Assessment of Non-Phytate Phosphorus Requirements of Chinese Jing Tint 6 Layer Chicks from Hatch to Day 42
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Diets
2.2. Birds and Housing
2.3. Growth Performance
2.4. Serum Biochemical Analysis
2.5. Bone Characteristics
2.6. Phosphorus Utilization
2.7. Whole-Body Phosphorus Contents of Chickens (Carcass and Feathers)
2.8. Chemical Analysis
2.9. Calculations for Factorial Method
2.10. Statistical Analyses
3. Results
3.1. Growth Performance
3.2. Tibia Characteristics
3.3. Serum Parameters
3.4. Phosphorus Utilization
3.5. Estimated Available Phosphorus Requirements
3.5.1. Non-Linear Model
3.5.2. Factorial Method
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wan, D.; Yin, Y. Trace elements in nutrition and health: A deep dive into essentiality and mechanism of their biological roles. Sci. China Life Sci. 2023, 66, 1949–1951. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Fei, Y.; Ding, S.; Jiang, H.; Fang, J.; Liu, G. Trace metal elements: A bridge between host and intestinal microorganisms. Sci. China Life Sci. 2023, 66, 1976–1993. [Google Scholar] [CrossRef] [PubMed]
- Pastore, S.M.; Gomes, P.C.; Rostagno, H.S.; Albino, L.F.T.; Calderano, A.A.; Vellasco, C.R.; Viana, G.D.; de Almeida, R.L. Calcium levels and calcium: Available phosphorus ratios in diets for white egg layers from 42 to 58 weeks of age. Rev. Bras. Zootec. 2012, 41, 2424–2432. [Google Scholar] [CrossRef]
- Hirvonen, J.; Liljavirta, J.; Saarinen, M.T.; Lehtinen, M.J.; Ahonen, I.; Nurminen, P. Effect of Phytase on in Vitro Hydrolysis of Phytate and the Formation of lnositol Phosphate Esters in Various Feed Materials. J. Agric. Food Chem. 2019, 67, 11396–11402. [Google Scholar] [CrossRef] [PubMed]
- Pongmanee, K.; Kühn, I.; Korver, D.R. Effects of phytase supplementation on eggshell and bone quality, and phosphorus and calcium digestibility in laying hens from 25 to 37 wk of age. Poult. Sci. 2020, 99, 2595–2607. [Google Scholar] [CrossRef] [PubMed]
- Jing, M.; Zhao, S.; Rogiewicz, A.; Slominski, B.A.; House, J.D. Effects of phytase supplementation on production performance, egg and bone quality, plasma biochemistry and mineral excretion of layers fed varying levels of phosphorus. Animal 2021, 15, 100010. [Google Scholar] [CrossRef]
- Gao, J.; Yang, Z.; Zhao, C.; Tang, X.; Jiang, Q.; Yin, Y. A comprehensive review on natural phenolic compounds as alternatives to in-feed antibiotics. Sci. China Life Sci. 2023, 66, 1518–1534. [Google Scholar] [CrossRef] [PubMed]
- Slominski, B.A. Recent advances in research on enzymes for poultry diets. Poult. Sci. 2011, 90, 2013–2023. [Google Scholar] [CrossRef] [PubMed]
- Jing, M.; Zhao, S.; Rogiewicz, A.; Slominski, B.A.; House, J.D. Assessment of the minimal available phosphorus needs of laying hens: Implications for phosphorus management strategies. Poult. Sci. 2018, 97, 2400–2410. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Poultry, 9th ed.; The National Academies Press: Washington, DC, USA, 1994. [Google Scholar]
