hermetia illucens). Eur. J. Lipid. Sci. Technol. 2022, 124, 2100252. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Domestic Animals. No. 2. Nutrient Requirements of Swine; National Research Council: Ottawa, ON, Canada; National Academy of Sciences: Washington, DC, USA, 2012. [Google Scholar]
- Siegert, W.; Kuenz, S.; Windisch, W.; Rodehutscord, M. Amino acid digestibility and metabolizable energy of soybean meal of different origins in cecectomized laying hens. Poult. Sci. 2023, 102, 102580. [Google Scholar] [CrossRef]
- Lygerou, I.; Ilia, S.; Briassoulis, P.; Manousaki, A.; Koropouli, M.; Hatzidaki, E.; Briassoulis, G. The impact of estimated energy and protein balances on extrauterine growth in preterm infants. Nutrients 2023, 15, 3556. [Google Scholar] [CrossRef]
- Feng, H.L.; Wang, X.; Zhou, H.H.; Mai, K.S.; He, G.; Liu, C.D. Involvement of insulin-like growth factor binding proteins (IGFBPs) and activation of insulin/IGF-like signaling (IIS)-target of rapamycin (TOR) signaling cascade in pacific white shrimp, Litopenaeus vannamei exposed to acute low-salinity. Aquac. Rep. 2023, 30, 101627. [Google Scholar] [CrossRef]
- De Oliveira, M.J.K.; Melo, A.D.B.; Marçal, D.A.; Valini, G.A.C.; Silva, C.A.; Veira, A.M.; Fraga, A.Z.; Arnaut, P.R.; Campos, P.H.R.F.; Dos Santos, L.S.; et al. Effects of lowering dietary protein content without or with increased protein-bound and feed-grade amino acids supply on growth performance, body composition, metabolism, and acute-phase protein of finishing pigs under daily cyclic heat stress. J. Anim. Sci. 2023, 101, skac387. [Google Scholar] [CrossRef]
- Cheng, V.; Shoveller, A.K.; Huber, L.A.; Kiarie, E.G. Comparative protein quality in black soldier fly larvae meal vs. soybean meal and fish meal using classical protein efficiency ratio (PER) chick growth assay model. Poultr. Sci. 2022, 102, 102255. [Google Scholar] [CrossRef]
- Martínez Marín, A.L.; Gariglio, M.; Pozzo, S.; Capucchio, M.T.; Ferrocino, I.; Biasato, I.; Schiavone, A. Effects of partially defatted larvae meal of black soldier fly (Hermetia illucens) on caecal microbiota and volatile compounds of muscovy ducks (Cairina moschata domestica;). Ital. J. Anim. Sci. 2023, 22, 1151–1161. [Google Scholar] [CrossRef]
- Hu, Z.C.; Li, H.D.; Liu, S.; Xue, R.R.; Sun, J.; Ji, H. Assessment of black soldier fly (Hermetia illucens) larvae meal as a potential substitute for soybean meal on growth performance and flesh quality of grass carp Ctenopharyngodon idellus. Anim Nutr. 2023, 14, 425–449. [Google Scholar] [CrossRef] [PubMed]
- El-Hack, M.A.; Shafi, M.; Alghamdi, W.; Abdelnour, S.; Shehata, A.; Noreldin, A.; Ashour, E.; Swelum, A.; Al-Sagan, A.; Alkhateeb, M.; et al. black soldier fly (Hermetia illucens) meal as a promising feed ingredient for poultry: A comprehensive review. Agriculture 2020, 10, 339. [Google Scholar] [CrossRef]
- Dairo, F.A.S.; Fajemilehin, S.O.K.; Adegun, M.K.; Adelabu, D.B.; Balogun, A.K. Carcass, organs and economic evaluation of broiler birds fed low-protein diets supplemented with the most limiting essential amino acids in ideal protein concept. J. Exp. Agric. Int. 2017, 18, 1–10. [Google Scholar] [CrossRef]
- Sinclair-Black, M.; Garcia-Mejia, R.A.; Blair, L.R.; Angel, R.; Arbe, X.; Cavero, D.; Ellestad, L.E. Circadian regulation of calcium and phosphorus homeostasis during the oviposition cycle in laying hens. Poultr. Sci. 2023, 103, 103209. [Google Scholar] [CrossRef]
