Effects of Mink-Origin Enterococcus faecium on Growth Performance, Antioxidant Capacity, Immunity, and Intestinal Microbiota of Growing Male Minks
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Ethics
2.2. Enterococcus faecium
2.3. Experimental Design and Animal Management
2.4. Sample and Data Collection
2.4.1. Growth Performance
2.4.2. Apparent Digestibility of Nutrients
2.4.3. Immunity and Antioxidant Capacity
2.4.4. Intestinal Microbiota
2.5. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Apparent Digestibility of Nutrients
3.3. Serum Antioxidant Indexes
3.4. Serum Immune Indexes
3.5. Jejunum Mucosal Immune Indexes
3.6. Intestinal Microbiota
3.7. Correlation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marco, M.L.; Sanders, M.E.; Gänzle, M.; Arrieta, M.C.; Cotter, P.D.; De, V.L.; Hill, C.; Holzapfel, W.; Lebeer, S.; Merenstein, D.; et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 196–208. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Reviews. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Fayol-Messaoudi, D.; Berger, C.N.; Coconnier-Polter, M.-H.; Moal, V.L.-L.; Servin, A.L. pH-, Lactic acid-, and non-lactic acid-dependent activities of probiotic Lactobacilli against Salmonella enterica Serovar Typhimurium. Appl. Environ. Microbiol. 2005, 71, 6008–6013. [Google Scholar] [CrossRef]
- Xu, Y.; Cui, Y.; Yue, F.; Liu, L.; Shan, Y.; Liu, B.; Zhou, Y.; Lü, X. Exopolysaccharides produced by lactic acid bacteria and Bifidobacteria: Structures, physiochemical functions and applications in the food industry. Food Hydrocoll. 2019, 94, 475–499. [Google Scholar] [CrossRef]
- Deng, Z.; Hou, K.; Zhao, J.; Wang, H. The Probiotic Properties of Lactic Acid Bacteria and Their Applications in Animal Husbandry. Curr. Microbiol. 2021, 79, 22. [Google Scholar] [CrossRef]
- Yang, C.; Wang, S.; Li, Q.; Zhang, R.; Xu, Y.; Feng, J. Effects of Probiotic Lactiplantibacillus plantarum HJLP-1 on Growth Performance, Selected Antioxidant Capacity, Immune Function Indices in the Serum, and Cecal Microbiota in Broiler Chicken. Animals 2024, 14, 668. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, M.; Su, L.; Zhao, L.; Sun, L.; Jin, Y.; Guo, Y. Effect of different levels of Lactobacillus added to diets on fat deposition and meat quality of Sunit lambs. Meat Sci. 2024, 213, 109470. [Google Scholar] [CrossRef]
- Liu, Z.-l.; Chen, Y.-j.; Meng, Q.-l.; Zhang, X.; Wang, X.-l. Progress in the application of Enterococcus faecium in animal husbandry. Front. Cell. Infect. Microbiol. 2023, 13, 1168189. [Google Scholar] [CrossRef]
- Hu, C.; Xing, W.; Liu, X.; Zhang, X.; Li, K.; Liu, J.; Deng, B.; Deng, J.; Li, Y.; Tan, C. Effects of dietary supplementation of probiotic Enterococcus faecium on growth performance and gut microbiota in weaned piglets. AMB Express 2019, 9, 33. [Google Scholar] [CrossRef]
- Wu, Y.; Zhen, W.; Geng, Y.; Wang, Z.; Guo, Y. Effects of dietary Enterococcus faecium NCIMB 11181 supplementation on growth performance and cellular and humoral immune responses in broiler chickens. Poult. Sci. 2019, 98, 150–163. [Google Scholar] [CrossRef]