- Mello, H.H.D.; Gomes, P.C.; Rostagno, H.S.; Albino, L.F.T.; de Oliveira, R.F.M.; da Rocha, T.C.; Ribeiro, C.L.N. Requirement of available phosphorus by female broiler chickens keeping the calcium: Available phosphorus ratio at 2:1. Rev. Bras. Zootec. 2012, 41, 2329–2335. [Google Scholar] [CrossRef]
- Li, G.; Feng, Y.; Cui, J.; Hou, Q.; Li, T.; Jia, M.; Lv, Z.; Jiang, Q.; Wang, Y.; Zhang, M.; et al. The ionome and proteome landscape of aging in laying hens and relation to egg white quality. Sci. China Life Sci. 2023, 66, 2020–2040. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.B.; Liao, X.D.; Lu, L.; Li, S.F.; Wang, L.; Zhang, L.Y.; Jiang, Y.; Luo, X.G. Dietary non-phytate phosphorus requirement of broilers fed a conventional corn-soybean meal diet from 1 to 21 d of age. Poult. Sci. 2017, 96, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; He, L.; Yang, C.; He, X.; Chen, H.; Feng, Y.; Tang, W.; Li, J.; Liu, D.; Li, T. Crosstalk between trace elements and T-cell immunity during early-life health in pigs. Sci. China Life Sci. 2023, 66, 1994–2005. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.B.; Chen, D.W.; Adeola, O. Phosphorus digestibility response of broiler chickens to dietary calcium-to-phosphorus ratios. Poult. Sci. 2013, 92, 1572–1578. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Liu, M.; Sun, H.; Yang, J.C.; Huang, Y.X.; Huang, J.Q.; Lei, X.; Sun, L.H. Selenium deficiency-induced multiple tissue damage with dysregulation of immune and redox homeostasis in broiler chicks under heat stress. Sci. China Life Sci. 2023, 66, 2056–2069. [Google Scholar] [CrossRef] [PubMed]
- Taha-Abdelaziz, K.; Hodgins, D.C.; Lammers, A.; Alkie, T.N.; Sharif, S. Effects of early feeding and dietary interventions on development of lymphoid organs and immune competence in neonatal chickens: A review. Vet. Immunol. Immunop. 2018, 201, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Koelkebeck, K.W.; Amoss, M.S.; Cain, J.R. Production, Physiological, and Behavioral-Responses of Laying Hens in Different Management Environments. Poult. Sci. 1987, 66, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.R.; Gao, L.B.; Gong, F.; Feng, J.; Zhang, H.J.; Wu, S.G.; Wang, J.; Min, Y.N. TMT-based quantitative proteomic analysis reveals eggshell matrix protein changes correlated with eggshell quality in Jing Tint 6 laying hens of different ages. Poult. Sci. 2024, 103, 103463. [Google Scholar] [CrossRef]
- Liu, M.; Xia, Z.Y.; Li, H.L.; Huang, Y.X.; Refaie, A.; Deng, Z.C.; Sun, L.H. Estimation of Protein and Amino Acid Requirements in Layer Chicks Depending on Dynamic Model. Animals 2024, 14, 764. [Google Scholar] [CrossRef]
- Zhang, L.; Ge, J.; Gao, F.; Yang, M.; Li, H.; Xia, F.; Bai, H.; Piao, X.; Sun, Z.; Shi, L. Rosemary extract improves egg quality by altering gut barrier function, intestinal microbiota and oviductal gene expressions in late-phase laying hens. J. Anim. Sci. Biotechnol. 2023, 14, 121. [Google Scholar] [CrossRef]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis, 20th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2016. [Google Scholar]
- Feed Database in China. Available online: https://www.chinafeeddata.org.cn/admin/Login/slcfb (accessed on 28 October 2022).
