Quantification of the Environmental Impact of Feeding Yeast Probiotic Saccharomyces cerevisiae Actisaf Sc 47 in Dairy Cow: A Life Cycle Assessment Approach
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Goal and Scope
2.2. System Boundary Definition
2.3. Allocation Criterion
2.4. Inventory Analysis and Input Data
2.5. Life Cycle Impact Assessment
3. Results
3.1. Environmental Characterization of Actisaf Sc 47 Production
3.2. Environmental Characterization of Actisaf Sc 47 Application in Dairy Farms
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cianconi, P.; Betrò, S.; Janiri, L. The impact of climate change on mental health: A systematic descriptive review. Front. Psychiatry 2020, 11, 74. [Google Scholar] [CrossRef]
- Afonja, A.A. Consequences of environmental pollution. In Mitigating Climate Change: Power of We the People; ChudacePublishing: Mansfield, TX, USA, 2020; pp. 132–157. [Google Scholar]
- Herani, G.M.; Pervez, M.W.; Rajar, A.W.; Shaikh, R.A. Livestock: A Reliable Source of Incom Generation and Rehabilitation of Environment at Tharparkar; MPRA Paper No. 8700; University Library of Munich: Munich, Germany, 2008. [Google Scholar]
- Baltenweck, I.; Enahoro, D.; Frija, A.; Tarawali, S. Why Is Production of Animal Source Foods Important for Economic Development in Africa and Asia? Anim. Front. 2020, 10, 22–29. [Google Scholar] [CrossRef]
- Gerber, P.; Wassenaar, T.; Rosales, M.; Castel, V.; Steinfeld, H. Environmental impacts of a changing livestock production: Overview and discussion for a comparative assessment with other food production sectors. In Proceedings of the Comparative Assessment of the Environmental Costs of Aquaculture and Other Food Production Sectors: Methods for Meaningful Comparisons, Vancouver, BC, Canada, 24–28 April 2006; FAO/WFT Expert Workshop. Bartley, D.M., Brugère, C., Soto, D., Gerber, P., Harvey, B., Eds.; FAO Fisheries Proceedings. No. 10. FAO: Rome, Italy, 2007; pp. 37–54. [Google Scholar]
- Singaravadivelan, A.; Sachin, P.B.; Harikumar, S.; Vijayakumar, P.; Vindhya, M.V.; Farhana, F.M.B.; Rameesa, K.K.; Mathew, J. Life cycle assessment of greenhouse gas emission from a dairy production system-review. Trop. Anim. Health Prod. 2023, 55, 320. [Google Scholar] [CrossRef]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock—A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- Peterson, C.B.; Mitloehner, F.M. Sustainability of dairy industry: Emissions and mitigation opportunities. Front. Anim. Sci. 2021, 2, 760310. [Google Scholar] [CrossRef]
- Salah, N.; Legendre, H.; Faivre, L.; Briche, M.; Gourdon, R.; Nenov, V. Evaluating Fecal Sieving Tool as an Indicator of Feed Valorization and the Impact of Feeding Strategy on Dairy Cow Performance under Farm Conditions. Agric. Sci. 2023, 14, 1420–1435. [Google Scholar] [CrossRef]
- Salah, N.; Legendre, H.; Pain, P.P.; Berger, C.; Nenov, V.; Machuron, F.; Briche, M. Meta-Analysis Study of the Effects of Yeast Probiotic Supplementation on Milk Production and Energy Corrected Milk of Lactating Dairy Cows. Agric. Sci. 2023, 14, 1179–1192. [Google Scholar] [CrossRef]
- Huang, Y. Effect of Live Yeast on the Fermentation and Microbiological Physicochemical Parameters of the Rumen, Depending on the Nature of the Diet: Modelling and Validation in Ruminant. Ph.D. Thesis, University of Toulouse, Toulouse, France, 27 February 2018. [Google Scholar]
- Cattaneo, L.; Lopreiato, V.; Piccioli-Cappelli, F.; Trevisi, E.; Minuti, A. Effect of supplementing live Saccharomyces cerevisiae yeast on performance, rumen function and metabolism during the transition period in Holstein dairy cows. J. Dairy Sci. 2022, 106, 4353–4365. [Google Scholar] [CrossRef]
- NF EN FR 14040; Environmental Management—Life Cycle Assessment—Principles and Framework. AFNOR: Paris, France, 2006; p. 20.
- NF EN FR 14044; Environmental Management—Life Cycle Assessment—Requirements and Guidlines. AFNOR: Paris, France, 2006; p. 46.