- Kasimin, M.E.; Shamsuddin, S.; Molujin, A.M.; Sabullah, M.K.; Gansau, J.A.; Jawan, R. Enterocin: Promising Biopreservative Produced by Enterococcus sp. Microorganisms 2022, 10, 684. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, L.C.S.; Casarotti, S.N.; Todorov, S.D.; Penna, A.L.B. Probiotic potential and safety of enterococci strains. Ann. Microbiol. 2019, 69, 241–252. [Google Scholar] [CrossRef]
- Coll, F.; Gouliouris, T.; Blane, B.; Yeats, C.A.; Raven, K.E.; Ludden, C.; Khokhar, F.A.; Wilson, H.J.; Roberts, L.W.; Harrison, E.M.; et al. Antibiotic resistance determination using Enterococcus faecium whole-genome sequences: A diagnostic accuracy study using genotypic and phenotypic data. Lancet Microbe 2024, 5, e151–e163. [Google Scholar] [CrossRef] [PubMed]
- Suvorov, A. What Is Wrong with Enterococcal Probiotics? Probiotics Antimicrob. Proteins 2020, 12, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Arredondo-Alonso, S.; Top, J.; McNally, A.; Puranen, S.; Pesonen, M.; Pensar, J.; Marttinen, P.; Braat, J.C.; Rogers, M.R.C.; van Schaik, W.; et al. Plasmids Shaped the Recent Emergence of the Major Nosocomial Pathogen Enterococcus faecium. mBio 2020, 11, 03284–03319. [Google Scholar] [CrossRef] [PubMed]
- Amaral, D.M.F.; Silva, L.F.; Casarotti, S.N.; Nascimento, L.C.S.; Penna, A.L.B. Enterococcus faecium and Enterococcus durans isolated from cheese: Survival in the presence of medications under simulated gastrointestinal conditions and adhesion properties. J. Dairy Sci. 2017, 100, 933–949. [Google Scholar] [CrossRef] [PubMed]
- Hanchi, H.; Mottawea, W.; Sebei, K.; Hammami, R. The Genus Enterococcus: Between Probiotic Potential and Safety Concerns-An Update. Front. Microbiol. 2018, 9, 1791. [Google Scholar] [CrossRef] [PubMed]
- Hanifeh, M.; Spillmann, T.; Huhtinen, M.; Sclivagnotis, Y.S.; Grönthal, T.; Hynönen, U. Ex-Vivo Adhesion of Enterococcus faecalis and Enterococcus faecium to the Intestinal Mucosa of Healthy Beagles. Animals 2021, 11, 3283. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.A.; Khattab, R.A.; Ragab, Y.M.; Hassan, M. Safety assessment of Enterococcus lactis strains complemented with comparative genomics analysis reveals probiotic and safety characteristics of the entire species. BMC Genom. 2023, 24, 667. [Google Scholar] [CrossRef]
- Li, Y.; Zhen, S.; Cao, L.; Sun, F.; Wang, L. Effects of Lactobacillus plantarum Postbiotics on Growth Performance, Immune Status, and Intestinal Microflora of Growing Minks. Animals 2023, 13, 2958. [Google Scholar] [CrossRef]
- Xu, Y.; Yu, Y.; Shen, Y.; Li, Q.; Lan, J.; Wu, Y.; Zhang, R.; Cao, G.; Yang, C. Effects of Bacillus subtilis and Bacillus licheniformis on growth performance, immunity, short chain fatty acid production, antioxidant capacity, and cecal microflora in broilers. Poult. Sci. 2021, 100, 101358. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.H.; Zhang, C.Y.; Wang, L.X.; Shang, Q.H.; Zhang, G.G.; Yang, W.R. Effects of dietary supplementation of Enterococcus faecium on growth performance, intestinal morphology, and selected microbial populations of piglets. Livest. Sci. 2018, 210, 111–117. [Google Scholar] [CrossRef]