- Xiao, C.P.; Zhu, Q.J.; Comer, L.; Pan, X.; Everaert, N.; Schroyen, M.; Song, B.C.; Song, Z.G. Dietary 25-hydroxy-cholecalciferol and additional vitamin E improve bone development and antioxidant capacity in high-density stocking broilers. J. Anim. Sci. 2023, 101, 369. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, S. Pica behavior of laboratory rats (Rattus norvegicus domestica): Nauseated animals ingest kaolin, zeolite, bentonite, but not calcium carbonate chalk. Behav. Process. 2024, 216, 105001. [Google Scholar] [CrossRef] [PubMed]
- Moula, N.; Scippo, M.L.; Douny, C.; Degand, G.; Dawans, E.; Cabaraux, J.F.; Hornick, J.L.; Medigo, R.C.; Leroy, P.; Francis, F.; et al. Performances of local poultry breed fed black soldier fly larvae reared on horse manure. Anim. Nutr. 2018, 4, 73–78. [Google Scholar] [CrossRef]
- Ravindran, V.; Abdollahi, M.; Bootwalla, S. Nutrient analysis, apparent metabolisable energy and ileal amino acid digestibility of full fat soybean for broilers. Anim. Feed. Sci. Technol. 2014, 197, 233–240. [Google Scholar] [CrossRef]
- Sutrisno, A.; Ueda, M.; Abe, Y.; Nakazawa, M.; Miyatake, K. A chitinase with high activity toward partially N-acetylated chitosan from a new, moderately thermophilic, chitin-degrading bacterium, Ralstonia sp. A-471. Appl. Microbiol. Biotechnol. 2004, 63, 398–406. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Liang, Y.J.; Zhi, J.R.; Li, D.Y.; Li, C. Regulatory effect of trehalose metabolism on chitin synthesis in Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) as determined using RNAi. J. Asia Pac. Entomol. 2024, 27, 102179. [Google Scholar] [CrossRef]
- Muraosa, Y.; Hino, Y.; Takatsuka, S.; Watanabe, A.; Sakaida, E.; Saijo, S.; Miyazaki, Y.; Yamasaki, S.; Kamei, K. Fungal chitin-binding glycoprotein induces Dectin-2-mediated allergic airway inflammation synergistically with chitin. PLoS Pathog. 2024, 20, e1011878. [Google Scholar] [CrossRef]
- Romano, N.; Datta, S.N.; Pande, G.S.J.; Sinha, A.K.; Yamamoto, F.Y.; Beck, B.H.; Webster, C.D. Dietary inclusions of black soldier fly (Hermetia illucens) larvae frass enhanced production of channel catfish (Ictalurus punctatus) juveniles, stevia (Stevia rebaudiana), and lavender (Lavaridula angustifolia) in an aquaponic system. Aquaculture 2023, 575, 739742. [Google Scholar] [CrossRef]
- Moutinho, S.; Peres, H.; Martins, N.; Serra, C.; Santos, R.A.; Monroig, Ó.; Oliva-Teles, A. Use of black soldier fly (Hermetia illucens) larvae meal in diets for gilthead seabream juveniles: Effects on growth-related gene expression, intermediary metabolism, digestive enzymes, and gut microbiota modulation. Aquaculture 2024, 53, 5536–5546. [Google Scholar] [CrossRef]
- Ahmed, I.; İnal, F.; Riaz, R.; Ahsan, U.; Kuter, E.; Ali, U. A review of black soldier fly (Hermetia illucens) as a potential alternative protein source in broiler diets. Ann. Anim. Sci. 2023, 23, 939–949. [Google Scholar] [CrossRef]
- Danieli, P.P.; Romagnoli, L.; Amici, A.; Ronchi, B.; Russo, G.; Lauteri, M. Traceability of insects as feed: Stable isotope ratio analysis of Hermetia illucens larvae and pre-pupae reared on different protein sources. J. Insects Food Feed 2023, 9, 289–302. [Google Scholar] [CrossRef]
- Edrington, T.S.; Bischoff, K.M.; Loneragan, G.H.; Nisbet, D.J. Evaluation of feeding distiller’s grains, containing virginiamycin, on antimicrobial susceptibilities in fecal isolates of Enterococcus and Escherichia coli and prevalence of resistance genes in cattle. J. Anim. Sci. 2014, 92, 1144–1149. [Google Scholar] [CrossRef]
