The Optimal Supplementation of Fermented Product Produced by Bacillus subtilis Strain LYS1 with High Surfactin Yield for Improving Growth Performance, Intestinal Villi Morphology, and Tibial Bone Strength in Broilers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. FP Preparation
2.2. Animal Management and Experimental Design
2.3. Measurements and Analysis
2.3.1. The Physiochemical Characterizations of FP
2.3.2. The Protease Activity of FP
2.3.3. The Surfactin Analysis of FP
2.3.4. Feed Composition Analysis
2.3.5. Growth Performance
2.3.6. Sample Collection
2.3.7. Carcass Traits
2.3.8. Intestinal Morphology
2.3.9. Tibial Bone Characteristics
2.3.10. Clinical Blood Biochemistry
2.4. Statistical Analysis
3. Results
3.1. The Physiochemical Characterizations and Functional Components of LYS1 FP
3.2. The Surfactin Composition of LYS1 FP
3.3. Growth Performance
3.4. Carcass Traits
3.5. Intestinal Morphology
3.6. Morphometric Parameters, Bone Strength Measurements, and Mineral Contents of the Tibia
3.7. Clinical Blood Biochemistry
3.8. The optimal Supplementation of LYS1 FP for Growth Performance, Intestinal Morphology, and Tibial Bone Characteristics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Logan, N.A.; De Vos, P. Genus I. Bacillus. In Bergey’s Manual of Systematic Bacteriology: Volume 3: The Firmicutes, 2nd ed.; De Vos, P., Garrity, G., Jones, D., Krieg, N.R., Ludwig, W., Rainey, F.A., Schleiferand, K.H., Whitman, W.B., Eds.; Springer: New York, NY, USA, 2009; pp. 21–72. [Google Scholar]
- Grant, A.; Gay, C.G.; Lillehoj, H.S. Bacillus spp. as Direct-Fed Microbial Antibiotic Alternatives to Enhance Growth, Immunity, and Gut Health in Poultry. Avian Pathol. 2018, 47, 339–351. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Zaki, R.S.; Negm, E.A.; Mahmoud, M.A.; Cheng, H.W. Effects of Dietary Supplementation of a Probiotic (Bacillus subtilis) on Bone Mass and Meat Quality of Broiler Chickens. Poult. Sci. 2021, 100, 100906. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Ku, K.-L.; Chen, P.-Y.; Chen, K.-L. The Fermented Product of High-Yield Surfactin Strain Bacillus subtilis LYS1 Improves the Growth Performance and Intestinal Villi Morphology in Broilers. Poult. Sci. 2023, 102, 102839. [Google Scholar] [CrossRef] [PubMed]
- Théatre, A.; Cano-Prieto, C.; Bartolini, M.; Laurin, Y.; Deleu, M.; Niehren, J.; Fida, T.; Gerbinet, S.; Alanjary, M.; Medema, M.H.; et al. The Surfactin-Like Lipopeptides from Bacillus spp.: Natural Biodiversity and Synthetic Biology for a Broader Application Range. Front. Bioeng. Biotechnol. 2021, 9, 623701. [Google Scholar] [CrossRef] [PubMed]
- Dhanarajan, G.; Rangarajan, V.; Sridhar, P.R.; Sen, R. Development and Scale-up of an Efficient and Green Process for HPLC Purification of Antimicrobial Homologues of Commercially Important Microbial Lipopeptides. ACS Sustain. Chem. Eng. 2016, 4, 6638–6646. [Google Scholar] [CrossRef]
- Chen, X.; Lu, Y.; Shan, M.; Zhao, H.; Lu, Z.; Lu, Y. A Mini-Review: Mechanism of Antimicrobial Action and Application of Surfactin. World J. Microbiol. Biotechnol. 2022, 38, 143. [Google Scholar] [CrossRef] [PubMed]