- Sato, Y.; Kuroki, Y.; Oka, K.; Takahashi, M.; Rao, S.; Sukegawa, S.; Fujimura, T. Effects of Dietary Supplementation with Enterococcus faecium and Clostridium butyricum, Either Alone or in Combination, on Growth and Fecal Microbiota Composition of Post-weaning Pigs at a Commercial Farm. Front. Vet. Sci. 2019, 6, 26. [Google Scholar] [CrossRef]
- Simonová, M.P.; Chrastinová, Ľ.; Lauková, A. Effect of beneficial strain Enterococcus faecium EF9a isolated from Pannon White rabbit on growth performance and meat quality of rabbits. Ital. J. Anim. Sci. 2020, 19, 650–655. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Lee, J.M.; Kim, I.H. Effects of Enterococcus faecium DSM 7134 on weanling pigs were influenced by dietary energy and crude protein density. Livest. Sci. 2014, 169, 106–111. [Google Scholar] [CrossRef]
- Xin, J.L.; Sang, I.L.; Kwang, Y.L.; Dinh, H.N.; In, H.K. Effects of a blend of organic acids and medium-chain fatty acids with and without Enterococcus faecium on growth performance, nutrient digestibility, blood parameters, and meat quality in finishing pigs. Can. J. Anim. Sci. 2018, 98, 852–859. [Google Scholar]
- Chen, Y.J.; Min, B.J.; Cho, J.H.; Kwon, O.S.; Son, K.S.; Kim, I.H.; Kim, S.J. Effects of Dietary Enterococcus faecium SF68 on Growth Performance, Nutrient Digestibility, Blood Characteristics and Faecal Noxious Gas Content in Finishing Pigs. Asian-Australas. J. Anim. Sci. 2006, 19, 406–411. [Google Scholar] [CrossRef]
- Sonei, A.; Dovom, M.R.E.; Yavarmanesh, M. Evaluation of probiotic, safety, and technological properties of bacteriocinogenic Enterococcus faecium and Enterococcus faecalis strains isolated from lighvan and koozeh cheeses. Int. Dairy J. 2024, 148, 105807. [Google Scholar] [CrossRef]
- Liu, J.; Cao, S.C.; Liu, J.; Xie, Y.N.; Zhang, H.F. Effect of probiotics and xylo-oligosaccharide supplementation on nutrient digestibility, intestinal health and noxious gas emission in weanling pigs. Asian-Australas. J. Anim. Sci. 2018, 31, 1660–1669. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, T.; Chen, Z.; Meng, Y.; Zhu, Z.; Wang, Q.; Tian, J.; Yi, D.; Wang, L.; Zhao, D.; et al. Dietary Supplementation with Enterococcus faecium R1 Attenuates Intestinal and Liver Injury in Piglets Challenged by Lipopolysaccharide. Animals 2021, 11, 1424. [Google Scholar] [CrossRef]
- Teame, T.; Wang, A.; Xie, M.; Zhang, Z.; Yang, Y.; Ding, Q.; Gao, C.; Olsen, R.E.; Ran, C.; Zhou, Z. Paraprobiotics and Postbiotics of Probiotic Lactobacilli, Their Positive Effects on the Host and Action Mechanisms: A Review. Front. Nutr. 2020, 7, 570344. [Google Scholar] [CrossRef]