- Dilger, R.N.; Adeola, O. Estimation of true phosphorus digestibility and endogenous phosphorus loss in growing chicks fed conventional and low-phytate soybean meals. Poult. Sci. 2006, 85, 661–668. [Google Scholar] [CrossRef]
- Bai, S.; Yang, Y.; Ma, X.; Liao, X.; Wang, R.; Zhang, L.; Li, S.; Luo, X.; Lu, L. Dietary calcium requirements of broilers fed a conventional corn-soybean meal diet from 1 to 21 days of age. J. Anim. Sci. Biotechnol. 2022, 13, 11. [Google Scholar] [CrossRef] [PubMed]
- Berndt, T.; Thomas, L.F.; Craig, T.A.; Sommer, S.; Li, X.J.; Bergstralh, E.J.; Kumar, R. Evidence for a signaling axis by which intestinal phosphate rapidly modulates renal phosphate reabsorption. Proc. Natl. Acad. Sci. USA 2007, 104, 11085–11090. [Google Scholar] [CrossRef]
- Alexander, R.T.; Rievaj, J.; Dimke, H. Paracellular calcium transport across renal and intestinal epithelia. Biochem. Cell Biol. 2014, 92, 467–480. [Google Scholar] [CrossRef]
- Proszkowiec-Weglarz, M.; Schreier, L.L.; Miska, K.B.; Angel, R.; Kahl, S.; Russell, B. Effect of early neonatal development and delayed feeding post-hatch on jejunal and ileal calcium and phosphorus transporter genes expression in broiler chickens. Poult. Sci. 2019, 98, 1861–1871. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Dong, Z.; Tang, W.; Zhou, J.; Guo, L.; Gong, C.; Liu, G.; Wan, D.; Yin, Y. Dietary iron regulates intestinal goblet cell function and alleviates Salmonella typhimurium invasion in mice. Sci. China Life Sci. 2023, 66, 2006–2019. [Google Scholar] [CrossRef]
- Bradbury, E.J.; Wilkinson, S.J.; Cronin, G.M.; Thomson, P.C.; Bedford, M.R.; Cowieson, A.J. Nutritional geometry of calcium and phosphorus nutrition in broiler chicks. Growth performance, skeletal health and intake arrays. Animal 2014, 8, 1071–1079. [Google Scholar] [CrossRef]
- Stanquevis, C.E.; Furlan, A.C.; Marcato, S.M.; de Oliveira-Bruxel, T.M.; Perine, T.P.; Finco, E.M.; Grecco, E.T.; Benites, M.I.; Zancanela, V.T. Calcium and available phosphorus requirements of Japanese quails in early egg-laying stage. Poult. Sci. 2021, 100, 147–158. [Google Scholar] [CrossRef]
- Rousseau, X.; Valable, A.S.; Létourneau-Montminy, M.P.; Même, N.; Godet, E.; Magnin, M.; Nys, Y.; Duclos, M.J.; Narcy, A. Adaptive response of broilers to dietary phosphorus and calcium restrictions. Poult Sci. 2016, 95, 2849–2860. [Google Scholar] [CrossRef]
- Qian, H.; Kornegay, E.T.; Denbow, D.M. Phosphorus equivalence of microbial phytase in turkey diets as influenced by calcium to phosphorus ratios and phosphorus levels. Poult. Sci. 1996, 75, 69–81. [Google Scholar] [CrossRef]
- Perryman, K.R.; O’Neill, H.V.M.; Bedford, M.R.; Dozier, W.A. Effects of calcium feeding strategy on true ileal phosphorus digestibility and true phosphorus retention determined with growing broilers. Poult. Sci. 2016, 95, 1077–1087. [Google Scholar] [CrossRef]