- Dimkić, I.; Janakiev, T.; Petrović, M.; Degrassi, G.; Fira, D. Plant-Associated Bacillus and Pseudomonas Antimicrobial Activities in Plant Disease Suppression via Biological Control Mechanisms—A Review. Physiol. Mol. Plant Pathol. 2022, 117, 101754. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, L.; Ding, J.; Wang, M.; Ge, R.; Zhao, H.; Zhang, B.; Fan, J. Natural Antimicrobial Lipopeptides Secreted by Bacillus spp. and Their Application in Food Preservation, a Critical Review. Trends Food Sci. Technol. 2022, 127, 26–37. [Google Scholar] [CrossRef]
- Tran, C.; Horyanto, D.; Stanley, D.; Cock, I.E.; Chen, X.; Feng, Y. Antimicrobial Properties of Bacillus Probiotics as Animal Growth Promoters. Antibiotics 2023, 12, 407. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, N.; Han, J.; Chang, C.; Hsiao, F.S.; Yu, Y. Optimization of Surfactin Production from Bacillus subtilis in Fermentation and Its Effects on Clostridium perfringens-induced Necrotic Enteritis and Growth Performance in Broilers. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1232–1244. [Google Scholar] [CrossRef]
- Chen, J.-Y.; Yu, Y.-H. Bacillus subtilis–Fermented Products Ameliorate the Growth Performance and Alter Cecal Microbiota Community in Broilers under Lipopolysaccharide Challenge. Poult. Sci. 2021, 100, 875–886. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Yu, Y.-H. Bacillus licheniformis–Fermented Products Improve Growth Performance and the Fecal Microbiota Community in Broilers. Poult. Sci. 2020, 99, 1432–1443. [Google Scholar] [CrossRef]
- Lee, T.-Y.; Lee, Y.-S.; Yeh, R.-H.; Chen, K.-H.; Chen, K.-L. Bacillus amyloliquefaciens CU33 Fermented Feather Meal-Soybean Meal Product Improves the Intestinal Morphology to Promote the Growth Performance of Broilers. Poult. Sci. 2022, 101, 102027. [Google Scholar] [CrossRef]
- Guo, S.; Xv, J.; Li, Y.; Bi, Y.; Hou, Y.; Ding, B. Interactive Effects of Dietary Vitamin K3 and Bacillus subtilis PB6 on the Growth Performance and Tibia Quality of Broiler Chickens with Sex Separate Rearing. Animal 2020, 14, 1610–1618. [Google Scholar] [CrossRef]
- Aviagen. Ross Broiler: Nutrition Specifications; Aviagen Inc.: Huntsville, AL, USA, 2019. [Google Scholar]
- Aviagen. Ross Broiler Management Manual; Aviagen Inc.: Huntsville, AL, USA, 2018. [Google Scholar]
- Secades, P.; Guijarro, J.A. Purification and Characterization of an Extracellular Protease from the Fish Pathogen Yersinia ruckeri and Effect of Culture Conditions on Production. Appl. Environ. Microbiol. 1999, 65, 3969–3975. [Google Scholar] [CrossRef]
- Oguntoyinbo, F.A.; Sanni, A.I.; Franz, C.M.A.P.; Holzapfel, W.H. In Vitro Fermentation Studies for Selection and Evaluation of Bacillus Strains as Starter Cultures for the Production of Okpehe, a Traditional African Fermented Condiment. Int. J. Food Microbiol. 2007, 113, 208–218. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis, 15th ed.; AOAC Int.: Gaithersburg, MD, USA, 1990. [Google Scholar]
- Liu, Z.; Chen, Q.; Zhong, Y.; Wu, Y.; Li, J.; Kong, Z.; Zhang, Q.; Lei, X. Effects of Earthworm Hydrolysate in Production Performance, Serum Biochemical Parameters, Antioxidant Capacity and Intestinal Function of Muscovy Ducks. Poult. Sci. 2023, 102, 102409. [Google Scholar] [CrossRef]
- Mutuş, R.; Kocabaǧli, N.; Alp, M.; Acar, N.; Eren, M.; Gezen, Ş.Ş. The Effect of Dietary Probiotic Supplementation on Tibial Bone Characteristics and Strength in Broilers. Poult. Sci. 2006, 85, 1621–1625. [Google Scholar] [CrossRef]
- Akiba, Y.; Jensen, L.S.; Barb, C.R.; Kraeling, R.R. Plasma Estradiol, Thyroid Hormones, and Liver Lipid Content in Laying Hens Fed Different Isocaloric Diets. J. Nutr. 1982, 112, 299–308. [Google Scholar] [CrossRef]