- He, L.; He, T.; Farrar, S.; Ji, L.; Liu, T.; Ma, X. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species. Cell Physiol. Biochem. 2017, 44, 532–553. [Google Scholar] [CrossRef] [PubMed]
- Song, D.; Duan, T.; Cheng, J.; Qiao, L.; Wang, L.; Chen, L.; Li, A.; Wang, W. Effects of Embedded Lactobacillus plantarum and Enterococcus faecium on Growth Performance, lmmune and Antioxidant Function and lntestinal Microflora of Broilers. Chin. J. Anim. Nutr. 2022, 34, 877–887. [Google Scholar]
- Tilwani, Y.M.; Lakra, A.K.; Domdi, L.; Yadav, S.; Jha, N.; Arul, V. Optimization and physicochemical characterization of low molecular levan from Enterococcus faecium MC-5 having potential biological activities. Process Biochem. 2021, 110, 282–291. [Google Scholar] [CrossRef]
- Kim, K.; Kim, J.; Kim, S.; Kim, S.; Nguyen, T.H.; Kang, C. Antioxidant and Anti-Inflammatory Effect and Probiotic Properties of Lactic Acid Bacteria Isolated from Canine and Feline Feces. Microorganisms 2021, 9, 1971. [Google Scholar] [CrossRef] [PubMed]
- Rahnama Vosough, P.; Habibi Najafi, M.B.; Edalatian Dovom, M.R.; Javadmanesh, A.; Mayo, B. Evaluation of antioxidant, antibacterial and cytotoxicity activities of exopolysaccharide from Enterococcus strains isolated from traditional Iranian Kishk. J. Food Meas. Charact. 2021, 15, 5221–5230. [Google Scholar] [CrossRef]
- Noruzi, H.; Aliabadi, F.A.; Imari, Z.K. Effects of different levels of pistachio (Pistachia vera) green hull aqueous extract on performance, intestinal morphology and antioxidant capacity in Eimeria challenged broilers. Poult. Sci. 2024, 103, 103667. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Leng, X.; Zhao, Y.; Zhao, Y.; Wang, Q. Effects of dietary Artemisia annua supplementation on growth performance, antioxidant capacity, immune function, and gut microbiota of geese. Poult. Sci. 2024, 103, 103594. [Google Scholar] [CrossRef] [PubMed]
- Capcarova, M.; Weiss, J.; Hrncar, C.; Kolesarova, A.; Pal, G. Effect of Lactobacillus fermentum and Enterococcus faecium strains on internal milieu, antioxidant status and body weight of broiler chickens. J. Anim. Physiol. Anim. Nutr. 2010, 94, e215–e224. [Google Scholar] [CrossRef]
- Rahman, M.S.; Choi, Y.H.; Choi, Y.S.; Alam, M.B.; Lee, S.H.; Yoo, J.C. A novel antioxidant peptide, purified from Bacillus amyloliquefaciens, showed strong antioxidant potential via Nrf-2 mediated heme oxygenase-1 expression. Food Chem. 2018, 239, 502–510. [Google Scholar] [CrossRef]
- Li, B.; Wu, K.; Duan, G.; Yin, W.; Lei, M.; Yan, Y.; Ren, Y.; Zhang, C. Folic Acid and Taurine Alleviate the Impairment of Redox Status, Immunity, Rumen Microbial Composition and Fermentation of Lambs under Heat Stress. Animals 2024, 14, 998. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Chen, Y.; Li, J.; Qu, H.; Zhao, Y.; Wen, C.; Zhou, Y. Dietary β-sitosterol regulates serum lipid level and improves immune function, antioxidant status, and intestinal morphology in broilers. Poult. Sci. 2020, 99, 1400–1408. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Li, Y.; Han, P.; Zhang, R.; Yuan, J.; Sun, Y.; Li, J.; Chen, J. Effects of Supplementing Drinking Water of Parental Pigeons with Enterococcus faecium and Bacillus subtilis on Antibody Levels and Microbiomes in Squabs. Animals 2024, 14, 178. [Google Scholar] [CrossRef] [PubMed]