- European Commission. PEFCR Guidance Document-Guidance for the Development of Product Environment Footprint Category Rules (PEFCRs); Version 6.3; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- European Commission. PEFCR Feed for Food Producing Animals; Version 4.1; European Commission: Brussels, Belgium, April 2018. [Google Scholar]
- IPCC. Guidelines for National Greenhouse Gas Inventories; Simon, E., Leandro, B., Kyoko, M., Todd, N., Kiyoto, T., Eds.; IPCC: Geneva, Switzerland, 2006. [Google Scholar]
- IPCC. 2021: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; 2024; in press. [Google Scholar]
- Blonk Consultants. Agrifootprint Database, Version 5.0: Part 2: Description of Data. 2019. Available online: https://www.agri-footprint.com/wp-content/uploads/2019/11/Agri-Footprint-5.0-Part-2-Description-of-data-17-7-2019-for-web.pdf (accessed on 21 April 2024).
- Blonk Consultants. APS Footprint Methodology Dairy. 2020. Available online: https://elasticbeanstalk-eu-west-1-035027530995.s3-eu-west-1.amazonaws.com/public/methodology/APS-footprint+methodology+-+dairy.pdf (accessed on 21 April 2024).
- Cantillon, M.; Hennessy, T.; Amon, B.; Dragoni, F.; O’Brien, D. Mitigation of gaseous emissions from dairy livestock: A farm-level method to examine the financial implications. J. Environ. Manag. 2024, 352, 119904. [Google Scholar] [CrossRef] [PubMed]
- Lawson, J. The environmental footprint of surface freight transportation. In Transportation Research Board Special Report 291; Lawson Economics Research, Inc.: Ottawa, ON, Canada, 2007. [Google Scholar]
- Guzmán-Luna, P.; Mauricio-Iglesias, M.; Flysjö, A.; Hospido, A. Analysing the interaction between the dairy sector and climate change from a life cycle perspective: A review. Trends Food Sci. Technol. 2022, 26, 168–179. [Google Scholar] [CrossRef]
- Romano, E.; Roma, R.; Tidona, F.; Giraffa, G.; Bragaglio, A. Dairy Farms and Life Cycle Assessment (LCA): The Allocation Criterion Useful to Estimate Undesirable Products. Sustainability 2021, 13, 4354. [Google Scholar] [CrossRef]
- Yan, T.; Mayne, C.S.; Gordon, F.G.; Porter, M.G.; Agnew, R.E.; Patterson, D.C.; Ferris, C.P.; Kilpatrick, D.J. Mitigation of enteric methane emissions through improving efficiency of energy utilization and productivity in lactating dairy cows. J. Dairy Sci. 2010, 93, 2630–2638. [Google Scholar] [CrossRef]
- Julien, C.; Marden, J.P.; Auclair, E.; Moncoulon, R.; Cauquil, L.; Peyraud, J.L.; Bayourthe, C. Interaction between Live Yeast and Dietary Rumen Degradable Protein Level: Effects on Diet Utilization in Early-Lactating Dairy Cow. Agric. Sci. 2015, 6, 53008. [Google Scholar] [CrossRef]
- Kumprechtová, D.; Legendre, H.; Kadek, R.; Nenov, V.; Briche, M.; Salah, N.; Illek, J. Dose effect of Actisaf Sc 47 yeast probiotic (Saccharomyces cerevisiae) supplementation on production, reproduction, and negative energy balance in early lactation dairy cows. Trans. Anim. Sci. 2024, 8, txad132. [Google Scholar] [CrossRef] [PubMed]
- Marden, J.P.; Julien, C.; Monteils, V.; Auclair, E.; Moncoulon, R.; Bayourthe, C. How Does Live Yeast Differ from Sodium Bicarbonate to Stabilize Ruminal pH in High-Yielding Dairy Cows? J. Dairy Sci. 2008, 91, 3528–3535. [Google Scholar] [CrossRef]
- Bui, H.; Cisse, S.H.; Ceccaldi, M.; Perrin, A.; Benarbia, M.E.A.; Chicoteau, P. Mitigating the environmental impacts from pigs and broiler chicken productions: Case Study on a Citrus Extract Feed Additive. Animals 2023, 13, 3702. [Google Scholar] [CrossRef] [PubMed]
- Iribarren, D.; Dagá, P.; Moreira, M.T.; Feijoo, G. Potential environmental effects of probiotics used in aquaculture. Aquacuture Int. 2012, 20, 779–789. [Google Scholar] [CrossRef]
- Pirlo, G.; Lolli, S. Environmental impact of milk production from samples of organic and conventional farms in Lombardy (Italy). J. Clean. Prod. 2019, 211, 962–971. [Google Scholar] [CrossRef]
- Almeida, J.G.; Lorinquer, E.; Robin, P.; Ribeiro-Filho, H.M.; Edouard, N. Ammonia and Nitrous Oxide Emissions from Dairy Cows on Straw-Based Litter Systems. Atmosphere 2022, 13, 283. [Google Scholar] [CrossRef]
- Hutjens, M.; Chase, L.E. Interpreting Milk Urea Nitrogen (MUN) Values. National Feed Management for Livestock and Poultry. 2012. Available online: https://s3.wp.wsu.edu/uploads/sites/346/2014/11/MUNfinal.pdf (accessed on 21 April 2024).