- Hamdi, M.; López-Vergé, S.; Manzanilla, E.G.; Barroeta, A.C.; Pérez, J.F. Effect of different levels of calcium and phosphorus and their interaction on the performance of young broilers. Poult. Sci. 2015, 94, 2144–2151. [Google Scholar] [CrossRef]
- Wang, Y.B.; Wang, W.W.; Fan, Q.L.; Ye, J.L.; Zhang, S.; Jiang, S.Q. Effects and interaction of dietary calcium and non-phytate phosphorus for slow-growing yellow-feathered broilers during the starter phase. Animal 2021, 15, 100201. [Google Scholar] [CrossRef]
- Li, T.T.; Xing, G.Z.; Shao, Y.X.; Zhang, L.Y.; Li, S.F.; Lu, L.; Liu, Z.P.; Liao, X.D.; Luo, X.G. Dietary calcium or phosphorus deficiency impairs the bone development by regulating related calcium or phosphorus metabolic utilization parameters of broilers. Poult. Sci. 2020, 99, 3207–3214. [Google Scholar] [CrossRef]
- Driver, J.P.; Pesti, G.D.; Bakalli, R.I.; Edwards, H.M. Effects of calcium and nonphytate phosphorus concentrations on phytase efficacy in broiler chicks. Poult. Sci. 2005, 84, 1406–1417. [Google Scholar] [CrossRef]
- Shafey, T.M.; Mcdonald, M.W.; Pym, R.A.E. Effects of Dietary Calcium, Available Phosphorus and Vitamin-D on Growth-Rate, Food Utilization, Plasma and Bone Constituents and Calcium and Phosphorus Retention of Commercial Broiler Strains. Br. Poult. Sci. 1990, 31, 587–602. [Google Scholar] [CrossRef]
- Hassanabadi, A.; Alizadeh-Ghamsari, A.; Leslie, M.A. Effects of dietary phytase, calcium and phosphorus on performance, nutrient utilization and blood parameters of male broiler chickens. J. Anim. Vet. Adv. 2007, 6, 1434–1442. [Google Scholar]
- Proszkowiec-Weglarz, M.; Angel, R. Calcium and phosphorus metabolism in broilers: Effect of homeostatic mechanism on calcium and phosphorus digestibility. J. Appl. Poult. Res. 2013, 22, 609–627. [Google Scholar] [CrossRef]
- Hurwitz, S.; Plavnik, I.; Shapiro, A.; Wax, E.; Talpaz, H.; Bar, A. Calcium-Metabolism and Requirements of Chickens Are Affected by Growth. J. Nutr. 1995, 125, 2679–2686. [Google Scholar] [CrossRef]
- Zhang, Q.Q.; Chang, C.; Chu, Q.; Wang, H.H.; Zhang, J.; Yan, Z.X.; Song, Z.G.; Geng, A.L. Dietary calcium and non-phytate phosphorus levels affect the performance, serum biochemical indices, and lipid metabolism in growing pullets. Poult. Sci. 2023, 102, 102354. [Google Scholar] [CrossRef]
- Walk, C.L.; Aureli, R.; Jenn, P. Determination of the standardized ileal digestible calcium requirement of Ross broilers from hatch to day 14 post-hatch. Anim. Nutr. 2024, 16, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Walk, C.L.; Wang, Z.; Wang, S.; Sorbara, J.O.B.; Zhang, J. Determination of the standardized ileal digestible calcium requirement of male Arbor Acres Plus broilers from day 25 to 42 post-hatch. Poult. Sci. 2022, 101, 102146. [Google Scholar] [CrossRef] [PubMed]