- Ciszewski, A.; Jarosz, Ł.; Marek, A.; Michalak, K.; Grądzki, Z.; Kaczmarek, B.; Rysiak, A. Effect of combined in ovo administration of zinc glycine chelate (Zn-Gly) and a multistrain probiotic on the modulation of cellular and humoral immune responses in broiler chickens. Poult. Sci. 2023, 102, 102823. [Google Scholar] [CrossRef] [PubMed]
- Karaffová, V.; Bobíková, K.; Husáková, E.; Levkut, M.; Herich, R.; Revajová, V.; Levkutová, M.; Levkut, M. Interaction of TGF-β4 and IL-17 with IgA secretion in the intestine of chickens fed with E. faecium AL41 and challenged with S. enteritidis. Res. Vet. Sci. 2015, 100, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Letnická, A.; Karaffová, V.; Levkut, M.; Revajová, V.; Herich, R. Influence of oral application of Enterococcus faecium AL41 on TGF-β4 and IL-17 expression and immunocompetent cell distribution in chickens challenged with Campylobacter jejuni. Acta Vet. Hung. 2017, 65, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Yang, H.; Li, J.; Zhang, C.; Ye, L.; Dong, J.; Zhang, C.; Guo, R.; Xin, J. Macleaya cordata extract improves growth performance, immune responses and anti-inflammatory capacity in neonatal piglets. Vet. Microbiol. 2024, 293, 110090. [Google Scholar] [CrossRef] [PubMed]
- Karaffová, V.; Tóthová, C.; Szabóová, R.; Revajová, V.; Lauková, A.; Ševčíková, Z.; Herich, R.; Žitňan, R.; Levkut, M.; Levkut, M.; et al. The Effect of Enterococcus faecium AL41 on the Acute Phase Proteins and Selected Mucosal Immune Molecules in Broiler Chickens. Life 2022, 12, 598. [Google Scholar] [CrossRef] [PubMed]
- Corthésy, B. Multi-faceted functions of secretory IgA at mucosal surfaces. Front. Immunol. 2013, 4, 185. [Google Scholar] [CrossRef]
- Kaetzel, C.S. Cooperativity among secretory IgA, the polymeric immunoglobulin receptor, and the gut microbiota promotes host–microbial mutualism. Immunol. Lett. 2014, 162, 10–21. [Google Scholar] [CrossRef]
- Lin, Z.; Yang, G.; Zhang, M.; Yang, R.; Wang, Y.; Guo, P.; Zhang, J.; Wang, C.; Liu, Q.; Gao, Y. Dietary Supplementation of Mixed Organic Acids Improves Growth Performance, Immunity, and Antioxidant Capacity and Maintains the Intestinal Barrier of Ira Rabbits. Animals 2023, 13, 3140. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Liu, X.; Dai, R.; Xiao, Y.; Wang, X.; Bi, D.; Shi, D. Enterococcus faecium HDRsEf1 Protects the Intestinal Epithelium and Attenuates ETEC-Induced IL-8 Secretion in Enterocytes. Mediat. Inflamm. 2016, 2016, 7474306. [Google Scholar] [CrossRef]