- Elliott, A.C.; Hynan, L.S. A SAS® Macro Implementation of a Multiple Comparison Post Hoc Test for a Kruskal–Wallis Analysis. Comput. Methods Programs Biomed. 2011, 102, 75–80. [Google Scholar] [CrossRef]
- Cho, W.-I.; Chung, M.-S. Bacillus Spores: A Review of Their Properties and Inactivation Processing Technologies. Food Sci. Biotechnol. 2020, 29, 1447–1461. [Google Scholar] [CrossRef]
- Klausmann, P.; Hennemann, K.; Hoffmann, M.; Treinen, C.; Aschern, M.; Lilge, L.; Heravi, K.M.; Henkel, M.; Hausmann, R. Bacillus subtilis High Cell Density Fermentation Using a Sporulation-Deficient Strain for the Production of Surfactin. Appl. Microbiol. Biotechnol. 2021, 105, 4141–4151. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, S.; Zhang, S.; Wu, G.; Shao, Y.; Mi, Q.; Liang, J.; Sun, K.; Hu, J. Isolation and Characterization of a New Cyclic Lipopeptide Surfactin from a Marine-Derived Bacillus velezensis SH-B74. J. Antibiot. 2020, 73, 863–867. [Google Scholar] [CrossRef]
- Bochynek, M.; Lewińska, A.; Witwicki, M.; Dębczak, A.; Łukaszewicz, M. Formation and Structural Features of Micelles Formed by Surfactin Homologues. Front. Bioeng. Biotechnol. 2023, 11, 1211319. [Google Scholar] [CrossRef]
- Sun, D.; Liao, J.; Sun, L.; Wang, Y.; Liu, Y.; Deng, Q.; Zhang, N.; Xu, D.; Fang, Z.; Wang, W.; et al. Effect of Media and Fermentation Conditions on Surfactin and Iturin Homologues Produced by Bacillus natto NT-6: LC–MS Analysis. AMB Express 2019, 9, 120. [Google Scholar] [CrossRef]
- Akintayo, S.O.; Treinen, C.; Vahidinasab, M.; Pfannstiel, J.; Bertsche, U.; Fadahunsi, I.; Oellig, C.; Granvogl, M.; Henkel, M.; Lilge, L.; et al. Exploration of Surfactin Production by Newly Isolated Bacillus and Lysinibacillus Strains from Food-related Sources. Lett. Appl. Microbiol. 2022, 75, 378–387. [Google Scholar] [CrossRef]
- Qin, W.-Q.; Fei, D.; Zhou, L.; Guo, Y.-J.; An, S.; Gong, O.-H.; Wu, Y.-Y.; Liu, J.-F.; Yang, S.-Z.; Mu, B.-Z. A New Surfactin-C 17 Produced by Bacillus subtilis TD7 with a Low Critical Micelle Concentration and High Biological Activity. N. J. Chem. 2023, 47, 7604–7612. [Google Scholar] [CrossRef]
- Ramlucken, U.; Lalloo, R.; Roets, Y.; Moonsamy, G.; van Rensburg, C.J.; Thantsha, M.S. Advantages of Bacillus-Based Probiotics in Poultry Production. Livest. Sci. 2020, 241, 104215. [Google Scholar] [CrossRef]
- Tang, X.; Liu, X.; Liu, H. Effects of Dietary Probiotic (Bacillus subtilis) Supplementation on Carcass Traits, Meat Quality, Amino Acid, and Fatty Acid Profile of Broiler Chickens. Front. Vet. Sci. 2021, 8, 767802. [Google Scholar] [CrossRef]
- Abeddargahi, F.; Kuhi, H.D.; Rafiei, F.; Roostaie-Alimehr, M.; Takalu, Z.; Sajedi, R.H.; Mohammadpour, F. The Effect of Probiotic and Fermented Soybean Meal Based on Bacillus subtilis Spore on Growth Performance, Gut Morphology, Immune Response and Dry Matter Digestibility in Broiler Chickens. Ital. J. Anim. Sci. 2022, 21, 1642–1650. [Google Scholar] [CrossRef]
- Konkol, D.; Jonuzi, E.; Popiela, E.; Sierżant, K.; Korzeniowska, M.; Leicht, K.; Gumowski, M.; Krasowska, A.; Łukaszewicz, M.; Korczyński, M. Influence of Solid State Fermentation with Bacillus subtilis 67 Strain on the Nutritional Value of Rapeseed Meal and Its Effects on Performance and Meat Quality of Broiler Chickens. Poult. Sci. 2023, 102, 102742. [Google Scholar] [CrossRef] [PubMed]