- Xue, P.C.; Ajuwon, K.M.; Adeola, O. Phosphorus and nitrogen utilization responses of broiler chickens to dietary crude protein and phosphorus levels. Poult. Sci. 2016, 95, 2615–2623. [Google Scholar] [CrossRef] [PubMed]
- Hurwitz, S.; Frisch, Y.; Bar, A.; Eisner, U.; Bengal, I.; Pines, M. The Amino-Acid-Requirements of Growing Turkeys. 1. Model Construction and Parameter-Estimation. Poult. Sci. 1983, 62, 2208–2217. [Google Scholar] [CrossRef]
- Cardoso, E.F.; Donzele, J.L.; de Oliveira Donzele, R.F.M.; Sufiate, B.L.; Silva, A.D.; Tizziani, T. Non-phytate phosphorus requirement for broilers from 8 to 21 days of age under heat stress conditions. Trop. Anim. Health Prod. 2018, 50, 317–325. [Google Scholar] [CrossRef]
Ingredients, % “as-fed” | 1–14 d (Levels of Non-Phytate P 1, %) | 15–42 d (Levels of Non-Phytate P 1, %) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0.360 | 0.410 | 0.460 | 0.510 | 0.560 | 0.360 | 0.410 | 0.460 | 0.510 | 0.560 | |
Corn | 56.0 | 56.0 | 56.0 | 56.0 | 56.0 | 56.0 | 56.0 | 56.0 | 56.0 | 56.0 |
Soybean meal | 35.1 | 35.1 | 35.1 | 35.1 | 35.1 | 35.1 | 35.1 | 35.1 | 35.1 | 35.1 |
Soybean oil | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 |
Wheat bran | 0.800 | 0.800 | 0.800 | 0.800 | 0.800 | 0.800 | 0.800 | 0.800 | 0.800 | 0.800 |
Limestone | 2.08 | 1.81 | 1.53 | 1.25 | 0.970 | 2.08 | 1.81 | 1.53 | 1.25 | 0.970 |
Mono-calcium phosphate | 2.00 | 2.27 | 2.55 | 2.83 | 3.11 | 2.00 | 2.27 | 2.55 | 2.83 | 3.11 |
Salt | 0.300 | 0.300 | 0.300 | 0.300 | 0.300 | 0.300 | 0.300 | 0.300 | 0.300 | 0.300 |
DL-Methionine | 0.140 | 0.140 | 0.140 | 0.140 | 0.140 | 0.140 | 0.140 | 0.140 | 0.140 | 0.140 |
L-lysine HCl | 0.140 | 0.140 | 0.140 | 0.140 | 0.140 | 0.140 | 0.140 | 0.140 | 0.140 | 0.140 |
V Premix1 2 | 0.040 | 0.040 | 0.040 | 0.040 | 0.040 | 0.040 | 0.040 | 0.040 | 0.040 | 0.040 |
Mineral Premix 3 | 0.300 | 0.300 | 0.300 | 0.300 | 0.300 | 0.300 | 0.300 | 0.300 | 0.300 | 0.300 |
Total amount | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Calculated nutritional level | ||||||||||
ME 4 (Mcal/kg) | 2.90 | 2.90 | 2.90 | 2.90 | 2.90 | 2.92 | 2.92 | 2.92 | 2.92 | 2.92 |
Crude protein (%) | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 | 19.0 | 19.0 | 19.0 | 19.0 | 19.0 |
Total P (%) | 0.740 | 0.780 | 0.840 | 0.890 | 0.940 | 0.740 | 0.780 | 0.840 | 0.890 | 0.940 |
Lysine (%) | 2.62 | 2.62 | 2.62 | 2.62 | 2.62 | 2.62 | 2.62 | 2.62 | 2.62 | 2.62 |
Methionine (%) | 0.590 | 0.590 | 0.590 | 0.590 | 0.590 | 0.590 | 0.590 | 0.590 | 0.590 | 0.590 |
Tryptophan (%) | 0.0200 | 0.0200 | 0.0200 | 0.0200 | 0.0200 | 0.0200 | 0.0200 | 0.0200 | 0.0200 | 0.0200 |
Threonine (%) | 1.64 | 1.64 | 1.64 | 1.64 | 1.64 | 1.64 | 1.64 | 1.64 | 1.64 | 1.64 |
Analyzed nutritional level | ||||||||||
Crude protein (%) | 19.6 | 19.6 | 19.6 | 19.6 | 19.6 | 18.3 | 18.3 | 18.3 | 18.3 | 18.3 |
Calcium | 1.05 | 1.05 | 1.05 | 1.05 | 1.05 | 1.08 | 1.08 | 1.08 | 1.08 | 1.08 |
Total P (%) | 0.92 | 1.02 | 1.09 | 1.14 | 1.2 | 0.92 | 1.02 | 1.09 | 1.14 | 1.2 |