- Khalifa, A.; Ibrahim, H.I.M. Enterococcus faecium from chicken feces improves chicken immune response and alleviates Salmonella infections: A pilot study. J. Anim. Sci. 2023, 101, 16. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.J.; Zhu, D.D.; Wang, D.D.; Zhang, B.B.; Ren, A.; Zhang, Z.B. Effects of dietary supplementation with glutamine on the lymphocyte proliferation and intestinal immune gene expression in broiler chickens infected with Salmonella enteritidis. Res. Vet. Sci. 2021, 139, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Xu, P.; Liu, C.; Chen, J.; Ren, B.; Du, E.; Guo, S.; Li, P.; Li, L.; Ding, B. Effect of Tannic Acid on Antioxidant Function, Immunity, and Intestinal Barrier of Broilers Co-Infected with Coccidia and Clostridium perfringens. Animals 2024, 14, 955. [Google Scholar] [CrossRef]
- Mi, J.; He, T.; Hu, X.; Wang, Z.; Wang, T.; Qi, X.; Li, K.; Gao, L.; Liu, C.; Zhang, Y.; et al. Enterococcus faecium C171: Modulating the Immune Response to Acute Lethal Viral Challenge. Int. J. Antimicrob. Agents 2023, 62, 106969. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Lv, H.; Liu, W.; Wang, Y.; Zhang, K.; Che, C.; Zhao, J.; Liu, H. Effects of Lactobacillus plantarum HW1 on Growth Performance, Intestinal Immune Response, Barrier Function, and Cecal Microflora of Broilers with Necrotic Enteritis. Animals 2023, 13, 3810. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Wang, Y.-C.; Hespen, C.W.; Espinosa, J.; Salje, J.; Rangan, K.J.; Oren, D.A.; Kang, J.Y.; Pedicord, V.A.; Hang, H.C. Enterococcus faecium secreted antigen A generates muropeptides to enhance host immunity and limit bacterial pathogenesis. eLife 2019, 8, 45343. [Google Scholar] [CrossRef]
- Wang, T.; Teng, K.; Liu, Y.; Shi, W.; Zhang, J.; Dong, E.; Zhang, X.; Tao, Y.; Zhong, J. Lactobacillus plantarum PFM 105 Promotes Intestinal Development through Modulation of Gut Microbiota in Weaning Piglets. Front. Microbiol. 2019, 10, 90. [Google Scholar] [CrossRef]
- Zhao, M.; Liang, X.; Meng, Y.; Lu, H.; Lin, K.; Gong, P.; Liu, T.; Yi, H.; Pan, J.; Zhang, Y.; et al. Probiotics induce intestinal IgA secretion in weanling mice potentially through promoting intestinal APRIL expression and modulating the gut microbiota composition. Food Funct. 2024, 15, 4862–4873. [Google Scholar] [CrossRef]
- Wu, R.; Chang, S.; Zhang, H.; Yang, X.; Gu, R.; Wang, S.; Liu, X.; Liu, X.; Ochir, M.; Wu, J. Compound probiotics microcapsules improve milk yield and milk quality of dairy cows by regulating intestinal flora. Food Bioeng. 2024, 3, 110–125. [Google Scholar] [CrossRef]
- Suvorov, A.; Zhao, S.; Leontieva, G.; Alekhina, G.; Yang, J.; Tsapieva, A.; Karaseva, A.; Smelova, V.; Guo, D.; Chen, L. Evaluation of the Efficacy of Enterococcus faecium L3 as a Feed Probiotic Additive in Chicken. Probiotics Antimicrob. Proteins 2022, 15, 1169–1179. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, C.; Su, W.; Jiang, Z.; He, H.; Gong, T.; Kai, L.; Xu, H.; Wang, Y.; Lu, Z. Co-fermented yellow wine lees by Bacillus subtilis and Enterococcus faecium regulates growth performance and gut microbiota in finishing pigs. Front. Microbiol. 2022, 13, 1003498. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Li, D.; Wang, L.; Guo, Z.; Wang, G.; Wang, L. Effects of Antimicrobial Peptide on Growth Performance, Nutrient Apparent Digestibilities and lntestinal Flora of Growing Female Minks. Chin. J. Anim. Nutr. 2022, 34, 1194–1204. [Google Scholar]