- Danilova, I.; Sharipova, M. The Practical Potential of Bacilli and Their Enzymes for Industrial Production. Front. Microbiol. 2020, 11, 1782. [Google Scholar] [CrossRef] [PubMed]
- Keitarou, K.; Satoshi, Y. Trends in the Application of Bacillus in Fermented Foods. Curr. Opin. Biotechnol. 2019, 56, 36–42. [Google Scholar] [CrossRef]
- Irawan, A.; Ratriyanto, A.; Respati, A.N.; Ningsih, N.; Fitriastuti, R.; Suprayogi, W.P.S.; Hadi, R.F.; Setyono, W.; Akhirini, N.; Jayanegara, A. Effect of Feeding Fermented Soybean Meal on Broiler Chickens’ Performance: A Meta-Analysis. Anim. Biosci. 2022, 35, 1881–1891. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Chen, D.; Cai, H.; Chang, W.; Wang, Z.; Liu, G.; Deng, X.; Chen, Z. Effects of Fermenting the Plant Fraction of a Complete Feed on the Growth Performance, Nutrient Utilization, Antioxidant Functions, Meat Quality, and Intestinal Microbiota of Broilers. Animals 2022, 12, 2870. [Google Scholar] [CrossRef] [PubMed]
- Frempong, N.S.; Nortey, T.N.N.; Paulk, C.; Stark, C.R. Evaluating the Effect of Replacing Fish Meal in Broiler Diets with Either Soybean Meal or Poultry By-Product Meal on Broiler Performance and Total Feed Cost per Kilogram of Gain. J. Appl. Poult. Res. 2019, 28, 912–918. [Google Scholar] [CrossRef]
- Zhang, S.; Zhong, G.; Shao, D.; Wang, Q.; Hu, Y.; Wu, T.; Ji, C.; Shi, S. Dietary Supplementation with Bacillus subtilis Promotes Growth Performance of Broilers by Altering the Dominant Microbial Community. Poult. Sci. 2021, 100, 100935. [Google Scholar] [CrossRef] [PubMed]
- El-Hack, M.E.A.; El-Saadony, M.T.; Elbestawy, A.R.; El-Shall, N.A.; Saad, A.M.; Salem, H.M.; El-Tahan, A.M.; Khafaga, A.F.; Taha, A.E.; AbuQamar, S.F.; et al. Necrotic Enteritis in Broiler Chickens: Disease Characteristics and Prevention Using Organic Antibiotic Alternatives—A Comprehensive Review. Poult. Sci. 2022, 101, 101590. [Google Scholar] [CrossRef] [PubMed]
- Shirani, V.; Jazi, V.; Toghyani, M.; Ashayerizadeh, A.; Sharifi, F.; Barekatain, R. Pulicaria gnaphalodes Powder in Broiler Diets: Consequences for Performance, Gut Health, Antioxidant Enzyme Activity, and Fatty Acid Profile. Poult. Sci. 2019, 98, 2577–2587. [Google Scholar] [CrossRef]
- Huang, Y.L.; Luo, Q.H.; Xiao, F.; Lin, X.; Spears, J.W. Research Note: Responses of Growth Performance, Immune Traits, and Small Intestinal Morphology to Dietary Supplementation of Chromium Propionate in Heat-Stressed Broilers. Poult. Sci. 2020, 99, 5070–5073. [Google Scholar] [CrossRef]
- Bai, K.; Feng, C.; Jiang, L.; Zhang, L.; Zhang, J.; Zhang, L.; Wang, T. Dietary Effects of Bacillus subtilis Fmbj on Growth Performance, Small Intestinal Morphology, and Its Antioxidant Capacity of Broilers. Poult. Sci. 2018, 97, 2312–2321. [Google Scholar] [CrossRef] [PubMed]
- Oladokun, S.; Adewole, D. The Effect of Bacillus subtilis and Its Delivery Route on Hatch and Growth Performance, Blood Biochemistry, Immune Status, Gut Morphology, and Microbiota of Broiler Chickens. Poult. Sci. 2023, 102, 102473. [Google Scholar] [CrossRef] [PubMed]
- Svihus, B. Function of the digestive system. J. Appl. Poult. Res. 2014, 23, 306–314. [Google Scholar] [CrossRef]
- Denbow, D.M. Gastrointestinal anatomy and physiology. In Sturkie’s Avian Physiology; Scanes, C.G., Ed.; Academic Press: Waltham, MA, USA, 2015; pp. 337–366. [Google Scholar]