- Ali, M.; Joseph, M.; Alfaro-Wisaquillo, M.C.; Quintana-Ospina, G.A.; Peñuela-Sierra, L.M.; Patiño, D.; Vu, T.; Mian, R.; Toomer, O.; Oviedo-Rondón, E.O. Influence of extruded soybean meal with varying fat and oleic acid content on nitrogen-corrected apparent metabolizable energy in broilers. Poultr. Sci. 2023, 103, 103408. [Google Scholar] [CrossRef]
- Milani, N.C.; Paula, V.R.; Azevedo, C.P.F.; Sedano, A.A.; Junior, H.M.; Duarte, D.H.A.; Ruiz, U.S.S. 96 Nutrient digestibility of toasted soybean meal and untoasted soybean meal extruded at different temperatures by weanling pigs. J. Anim Sci. 2021, 99, 50. [Google Scholar] [CrossRef]
- Xu, X.A.; Yang, H.M.; Yang, Z.; Wang, Z.Y. Effect of heating time of cottonseed meal on nutrient and mineral element digestibility in chicken (based on cottonseed meal replaced with all soybean meal). Animals 2022, 12, 883. [Google Scholar] [CrossRef]
- Bryan, D.D.S.L.; MacIsaac, J.L.; Rathgeber, B.M.; McLean, N.L.; Anderson, D.M. Meal residual oil level and heat treatment after oil extraction affects the nutritive value of expeller-pressed canola meal for broiler chickens. Can. J. Anim. Sci. 2017, 97, 658–667. [Google Scholar] [CrossRef]
- Ljøkjel, K.; Harstad, O.M.; Skrede, A. Effect of heat treatment of soybean meal and fish meal on amino acid digestibility in mink and dairy cows. Anim. Feed Sci. Technol. 2000, 84, 83–95. [Google Scholar] [CrossRef]
- Mathai, J.K.; Htoo, J.K.; Wiltafsky, M.; Stein, H.H. 47 Effects of various heat treatments on concentrations of digestible and metabolizable energy and on amino acid digestibility in soybean meal fed to growing pigs. J. Anim. Sci. 2018, 96, 25–26. [Google Scholar] [CrossRef]
- Oliveira, M.S.F.; Wiltafsky, M.K.; Lee, S.A.; Kwon, W.B.; Stein, H.H. Concentrations of digestible and metabolizable energy and amino acid digestibility by growing pigs may be reduced by autoclaving soybean meal. Anim. Feed. Sci. Technol. 2020, 269, 114621. [Google Scholar] [CrossRef]
- Goebel, K.P.; Stein, H.H. Ileal digestibility of amino acids in conventional and low-kunitz soybean products fed to weanling pigs. Asian Austral. J. Anim. 2011, 24, 88–95. [Google Scholar] [CrossRef]
- Almeida, F.N.; Htoo, J.K.; Thomson, J.; Stein, H.H. Effects of balancing crystalline amino acids in diets containing heat-damaged soybean meal or distillers dried grains with solubles fed to weanling pigs. Animal 2014, 8, 1594–1602. [Google Scholar] [CrossRef]
- Sung, J.Y.; Wiltafsky-Martin, M.K.; González-Vega, J.C.; Adeola, O. Autoclaving time-related reduction in metabolizable energy of poultry meal is greater in growing pigs compared with broiler chickens. J. Anim. Sci. 2022, 100, 117. [Google Scholar] [CrossRef]
- Teodorowicz, M.; van Neerven, J.; Savelkoul, H. Food Processing: The influence of the maillard reaction on immunogenicity and allergenicity of food proteins. Nutrients 2017, 9, 835. [Google Scholar] [CrossRef]
Items | Basal Diet | G1 | G2 |
---|---|---|---|
BSFMp (%) | 0.00 | 25.00 | 0.00 |
BSFMe (%) | 0.00 | 0.00 | 25.00 |
Corn (%) | 73.32 | 54.99 | 54.99 |
Soybean meal (%) | 19.6 | 14.70 | 14.70 |
Rapeseed Meal (%) | 2.29 | 1.72 | 1.72 |
Limestone (%) | 2.56 | 1.92 | 1.92 |
CaHPO4 (%) | 1.64 | 1.23 | 1.23 |
L-Lys·HCl (98%) (%) | 0.00 | 0.00 | 0.00 |
DL-Met (%) | 0.07 | 0.05 | 0.05 |