- Bahl, M.I.; Hammer, A.S.; Clausen, T.; Jakobsen, A.; Skov, S.; Andresen, L. The gastrointestinal tract of farmed mink (Neovison vison) maintains a diverse mucosa-associated microbiota following a 3-day fasting period. MicrobiologyOpen 2017, 6, e00434. [Google Scholar] [CrossRef] [PubMed]
- Houtman, T.A.; Eckermann, H.A.; Smidt, H.; de Carolina, W. Gut microbiota and BMI throughout childhood: The role of firmicutes, bacteroidetes, and short-chain fatty acid producers. Sci. Rep. 2022, 12, 3140. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Yu, Y.; Wan, J.; Mao, Y.; Zhang, H.; Zhang, J.; Tian, X.; Zhao, Q. Progress in research on the relationship between Proteobacteria and the imbalance of mammalian colonic intestinal flora. Chin. J. Microecol. 2022, 34, 479–484. [Google Scholar]
- Mi, O.; Xu, S.; Chen, K.; Luo, Q.; Liu, H.; Liang, X.; Zhao, J. Effects of Lactic Acid Bacteria on lntestinal Microflora and Growth Performance of Hybrid Snakehead. J. Agric. Biotechnol. 2022, 30, 138–150. [Google Scholar]
- Ryan, M.P.; Sevjahova, L.; Gorman, R.; White, S. The Emergence of the Genus Comamonas as Important Opportunistic Pathogens. Pathogens 2022, 11, 1032. [Google Scholar] [CrossRef]
- Li, M.; Li, L.; Huang, T.; Liu, Y.; Lei, A.; Ma, C.; Chen, F.; Chen, M. Effects of Attenuated S. agalactiae Strain YM001 on Intestinal Microbiota of Tilapia Are Recoverable. Front. Microbiol. 2018, 9, 3251. [Google Scholar] [CrossRef]
- Liu, Z.; Li, A.; Wang, Y.; Iqbal, M.; Zheng, A.; Zhao, M.; Li, Z.; Wang, N.; Wu, C.; Yu, D. Comparative analysis of microbial community structure between healthy and Aeromonas veronii-infected Yangtze finless porpoise. Microb. Cell Factories 2020, 19, 123. [Google Scholar] [CrossRef] [PubMed]
- Iwatsuki, T.; Kanazawa, T.; Ogasawara, T.; Hosotani, K.; Tsuchiya, K.; Watanabe, S.; Suzuki, T.; Moriuchi, R.; Kanesaki, Y.; Dohra, H. 16S rRNA Gene Amplicon Sequencing of Gut Microbiota in Three Species of Deep-Sea Fish in Suruga Bay, Japan. Microbiol. Resour. Announc. 2021, 10, 1128. [Google Scholar] [CrossRef] [PubMed]
Items | 0–4 Weeks | 5–8 Weeks |
---|---|---|
Sea fish and byproducts | 32 | 32 |
Unhatched fertilized egg | 32 | 32 |
Chicken head | 20 | 20 |
Extruded corn | 10 | 10 |
Lard | 1 | 2 |
Soybean meal | 2 | 2 |
premix 1 | 3 | 2 |
Total | 100 | 100 |
Nutrient levels | ||
ME (MJ/kg) 2 | 15.98 | 17.04 |
Ether extract | 16.65 | 19.85 |
Crude protein | 31.81 | 31.26 |
Calcium | 2.47 | 2.59 |
phosphorus | 1.59 | 1.64 |
Items | Groups | p-Value | |
---|---|---|---|
0 (Control) | EF | ||
BW, g | |||
wk 0 | 1281.15 ± 45.60 | 1280.35 ± 40.03 | 0.962 |
wk 4 | 1736.54 ± 112.22 | 1825.38 ± 54.45 | 0.020 |
wk 8 | 2171.73 ± 167.59 | 2282.31 ± 84.09 | 0.044 |