- Rath, N.C.; Huff, G.R.; Huff, W.E.; Balog, J.M. Factors Regulating Bone Maturity and Strength in Poultry 1. Poult. Sci. 2000, 79, 1024–1032. [Google Scholar] [CrossRef] [PubMed]
- Latorre, J.D.; Hernandez-Velasco, X.; Vicente, J.L.; Wolfenden, R.; Hargis, B.M.; Tellez, G. Effects of the Inclusion of a Bacillus Direct-Fed Microbial on Performance Parameters, Bone Quality, Recovered Gut Microflora, and Intestinal Morphology in Broilers Consuming a Grower Diet Containing Corn Distillers Dried Grains with Solubles. Poult. Sci. 2017, 96, 2728–2735. [Google Scholar] [CrossRef] [PubMed]
- Rizzoli, R.; Biver, E. Are Probiotics the New Calcium and Vitamin D for Bone Health? Curr. Osteoporos. Rep. 2020, 18, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Arutchelvi, J.; Sangeetha, J.; Philip, J.; Doble, M. Self-Assembly of Surfactin in Aqueous Solution: Role of Divalent Counterions. Colloids Surf. B Biointerfaces 2014, 116, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.H. Plasma and Tissue Enzyme Activities in Young Chickens. J. Chin. Soc. Vet. Sci. 1992, 18, 132–138. [Google Scholar]
- Lumeij, J.T. Avian clinical biochemistry. In Clinical Biochemistry of Domestic Animals, 6th ed.; Kaneko, J.J., Harvey, J.W., Bruss, M.L., Eds.; Academic Press: Waltham, MA, USA, 2008; pp. 850–859. [Google Scholar]
- Campbell, T.W. Clinical Chemistry of Birds. In Veterinary Hematology and Clinical Chemistry, 2nd ed.; Thrall, M.A., Weiser, G., Allison, R.W., Campbell, T.W., Eds.; Wiley Blackwell: Hoboken, NJ, USA, 2012; pp. 582–598. [Google Scholar]
- Szabó, A.; Milisits, G. Clinicochemical Follow-up of Broiler Rearing—A Five-Week Study. Acta Vet. Hung. 2007, 55, 451–462. [Google Scholar] [CrossRef]
- Peh, H.C.; Huang, S.Y.; Lin, R.S. Livestock Clinical Blood Biochemistry, 1st ed.; Liyu Publishing House: Taichung, Taiwan, 1996. [Google Scholar]
- Hassaan, S.F.; Abdel-Fatt, S.A.; Elsalmoney, A.E.; Hassan, M.S.H. Relationship Between Some Serum Enzyme Activities, Liver Functions and Body Weight in Growing Local Chickens. Int. J. Poult. Sci. 2009, 8, 700–705. [Google Scholar] [CrossRef]
- Yaman, M.A.; Kita, K.; Okumura, J. Different Responses of Protein Synthesis to Refeeding in Various Muscles of Fasted Chicks. Br. Poult. Sci. 2000, 41, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Rajman, M.; Juráni, M.; Lamošová, D.; Máčajová, M.; Sedlačková, M.; Košťál, Ľ.; Ježová, D.; Výboh, P. The Effects of Feed Restriction on Plasma Biochemistry in Growing Meat Type Chickens (Gallus gallus). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2006, 145, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Mück, D.; Grossmann, L.; Greiner, L.; Klausmann, P.; Henkel, M.; Lilge, L.; Weiss, J.; Hausmann, R. Surfactin from Bacillus subtilis Displays Promising Characteristics as O/W-Emulsifier for Food Formulations. Colloids Surf. B Biointerfaces 2021, 203, 111749. [Google Scholar] [CrossRef] [PubMed]
Items | 0–3 wk. | 3–5 wk. | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fish Meal | LYS1 FP, % | Fish Meal | LYS1 FP, % | |||||||||
0 | 1 | 1.5 | 2 | 2.5 | 0 | 1 | 1.5 | 2 | 2.5 | |||
Corn, grain | 48.71 | 45.86 | 45.86 | 45.86 | 45.86 | 45.86 | 59.22 | 56.38 | 56.38 | 56.38 | 56.38 | 56.38 |
Full fat soybean, 37.5% CP | 28.96 | 34.49 | 34.49 | 34.49 | 34.49 | 34.49 | 17.87 | 23.37 | 23.37 | 23.37 | 23.37 | 23.37 |