Vitamin Premix (%) | 0.02 | 0.02 | 0.02 |
Trace-mineral Premix (%) | 0.2 | 0.15 | 0.15 |
Salt (%) | 0.3 | 0.22 | 0.22 |
Total (%) | 100 | 100 | 100 |
Ingredients | Basal Diet | G1 | G2 |
---|---|---|---|
Crude protein (% DM) | 16.01 | 23.21 | 24.96 |
Ether extract (% DM) | 2.98 | 6.08 | 3.81 |
Crude fiber (% DM) | 2.51 | 4.42 | 4.83 |
Crude ash (% DM) | 5.90 | 6.78 | 7.17 |
Calcium (% DM) | 1.42 | 2.48 | 2.65 |
Available Phosphorus (% DM) | 0.41 | 0.55 | 0.59 |
Gross energy (MJ/kg DM) | 13.83 | 15.93 | 15.55 |
Lys (% DM) | 0.75 | 1.36 | 1.49 |
Met (% DM) | 0.34 | 0.48 | 0.51 |
Cys (% DM) | 0.37 | 0.38 | 0.39 |
Thr (% DM) | 0.65 | 1.02 | 1.11 |
Trp (% DM) | 0.19 | 0.85 | 0.94 |
Arg (% DM) | 0.93 | 1.33 | 1.43 |
Leu (% DM) | 0.61 | 1.32 | 1.46 |
Ile (% DM) | 0.56 | 0.98 | 1.07 |
Ingredients | BSFMp | BSFMe |
---|---|---|
DM (%) | 92.51 | 92.38 |
Crude protein (% DM) | 44.68 | 52.00 |
Ether extract (% DM) | 15.36 | 6.28 |
Crude fiber (% DM) | 10.15 | 11.80 |
Crude ash (% DM) | 9.43 | 10.98 |
Calcium (% DM) | 5.66 | 6.43 |
Available Phosphorus (% DM) | 0.97 | 1.13 |
Gross energy (MJ/kg DM) | 22.23 | 20.69 |
Lys (% DM) | 3.2 | 3.71 |
Met (% DM) | 0.88 | 1.03 |
Cys (% DM) | 0.42 | 0.45 |
Thr (% DM) | 2.12 | 2.47 |
Trp (% DM) | 2.86 | 3.21 |
Arg (% DM) | 2.53 | 2.94 |
Leu (% DM) | 3.45 | 4.02 |
Ile (% DM) | 2.22 | 2.58 |
BSFMp | BSFMe | SEM | p-Value | |
---|---|---|---|---|
DM | 0.65 | 0.62 | 0.02 | 0.241 |
OM | 0.69 | 0.64 | 0.02 | 0.069 |
Crude protein | 0.54 | 0.56 | 0.01 | 0.08 |
Ether extract | 0.95 | 0.91 | 0.36 | 0.002 |
Gross energy | 0.63 | 0.55 | 0.03 | 0.02 |
AME (MJ/kg DM) | 16.34 | 12.41 | 0.13 | 0.015 |
AMEn (MJ/kg DM) | 15.89 | 11.93 | 0.84 | 0.002 |
BSFMp | BSFMe | SEM | p-Value | |
---|---|---|---|---|
Lys | 0.82 | 0.81 | 0.03 | 0.869 |
Met | 0.85 | 0.79 | 0.02 | 0.069 |
Cys | 0.44 | 0.44 | 0.01 | 0.570 |
Thr | 0.75 | 0.74 | 0.02 | 0.589 |
Trp | 0.66 | 0.70 | 0.02 | 0.135 |
Arg | 0.81 | 0.77 | 0.01 | 0.029 |
Leu | 0.88 | 0.84 | 0.02 | 0.036 |
Ile | 0.86 | 0.84 | 0.02 | 0.172 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, Y.; Xu, M.; Chen, L.; Wang, G.; Lu, W.; Liu, Z.; Shang, R.; Li, Y.; Wang, Z.; Sun, H.; et al. Effects of Different Defatting Methods of Black Soldier Fly (Hermetia illucens) Larvae Meal on the Metabolic Energy and Nutrient Digestibility in Young Laying Hens. Animals 2024, 14, 2521. https://doi.org/10.3390/ani14172521
Xin Y, Xu M, Chen L, Wang G, Lu W, Liu Z, Shang R, Li Y, Wang Z, Sun H, et al. Effects of Different Defatting Methods of Black Soldier Fly (Hermetia illucens) Larvae Meal on the Metabolic Energy and Nutrient Digestibility in Young Laying Hens. Animals. 2024; 14(17):2521. https://doi.org/10.3390/ani14172521
Chicago/Turabian StyleXin, Yizhen, Meng Xu, Lifei Chen, Guiying Wang, Wenjing Lu, Ziqi Liu, Rongsheng Shang, Yifan Li, Zhuoya Wang, Haoyang Sun, and et al. 2024. "Effects of Different Defatting Methods of Black Soldier Fly (Hermetia illucens) Larvae Meal on the Metabolic Energy and Nutrient Digestibility in Young Laying Hens" Animals 14, no. 17: 2521. https://doi.org/10.3390/ani14172521
APA StyleXin, Y., Xu, M., Chen, L., Wang, G., Lu, W., Liu, Z., Shang, R., Li, Y., Wang, Z., Sun, H., & Li, L. (2024). Effects of Different Defatting Methods of Black Soldier Fly (Hermetia illucens) Larvae Meal on the Metabolic Energy and Nutrient Digestibility in Young Laying Hens. Animals, 14(17), 2521. https://doi.org/10.3390/ani14172521