- Christie, K.M.; Rawnsley, R.P.; Harrison, M.T.; Eckard, R.J. Using a modelling approach to evaluate two options for improving animal nitrogen use efficiency and reducing nitrous oxide emissions on dairy farms in southern Australia. Anim. Prod. Sci. 2014, 54, 1960–1970. [Google Scholar] [CrossRef]
- Totakul, P.; Viennasay, B.; Sommai, S.; Matra, M.; Infascelli, F.; Wanapat, M. Supplemental effect of Chaya (Cnidoscolus aconitifolius) leaf pellet on rumen fermentation, nutrients digestibility and microbial protein synthesis in growing crossbred bulls. Ital. J. Anim. Sci. 2021, 20, 279–287. [Google Scholar] [CrossRef]
- Musco, N.; Tudisco, R.; Grossi, M.; Mastellone, V.; Morittu, V.M.; Pero, M.E.; Wanapat, M.; Trinchese, G.; Cavaliere, G.; Mollico, M.P.; et al. Effect of a high forage: Concentrate ratio on milk yield, blood parameters and oxidative status in lactating cows. Anim. Prod. Sci. 2020, 60, 1531–1538. [Google Scholar] [CrossRef]
- Chaucheyras-Durant, F.; Ameilbonne, A.; Bichat, A.; Mosoni, P.; Ossa, F.; Forano, E. Live yeasts enhance fibre degradation in the cow rumen through an increase in plant substrate colonization by fibrolytic bacteria and fungi. J. Appl. Microbiol. 2016, 120, 560–570. [Google Scholar] [CrossRef] [PubMed]
- Bryant, M.P. Nutritional requirements of the predominant rumen cellulolytic bacteria. Fed. Proc. 1973, 32, 1809–1813. [Google Scholar]
- Camilia, S.C.; Marcos, I.M.; Alex Lopes, D.S.; Tothyane, R.S.G.; Marco, A.S.N.; Leonardo, S.K.; Gercino, F.V.S.; Cristina, M.V. Do live or inactive yeasts improve cattle ruminal environment? Rev. Bras. Zootec. 2019, 48, e20180259. [Google Scholar]
- Agle, M.; Hristov, A.N.; Zaman, S.; Shneider, C.; Ndegwa, P.; Vaddella, V.K. The effects of ruminally degraded protein on rumen fermentationand ammonia losses from manure in dairy cows. J. Dairy Sci. 2010, 93, 1625–1637. [Google Scholar] [CrossRef] [PubMed]
- Hristov, A.N.; Varga, G.; Cassidy, T.; Long, M.; Heyler, K.; Karnati, S.K.R.; Corl, B.; Hovde, C.J.; Yoon, I. Effect of Saccharomyces cerevisiae fermentation product on ruminal fermentation and nutrient utilization in dairy cows. J. Dairy Sci. 2010, 93, 682–692. [Google Scholar] [CrossRef] [PubMed]
- Won, S.; Shim, S.M.; You, B.G.; Choi, Y.S.; Ra, C. Nutrient production from dairy cattle manure and loading on arable land. Asian-Australas. J. Anim. Sci. 2017, 30, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Fonty, G.; Chaucheyras-Durand, F. Effects and modes of action of live yeasts in the rumen. Biologia 2006, 61, 741–750. [Google Scholar] [CrossRef]
- Khalouei, H.; Soranatne, V.; Fehr, K.; Guo, J.; Yoon, I.; Khapifour, E.; Plaizier, J.C. Effects of Saccharomyces cerevisiae fermentation products and subacute ruminal acidosis on feed intake, fermentation, and nutrient digestibilities in lactating dairy cows. Can. J. Anim. Sci. 2021, 101, 143–157. [Google Scholar] [CrossRef]