Soybean meal, 43% CP | 13.16 | 12.76 | 11.76 | 11.26 | 10.76 | 10.26 | 13.93 | 13.56 | 12.56 | 12.06 | 11.56 | 11.06 |
Soybean oil | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 |
Feather meal, 85% CP | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 |
999 LT fish meal, 70% CP | 2.50 | - | - | - | - | - | 2.50 | - | - | - | - | - |
LYS1 FP 1 | - | - | 1.00 | 1.50 | 2.00 | 2.50 | - | - | 1.00 | 1.50 | 2.00 | 2.50 |
Calcium phosphate, 21% P | 1.30 | 1.39 | 1.39 | 1.39 | 1.39 | 1.39 | 1.19 | 1.28 | 1.28 | 1.28 | 1.28 | 1.28 |
Limestone, pulverized | 1.58 | 1.65 | 1.65 | 1.65 | 1.65 | 1.65 | 1.44 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 |
Salt | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
DL-Methionine | 0.1 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.17 | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 |
L-Lysine HCl, 78% | - | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.01 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
Vitamin premix 2 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 |
Mineral premix 3 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Analyzed value | ||||||||||||
DM, % | 92.1 | 91.9 | 91.9 | 92.2 | 92.3 | 91.8 | 91.8 | 92.2 | 91.8 | 91.9 | 92.2 | 91.7 |
CP, % | 23.1 | 23.3 | 23.1 | 23 | 23.1 | 23.2 | 20.2 | 20.3 | 20.2 | 20.3 | 20.2 | 20.1 |
EE, % | 7.61 | 8.26 | 8.24 | 8.24 | 8.25 | 8.23 | 8.44 | 9.13 | 9.12 | 9.11 | 9.14 | 9.11 |
Ash, % | 1.87 | 1.88 | 1.87 | 1.89 | 1.87 | 1.87 | 1.66 | 1.66 | 1.66 | 1.67 | 1.65 | 1.65 |
Ca, % | 1.05 | 1.03 | 1.03 | 1.05 | 1.04 | 1.07 | 0.92 | 0.91 | 0.90 | 0.91 | 0.92 | 0.93 |
P, % | 0.72 | 0.73 | 0.73 | 0.72 | 0.72 | 0.71 | 0.69 | 0.68 | 0.67 | 0.66 | 0.67 | 0.67 |
LYS1 counts, log CFU/g | - | - | 7.07 | 7.24 | 7.36 | 7.46 | - | - | 7.10 | 7.26 | 7.39 | 7.49 |
Protease activity, U/g | - | - | 3.06 | 4.56 | 5.98 | 7.58 | - | - | 3.04 | 4.79 | 6.20 | 7.63 |
Surfactin, mg/g | - | - | 0.11 | 0.16 | 0.21 | 0.27 | - | - | 0.11 | 0.18 | 0.23 | 0.28 |
Fermented Stage 2 | LYS1 FP 3 |
---|---|
LYS1 counts, log CFU/g | |
Initial, 0 d | 8.17 ± 0.18 c |
Fermentation, 1 d | 9.30 ± 0.17 a |
Fermentation, 2 d | 9.36 ± 0.09 a |
Dried fermented powder | 9.10 ± 0.24 b |
p-Value | <0.001 |
pH value | |
Initial, 0 d | 6.06 ± 0.01 c |
Fermentation, 1 d | 6.70 ± 0.02 b |
Fermentation, 2 d | 7.35 ± 0.01 a |
Dried fermented powder | 6.69 ± 0.01 b |
p-Value | <0.001 |
Protease activity, U/g | |
Dried fermented powder | 305 ± 24 |
Surfactin, mg/g | |
Dried fermented powder | 11.23 ± 0.35 |
Surfactin Isoform | LYS1 FP 2 |
---|---|
Composition, % | |
C12 | 3.81 ± 0.10 |
C13 | 16.63 ± 0.16 |
C14 | 52.56 ± 0.04 |
C15 | 25.09 ± 0.01 |
C16 | 1.59 ± 0.03 |
C17 | 0.06 ± 0.001 |
C18 | 0.02 ± 0.001 |
Linear-C15 | 0.25 ± 0.01 |
Period, Weeks Old | Fish Meal | LYS1 FP 2, % | SEM | p-Value | Effects of LYS1 FP | |||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 1.5 | 2 | 2.5 | Linear | Quadratic | ||||
BW, g/bird | ||||||||||
0 | 43 | 43 | 43 | 43 | 43 | 43 | 1.2 | 1.000 | 1.000 | 1.000 |
3 | 892 a | 806 b | 850 ab | 885 ab | 899 a | 893 a | 23.9 | 0.016 | <0.001 | 0.320 |
5 | 2213 a | 2040 b | 2245 a | 2262 a | 2310 a | 2292 a | 44.1 | <0.001 | <0.001 | 0.025 |
FI, g/bird | ||||||||||
0–3 | 966 a | 867 b | 899 ab | 957 a | 927 ab | 958 a | 40.3 | 0.038 | 0.007 | 0.591 |