ADG, g | |||
0–4 weeks | 16.26 ± 3.66 | 19.46 ± 1.22 | 0.010 |
5–8 weeks | 15.54 ± 3.79 | 16.32 ± 2.97 | 0.566 |
0–8 weeks | 15.90 ± 2.86 | 17.89 ± 1.51 | 0.037 |
ADFI, g | |||
0–4 weeks | 268.80 ± 12.67 | 267.95 ± 15.32 | 0.880 |
5–8 weeks | 304.81 ± 21.54 | 295.15 ± 22.06 | 0.270 |
0–8 weeks | 286.80 ± 14.12 | 281.55 ± 14.50 | 0.359 |
F/G | |||
0–4 weeks | 17.36 ± 4.23 | 13.80 ± 1.05 | 0.011 |
5–8 weeks | 20.73 ± 5.19 | 18.52 ± 2.75 | 0.188 |
0–8 weeks | 18.60 ± 3.54 | 15.81 ± 1.10 | 0.016 |
Items | Groups | p-Value | |
---|---|---|---|
0 (Control) | EF | ||
DM, % | 75.59 ± 1.24 | 79.30 ± 0.60 | <0.001 |
CP, % | 86.40 ± 0.50 | 88.75 ± 0.59 | <0.001 |
EE, % | 96.78 ± 0.88 | 96.91 ± 1.56 | 0.867 |
Ash, % | 19.26 ± 4.42 | 22.71 ± 5.76 | 0.320 |
Items | Groups | p-Value | |
---|---|---|---|
0 (Control) | EF | ||
T-AOC, U/mL | 17.28 ± 2.70 | 17.88 ± 3.24 | 0.713 |
MDA, nmol/mL | 10.92 ± 1.41 | 9.24 ± 0.96 | 0.037 |
GSH-pX, μmol/L | 1609.30 ± 219.50 | 1610.81 ± 221.78 | 0.991 |
SOD, U/mL | 112.89 ± 24.63 | 144.18 ± 12.54 | 0.011 |
Items | Groups | p-Value | |
---|---|---|---|
0 (Control) | EF | ||
IgA, μg/mL | 57.38 ± 2.96 | 61.93 ± 1.90 | 0.008 |
IgG, g/L | 6.58 ± 0.31 | 7.15 ± 0.31 | 0.005 |
IgM, μg/mL | 504.51 ± 28.53 | 502.03 ± 51.31 | 0.907 |
Items | Groups | p-Value | |
---|---|---|---|
0 (Control) | EF | ||
IL-2, p g/mL | 340.43 ± 18.77 | 329.75 ± 39.14 | 0.592 |
IL-6, p g/mL | 32.07 ± 4.74 | 35.72 ± 3.94 | 0.197 |
IL-8, p g/mL | 116.58 ± 3.35 | 105.87 ± 2.79 | 0.001 |
IL-10, p g/mL | 86.40 ± 9.73 | 84.82 ± 7.05 | 0.754 |
IL-1β, p g/mL | 333.44 ± 27.23 | 299.47 ± 14.71 | 0.04 |
SIgA, p g/mL | 2467.64 ± 100.81 | 3096.28 ± 154.19 | <0.001 |
IFN-γ, p g/mL | 1305.58 ± 295.82 | 1016.93 ± 77.63 | 0.094 |
TNF-α, p g/mL | 764.83 ± 38.05 | 758.62 ± 86.23 | 0.875 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, L.; Sun, F.; Ren, Q.; Jiang, Z.; Chen, J.; Li, Y.; Wang, L. Effects of Mink-Origin Enterococcus faecium on Growth Performance, Antioxidant Capacity, Immunity, and Intestinal Microbiota of Growing Male Minks. Animals 2024, 14, 2120. https://doi.org/10.3390/ani14142120
Cao L, Sun F, Ren Q, Jiang Z, Chen J, Li Y, Wang L. Effects of Mink-Origin Enterococcus faecium on Growth Performance, Antioxidant Capacity, Immunity, and Intestinal Microbiota of Growing Male Minks. Animals. 2024; 14(14):2120. https://doi.org/10.3390/ani14142120
Chicago/Turabian StyleCao, Lin, Fengxue Sun, Qifeng Ren, Ziyi Jiang, Jian Chen, Yalin Li, and Lihua Wang. 2024. "Effects of Mink-Origin Enterococcus faecium on Growth Performance, Antioxidant Capacity, Immunity, and Intestinal Microbiota of Growing Male Minks" Animals 14, no. 14: 2120. https://doi.org/10.3390/ani14142120
APA StyleCao, L., Sun, F., Ren, Q., Jiang, Z., Chen, J., Li, Y., & Wang, L. (2024). Effects of Mink-Origin Enterococcus faecium on Growth Performance, Antioxidant Capacity, Immunity, and Intestinal Microbiota of Growing Male Minks. Animals, 14(14), 2120. https://doi.org/10.3390/ani14142120