- Bronts, S.; Gerbens-Leenes, P.W.; Guzman-Luna, P. The water, land and carbon footprint of conventional and organic dairy systems in the Netherlands and Spain. A case study into the consequences of ecological indicator selection and methodological choices. Energy Nexus 2023, 11, 100217. [Google Scholar] [CrossRef]
- Rencricca, G.; Froldi, F.; Moschini, M.; Trevisan, M.; Ghnimi, S.; Lamastra, L. The environmental impact of permanent meadows-based farms: A comparison among different dairy farm management systems of an Italian cheese. Sustain. Prod. Consum. 2023, 37, 53–64. [Google Scholar] [CrossRef]
- Blonk, H.; Bosch, H.; Braconi, N.; Van Cauwenberghe, S.; Kok, B. The Applicability of LCA Guidelines to Model the Effects of Feed Additives on the Environmental Footprint of Animal Production; Blonk Consultants and DSM Nutritional Products: Gouda, The Netherlands, 2021. [Google Scholar]
French Trial | UK Trial | German Trial | |
---|---|---|---|
Title | Effect of Actisaf supplementation on performances, ruminal fermentation characteristics and health parameters of peripartum dairy cows | Effects of Actisaf live yeast on performance of high yielding dairy cow | Impact of probiotic live yeast Actisaf Sc 47 on digestive, metabolic and performance parameters in high yielding dairy cows during summertime |
Organization | INRAe Toulouse, France | University of Nottingham, UK | Training and research center, Futterkamp, Germany |
Duration of supplementation | 108 days | 120 days | 92 days |
Stage of lactation | Day 1 to day 108 | Day 1 to day 120 | Day 109 to day 197 |
Year | 2018 | 2019 | 2021 |
Number of cows | 10 | 50 | 72 |
Dose of Actisaf Sc 47 | 5 g/cow/d | 10 g/cow/day | 5 g/cow/day |
French Trial | UK Trial | German Trial | ||||
---|---|---|---|---|---|---|
Control | Actisaf Sc 47 | Control | Actisaf Sc 47 | Control | Actisaf Sc 47 | |
Duration of the trial | 108 | 108 | 120 | 120 | 92 | 92 |
MY (kg/d) | 37.9 | 42.9 | 47.5 | 50.1 | 34.1 | 34 |
MY during the trial (kg) | 4093.2 | 4633.2 | 5700 | 6012 | 3137.2 | 3128 |
MY of reference system (kg/year) | 7373 | 7373 | 12,500 | 12,500 | 7748 | 7748 |
MY 109–305 d of lactation | 4206 | 4206 | (-) | (-) | ||
MY 121–305 d of lactation | (-) | (-) | 6263 | 6236 | ||
MY day 1–108 and 202–305 | (-) | (-) | (-) | (-) | 5502 | 5502 |
Total annual milk (kg) | 8802 | 8836 | 11,963 | 12,275 | 8639.2 | 8630 |
Fat % | 4.29 | 4.33 | 3.9 | 3.97 | 3.84 | 3.81 |
Protein % | 3 | 3.06 | 3.25 | 3.23 | 3.35 | 3.35 |
Total annual FPCM (kg/cow) | 8403 | 9028 | 11,768 | 12,161 | 8502 | 8462 |
FI (kg DM/cow/d) | 21.9 | 23.4 | 23.9 | 24 | 21.9 | 20.9 |
FI during the trial (kg DM/cow) | 2365.2 | 2527.2 | 2868 | 2880 | 2015 | 1923 |
FI out of the trial period (kg DM/cow) | 2427 | 2427 | 3151 | 3151 | 3533 | 3533 |
Estimated FI during the dry period (kg/cow) | 600 | 600 | 600 | 600 | 600 | 600 |
Annual FI (kg DM/cow) 1 | 5392.2 | 5554.2 | 6619 | 6631 | 6148 | 6056 |
GAEI (MJ/cow) | 99,464 | 102,453 | 122,122 | 122,341 | 113,430 | 111,733 |
FE (kg FPCM/kg DMI) | 1.75 | 1.83 | 1.94 | 2.02 | 1.53 | 1.6 |
CH4 (kg/d) | 0.467 | 0.462 | ||||
CH4 (kg/kg ECM) | 0.01 | 0.0095 | ||||
CH4 (kg/kg DMI) | 0.0197 | 0.0194 |