3–5 | 1985 a | 1760 b | 2068 a | 1999 a | 2006 a | 2063 a | 52.4 | 0.001 | <0.001 | 0.020 |
0–5 | 2951 a | 2627 b | 2967 a | 2957 a | 2933 a | 3021 a | 85.6 | 0.002 | <0.001 | 0.051 |
WG, g/bird | ||||||||||
0–3 | 850 a | 763 b | 807 ab | 843 ab | 857 a | 850 a | 24.2 | 0.015 | <0.001 | 0.316 |
3–5 | 1321 ab | 1234 b | 1395 a | 1377 a | 1411 a | 1400 a | 32.8 | 0.006 | <0.001 | 0.043 |
0–5 | 2171 a | 1997 b | 2202 a | 2220 a | 2268 a | 2250 a | 44.3 | <0.001 | <0.001 | 0.025 |
FCR, FI/WG | ||||||||||
0–3 | 1.14 | 1.13 | 1.11 | 1.14 | 1.08 | 1.13 | 0.025 | 0.295 | 0.457 | 0.663 |
3–5 | 1.50 | 1.43 | 1.48 | 1.45 | 1.42 | 1.47 | 0.029 | 0.259 | 0.549 | 0.648 |
0–5 | 1.36 | 1.31 | 1.35 | 1.33 | 1.29 | 1.34 | 0.021 | 0.124 | 0.742 | 0.710 |
PEF, (BW (kg) × SR 3 (%)/(FCR × day of age) × 100 | ||||||||||
0–3 | 375 ab | 339 b | 363 ab | 373 ab | 396 a | 379 ab | 10.9 | 0.029 | 0.002 | 0.291 |
0–5 | 466 ab | 445 b | 476 a | 485 a | 511 a | 488 a | 9.8 | 0.003 | <0.001 | 0.093 |
Items | Fish Meal | LYS1 FP 2, % | SEM | p-Value | Effects of LYS1 FP | |||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 1.5 | 2 | 2.5 | Linear | Quadratic | ||||
Jejunum | ||||||||||
Villus height, μm | 1526 a | 1386 b | 1525 a | 1567 a | 1624 a | 1524 a | 30.0 | <0.001 | <0.001 | 0.003 |
Crypt depth, μm | 213 | 237 | 214 | 213 | 216 | 209 | 9.2 | 0.325 | 0.045 | 0.362 |
Villus width, μm | 192 | 165 | 181 | 197 | 237 | 212 | 19.9 | 0.200 | 0.024 | 0.823 |
Villus height/ crypt depth | 7.23 a | 5.89 b | 7.15 a | 7.42 a | 7.62 a | 7.31 a | 0.269 | 0.002 | <0.001 | 0.014 |
Surface area of villus, mm2 | 0.91 ab | 0.71 b | 0.87 ab | 0.97 ab | 1.21 a | 1.02 ab | 0.100 | 0.041 | 0.004 | 0.460 |
Thickness of the tunica muscularis, μm | 350 | 352 | 356 | 346 | 347 | 349 | 13.4 | 0.996 | 0.746 | 0.982 |
Ileum | ||||||||||
Villus height, μm | 1041 | 916 | 1050 | 1017 | 1102 | 1098 | 54.6 | 0.168 | 0.013 | 0.567 |
Crypt depth, μm | 211 b | 279 a | 204 b | 193 b | 183 b | 185 b | 9.5 | <0.001 | <0.001 | 0.002 |
Villus width, μm | 155 | 150 | 147 | 147 | 159 | 155 | 4.6 | 0.385 | 0.222 | 0.317 |
Villus height/ crypt depth | 4.97 b | 3.31 c | 5.16 ab | 5.27 ab | 6.07 a | 5.95 ab | 0.251 | <0.001 | <0.001 | 0.018 |
Surface area of villus, mm2 | 0.51 | 0.43 | 0.49 | 0.47 | 0.54 | 0.53 | 0.030 | 0.085 | 0.006 | 0.979 |
Thickness of the tunica muscularis, μm | 361 | 347 | 351 | 431 | 315 | 388 | 29.3 | 0.142 | 0.570 | 0.643 |
Items | Fish Meal | LYS1 FP 2, % | SEM | p-Value | Effects of LYS1 FP | |||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 1.5 | 2 | 2.5 | Linear | Quadratic | ||||
Length, cm | 8.78 | 8.69 | 8.81 | 9.01 | 8.91 | 8.90 | 0.107 | 0.330 | 0.097 | 0.291 |
Weight, g | 5.57 | 5.28 | 5.87 | 5.89 | 5.93 | 5.66 | 0.163 | 0.073 | 0.055 | 0.016 |
Force, kg | 35.95 a | 25.67 b | 31.48 ab | 32.18 ab | 36.44 a | 32.18 a | 1.848 | 0.005 | 0.003 | 0.080 |
Tibiotarsus weight/length index, g/cm | 63.56 | 60.82 | 66.64 | 65.32 | 66.47 | 63.63 | 1.703 | 0.178 | 0.169 | 0.031 |
Tibiotarsal index | 88.40 ab | 77.07 b | 84.24 b | 82.41 b | 85.40 ab | 95.97 a | 4.180 | 0.009 | 0.001 | 0.250 |
Robusticity index | 4.95 | 5.00 | 4.89 | 5.00 | 4.93 | 4.99 | 0.060 | 0.697 | 0.993 | 0.340 |
Yield stress, kg/cm2 | 358 | 324 | 353 | 369 | 382 | 374 | 34.7 | 0.509 | 0.061 | 0.554 |
Ash, % | 44.32 | 43.9 | 44.91 | 43.62 | 45.29 | 44.48 | 0.871 | 0.768 | 0.536 | 0.831 |