Phase | Variables 1 | Non-Phytate P, % | Pooled SEM 2 | p-Value 3 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0.360 | 0.410 | 0.460 | 0.510 | 0.560 | Available P | L | Q | |||
14 d | Final BW, g/bird | 119 ab | 122 a | 113 b | 113 b | 111 b | 1.52 | 0.056 | 0.014 | 0.746 |
BWG, g/bird/day | 5.71 ab | 5.94 a | 5.15 b | 5.10 b | 5.07 b | 0.10 | 0.003 | <0.001 | 0.007 | |
DFI, g/bird/day | 10.8 | 10.6 | 11.4 | 10.7 | 11.4 | 0.27 | 0.839 | 0.513 | 0.897 | |
FCR, g/g | 1.86 | 1.83 | 2.09 | 1.85 | 2.10 | 0.06 | 0.331 | 0.205 | 0.881 | |
42 d | Final BW, g/bird | 359 b | 404 a | 408 a | 385 ab | 368 ab | 6.70 | 0.042 | 0.025 | 0.005 |
BWG, g/bird/day | 8.58 b | 10.1 ab | 10.4 a | 9.60 ab | 9.19 ab | 0.22 | 0.015 | 0.195 | 0.005 | |
DFI, g/bird/day | 22.1 | 27.6 | 25.8 | 24.3 | 26.6 | 1.12 | 0.602 | 0.488 | 0.524 | |
FCR, g/g | 2.47 | 2.47 | 2.42 | 2.74 | 2.92 | 0.14 | 0.842 | 0.905 | 0.825 |
Variables | Phase | Non-Phytate P, % | Pooled SEM 1 | p-Value 2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0.360 | 0.410 | 0.460 | 0.510 | 0.560 | Available P | L | Q | |||
Length, mm | 14 D 42 d | 43.5 b | 45.3 a | 45.2 a | 44.9 a | 44.7 a | 0.15 | 0.002 | 0.027 | <0.001 |
55.3 b | 57.0 b | 56.1 b | 51.6 b | 64.3 a | 0.08 | <0.001 | 0.030 | 0.010 | ||
Strength, kg | 14 d 42 d | 2.35 | 2.44 | 2.52 | 2.25 | 2.17 | 1.04 | 0.720 | 0.740 | 0.840 |
7.35 ab | 9.86 a | 8.10 ab | 6.01 b | 7.40 ab | 0.36 | 0.010 | 0.090 | 0.320 |
Phase | Variables 1 | Non-Phytate P, % | Pooled SEM 2 | p-Value 3 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0.36 | 0.41 | 0.46 | 0.51 | 0.56 | Available P | L | Q | |||
14 d | TP, g/L | 34.4 | 35.1 | 30.8 | 29.8 | 30.7 | 0.80 | 0.120 | 0.030 | 0.560 |
ALB, g/L | 18.8 | 18.2 | 16.7 | 15.7 | 17.1 | 0.46 | 0.210 | 0.070 | 0.240 | |
ALP, U/L | 8049 | 7434 | 10,148 | 8621 | 6610 | 771 | 0.830 | 0.980 | 0.380 | |
Ca, mmol/L | 3.13 ab | 3.43 a | 2.70 ab | 2.63 b | 2.80 ab | 0.09 | 0.009 | 0.005 | 0.039 | |
P, mmol/L | 2.98 ab | 3.21 a | 2.54 b | 2.60 b | 2.35 b | 0.09 | 0.010 | 0.000 | 0.710 | |
42 d | TP, g/L | 34.0 | 35.5 | 35.4 | 36.7 | 31.8 | 0.64 | 0.140 | 0.460 | 0.030 |
ALB, g/L | 16.8 b | 17.8 b | 20.1 a | 17.6 b | 15.4 b | 0.41 | 0.000 | 0.190 | 0.000 | |
ALP, U/L | 1127 | 1228 | 1194 | 1908 | 1375 | 149 | 0.490 | 0.280 | 0.680 | |
Ca, mmol/L | 2.92 | 2.86 | 2.85 | 3.01 | 2.85 | 0.02 | 0.150 | 0.920 | 0.820 | |
P, mmol/L | 2.72 a | 2.59 ab | 2.54 ab | 2.43 b | 2.33 b | 0.04 | 0.010 | 0.000 | 0.990 |
Phase | Variables 1 | Non-Phytate P, % | Pooled SEM 2 | p-Value 3 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0.360 | 0.410 | 0.460 | 0.510 | 0.560 | Available P | L | Q | |||
14 d | P intake, g/kg DMI 1 | 10.2 | 11.1 | 11.8 | 12.5 | 13.1 | - | - | - | - |
P output, g/ kg DMI 1 | 3.59 | 3.73 | 3.93 | 5.71 | 6.48 | 0.37 | 0.00 | 0.00 | 0.03 | |
ATTDC, % | 62.8 ab | 68.0 a | 59.2 abc | 54.3 b | 50.7 c | 1.91 | 0.00 | 0.00 | 0.11 | |