Environmental Impact Category | Unit | Actisaf Sc 47 |
---|---|---|
Climate change | Kg CO2 eq | 2.10 |
Land use | Pt | 54.78 |
Water use (deprivation potential) | m3 depriv eq | 9.35 |
Resource use (fossil) | MJ | 52.21 |
Freshwater eutrophication | g P eq | 0.35 |
Marine eutrophication | g N eq | 4.60 |
Terrestrial eutrophication | mol N eq | 0.06 |
French Trial | UK Trial | German Trial | ||||
---|---|---|---|---|---|---|
Control | Actisaf Sc 47 | Control | Actisaf Sc 47 | Control | Actisaf Sc 47 | |
Total | 1.016 | 0.980 | 1.152 | 1.116 | 1.29 | 1.27 |
Feed compounds | 0.258 | 0.249 | 0.391 | 0.381 | 0.35 | 0.35 |
Roughages | 0.043 | 0.041 | 0.002 | 0.002 | 0.02 | 0.02 |
On farm CO2 | 0.001 | 0.001 | 0.000 | 0.000 | 0.00 | 0.00 |
On-farm N2O | 0.055 | 0.053 | 0.041 | 0.039 | 0.05 | 0.05 |
On farm CH4 | 0.562 | 0.542 | 0.474 | 0.457 | 0.81 | 0.78 |
Energy at Farm | 0.007 | 0.006 | 0.023 | 0.022 | 0.04 | 0.04 |
Water at Farm | 0.003 | 0.003 | 0.002 | 0.002 | 0.002 | 0.002 |
Actisaf Sc 47 | 0.0000 | 0.0001 | 0.0000 | 0.0002 | 0.0000 | 0.0001 |
Land use change | 0.087 | 0.085 | 0.219 | 0.213 | 0.03 | 0.03 |
Environmental Impact Category | Control | Actisaf | Diff | |
---|---|---|---|---|
Average of the three trials | CC (kg CO2 eq) | 1.15 × 100 | 1.12 × 100 | −2.9% |
LU (Pt) | 4.96 × 101 | 4.86 × 101 | −2.05% | |
WU (m3 depriv) | 2.45 × 10−1 | 2.39 × 10−1 | −2.47% | |
RU fossil (MJ) | 2.75 × 100 | 2.70 × 100 | −1.67% | |
TFWAC (mol H+ eq) | 1.94 × 10−2 | 1.90 × 10−2 | −2.28% | |
FE (g P eq) | 1.05 × 10−4 | 1.03 × 10−4 | −2.18% | |
ME (g N eq) | 8.81 × 10−3 | 8.62 × 10−3 | −2.14% | |
TE (mol N eq) | 8.66 × 10−2 | 8.46 × 10−2 | −2.28% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salah, N.; Legendre, H.; Paiva, E.; Duclos, J.; Briche, M.; Maaoui, M.; Scholten, J.; Garat Boute, C. Quantification of the Environmental Impact of Feeding Yeast Probiotic Saccharomyces cerevisiae Actisaf Sc 47 in Dairy Cow: A Life Cycle Assessment Approach. Animals 2024, 14, 2202. https://doi.org/10.3390/ani14152202
Salah N, Legendre H, Paiva E, Duclos J, Briche M, Maaoui M, Scholten J, Garat Boute C. Quantification of the Environmental Impact of Feeding Yeast Probiotic Saccharomyces cerevisiae Actisaf Sc 47 in Dairy Cow: A Life Cycle Assessment Approach. Animals. 2024; 14(15):2202. https://doi.org/10.3390/ani14152202
Chicago/Turabian StyleSalah, Nizar, Héloïse Legendre, Erika Paiva, Julie Duclos, Maxime Briche, Mariem Maaoui, Jasper Scholten, and Céline Garat Boute. 2024. "Quantification of the Environmental Impact of Feeding Yeast Probiotic Saccharomyces cerevisiae Actisaf Sc 47 in Dairy Cow: A Life Cycle Assessment Approach" Animals 14, no. 15: 2202. https://doi.org/10.3390/ani14152202
APA StyleSalah, N., Legendre, H., Paiva, E., Duclos, J., Briche, M., Maaoui, M., Scholten, J., & Garat Boute, C. (2024). Quantification of the Environmental Impact of Feeding Yeast Probiotic Saccharomyces cerevisiae Actisaf Sc 47 in Dairy Cow: A Life Cycle Assessment Approach. Animals, 14(15), 2202. https://doi.org/10.3390/ani14152202