Ca, % | 18.48 | 17.92 | 19.03 | 19.72 | 20.43 | 19.55 | 0.713 | 0.194 | 0.036 | 0.313 |
P, % | 12.38 | 11.04 | 12.37 | 12.93 | 13.12 | 12.38 | 0.588 | 0.217 | 0.045 | 0.106 |
Items | Fish Meal | LYS1 FP 2 | SEM | p-Value | Effects of LYS1 FP | |||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 1.5 | 2 | 2.5 | Linear | Quadratic | ||||
AST, U/L | 400 ab | 236 b | 361 ab | 272 ab | 575 a | 335 ab | 66.5 | 0.018 | 0.043 | 0.362 |
LDH, U/L | 2945 ab | 1842 b | 2473 ab | 1904 ab | 3628 a | 2706 ab | 334.1 | 0.008 | 0.010 | 0.869 |
CK, U/L | 2481 b | 7310 a | 4724 ab | 4299 b | 3638 b | 4608 b | 922.4 | 0.029 | 0.019 | 0.110 |
ALKP, U/L | 4339 | 6742 | 6993 | 6013 | 6265 | 5072 | 1049.7 | 0.376 | 0.228 | 0.499 |
TP, g/dL | 2.43 | 1.98 | 2.08 | 2.15 | 2.27 | 2.17 | 0.129 | 0.240 | 0.173 | 0.673 |
ALB, g/dL | 1.33 | 1.13 | 1.20 | 1.22 | 1.22 | 1.28 | 0.060 | 0.283 | 0.101 | 0.943 |
A/G | 1.27 ab | 1.33 ab | 1.33 ab | 1.32 ab | 1.17 b | 1.48 a | 0.055 | 0.016 | 0.555 | 0.054 |
BUN, mg/dL | 0.75 | 0.63 | 0.57 | 0.62 | 1.85 | 0.65 | 0.404 | 0.213 | 0.327 | 0.809 |
UA, mg/dL | 5.15 | 4.15 | 5.33 | 3.13 | 4.35 | 5.60 | 0.760 | 0.077 | 0.334 | 0.263 |
TC, mg/dL | 90.8 | 72.2 | 80.5 | 81.8 | 85.3 | 89.3 | 4.67 | 0.096 | 0.012 | 0.944 |
TG, mg/dL | 22.3 | 12.7 | 17.5 | 19.3 | 18.3 | 19.5 | 2.35 | 0.095 | 0.031 | 0.327 |
Ca, mg/dL | 3.77 | 3.72 | 3.27 | 3.32 | 3.85 | 3.67 | 0.292 | 0.588 | 0.770 | 0.223 |
P, mg/dL | 3.92 | 3.45 | 3.78 | 3.72 | 3.95 | 3.70 | 0.187 | 0.313 | 0.141 | 0.227 |
Items | Optimal LYS1 FP Supplementation, % | Asymptotic 95% CI |
---|---|---|
Growth performance | ||
BW at 5 weeks old | 1.8 | 1.38–2.29 |
FI at 3–5 weeks old | 0.9 | 0.44–1.33 |
WG at 3–5 weeks old | 1.8 | 1.19–2.32 |
WG at 0–5 weeks old | 1.8 | 1.34–2.28 |
Intestinal morphology | ||
VH in jejunum | 1.8 | 1.39–2.17 |
VH/CD in jejunum | 1.9 | 0.08–2.96 |
CD in ileum | 1.7 | 1.62–1.79 |
VH/CD in ileum | 1.9 | 0.07–3.11 |
Tibial bone characteristics | ||
Bone weight | 1.5 | 0.52–2.47 |
TBLI | 1.6 | 0.093–2.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.-S.; Ku, K.-L.; Chu, C.-S.; Chen, K.-L. The Optimal Supplementation of Fermented Product Produced by Bacillus subtilis Strain LYS1 with High Surfactin Yield for Improving Growth Performance, Intestinal Villi Morphology, and Tibial Bone Strength in Broilers. Animals 2024, 14, 2079. https://doi.org/10.3390/ani14142079
Lee Y-S, Ku K-L, Chu C-S, Chen K-L. The Optimal Supplementation of Fermented Product Produced by Bacillus subtilis Strain LYS1 with High Surfactin Yield for Improving Growth Performance, Intestinal Villi Morphology, and Tibial Bone Strength in Broilers. Animals. 2024; 14(14):2079. https://doi.org/10.3390/ani14142079
Chicago/Turabian StyleLee, Yueh-Sheng, Kuo-Lung Ku, Chi-Shih Chu, and Kuo-Lung Chen. 2024. "The Optimal Supplementation of Fermented Product Produced by Bacillus subtilis Strain LYS1 with High Surfactin Yield for Improving Growth Performance, Intestinal Villi Morphology, and Tibial Bone Strength in Broilers" Animals 14, no. 14: 2079. https://doi.org/10.3390/ani14142079
APA StyleLee, Y.-S., Ku, K.-L., Chu, C.-S., & Chen, K.-L. (2024). The Optimal Supplementation of Fermented Product Produced by Bacillus subtilis Strain LYS1 with High Surfactin Yield for Improving Growth Performance, Intestinal Villi Morphology, and Tibial Bone Strength in Broilers. Animals, 14(14), 2079. https://doi.org/10.3390/ani14142079