42 d | P intake, g/ kg DMI 1 | 10.1 | 11.5 | 12.0 | 12.0 | 11.9 | - | - | - | - |
P output, g/ kg DMI 1 | 6.34 | 7.02 | 7.16 | 9.06 | 8.59 | 0.46 | 0.36 | 0.1 | 0.78 | |
ATTDC, % | 34.5 | 38.7 ab | 49.2 a | 33.2 ab | 27.8 b | 2.42 | 0.03 | 0.06 | 0.01 |
Phase | Dependent Variable 1 | Regression Equation | R2 | p-Value | Requirements 2 |
---|---|---|---|---|---|
1–14 d | Body weight gain | y = −26.0771 + 161.7267X − 203.9962X2 | 0.577 | 0.001 | 0.411 |
Tibial length | y = 32.8185 + 29.8404X | 0.492 | 0.002 | 0.409 | |
ATTDC | y = −559.5571 + 3130.0748X − 3900.9427X2 | 0.762 | 0.008 | 0.394 | |
Serum Ca | y = −30.3980 + 169.7561X − 212.8219X2 | 0.471 | 0.004 | 0.452 | |
Serum P | y = −25.6906 + 145.3867X − 182.6667X2 | 0.323 | 0.004 | 0.450 | |
15–42 d | Body weight gain | y = 1.7731 + 8.2290X − 29.6305X2 | 0.257 | 0.045 | 0.466 |
ATTDC | y = −210.3100 + 1137.7635X − 1275.5178X2 | 0.507 | 0.024 | 0.469 | |
Serum albumin | y = 7.2332 + 26.6820X | 0.376 | 0.007 | 0.462 | |
Serum P | y = 4.7845 − 5.45001X | 0.286 | 0.013 | 0.422 |
Phase | Endogenous P Loss, g/kg of DMI | Feed Intake, g/d | DM, % | Maintenance Requirements, mg/d |
---|---|---|---|---|
1–14 d | 1.36 | 10.6 | 87.8 | 12.6 |
15–42 d | 2.15 | 27.6 | 87.8 | 52.1 |
Phase | Average Weight, g | Average Weight Gain, g/d | Average P Content 1, % | Requirements, mg/d |
---|---|---|---|---|
1–14 d | 122 | 5.94 | 0.440 | 26.1 |
15–42 d | 404 | 10.1 | 0.680 | 68.9 |
Parameter | 1–14 d | 15–42 d |
---|---|---|
P maintenance requirements (mg/d) | 12.6 | 52.1 |
P weight gain requirements (mg/d) | 26.1 | 68.9 |
Net P requirement (mg/d) | 38.7 | 120.9 |
Feed intake (g/d) | 10.6 | 27.6 |
Factorial requirement of NPP (%) | 0.367 | 0.439 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, C.-Y.; Liu, G.; Shi, H.-P.; Liu, S.; Gao, X.-Y.; Zhang, S.-J.; Liu, H.; Li, R.; Wan, D. Assessment of Non-Phytate Phosphorus Requirements of Chinese Jing Tint 6 Layer Chicks from Hatch to Day 42. Animals 2024, 14, 2093. https://doi.org/10.3390/ani14142093
Gong C-Y, Liu G, Shi H-P, Liu S, Gao X-Y, Zhang S-J, Liu H, Li R, Wan D. Assessment of Non-Phytate Phosphorus Requirements of Chinese Jing Tint 6 Layer Chicks from Hatch to Day 42. Animals. 2024; 14(14):2093. https://doi.org/10.3390/ani14142093
Chicago/Turabian StyleGong, Cheng-Yan, Guang Liu, Hong-Peng Shi, Shuan Liu, Xin-Yi Gao, Shou-Jun Zhang, Hao Liu, Rui Li, and Dan Wan. 2024. "Assessment of Non-Phytate Phosphorus Requirements of Chinese Jing Tint 6 Layer Chicks from Hatch to Day 42" Animals 14, no. 14: 2093. https://doi.org/10.3390/ani14142093
APA StyleGong, C.-Y., Liu, G., Shi, H.-P., Liu, S., Gao, X.-Y., Zhang, S.-J., Liu, H., Li, R., & Wan, D. (2024). Assessment of Non-Phytate Phosphorus Requirements of Chinese Jing Tint 6 Layer Chicks from Hatch to Day 42. Animals, 14(14), 2093. https://doi.org/10.3390/ani14142093