Combined Effect of Nigella sativa and Kefir on the Live Performance and Health of Broiler Chickens Affected by Necrotic Enteritis
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Challenge Strains
2.2. Anti-C. perfringens Activity of Black Cumin Seed Hexane Extracts
2.3. Gas Chromatography–Mass Spectrometry (GC-MS) Analysis of Black Cumin Seeds Extract
2.4. Kefir Culture Preparation
2.5. Screening Kefir Cultures for Anti-C. perfringens Activity using the Triple-Agar-Layer Method
2.6. Combined Activity of Black Cumin Seeds Hexane Extract and Kefir
2.7. Birds, Experimental Design, and Diets
2.8. Necrotic Enteritis Challenge and Analysis
2.9. Cecal Sample Collection and Analyses
2.10. Statistical Analysis
3. Results
3.1. In Vitro Disk Diffusion and MIC Determination of Black Cumin Seeds Hexane Extracts
3.2. GC-MS Analysis
3.3. Anti-C. perfringens Activity of Kefir Culture
3.4. Combined Anti-C. perfringens Activity of Black Cumin Seeds Hexane Extract and Kefir
3.5. Live Performance of Broiler Chickens
3.6. NE Score and NE Mortality Rates
3.7. Cecal Sample Analysis
4. Discussion
5. Conclusions
6. Intellectual Property Development
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Sheikhly, F.; Truscott, R.B. The interaction of Clostridium perfringens and its toxins in the production of necrotic enteritis of chickens. Avian Dis. 1977, 21, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.B. Intercurrent coccidiosis and necrotic enteritis of chickens: Rational, integrated disease management by maintenance of gut integrity. Avian Pathol. 2005, 34, 159–180. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, P.; Kiess, A.; Adhikari, R.; Jha, R. An approach to alternative strategies to control avian coccidiosis and necrotic enteritis. J. Appl. Poul. Res. 2020, 29, 515–534. [Google Scholar] [CrossRef]
- Timbermont, L.; Haesebrouck, F.; Ducatelle, R.; Van Immerseel, F. Necrotic enteritis in broilers: An updated review on the pathogenesis. Avian Pathol. 2011, 40, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Immerseel, F.V.; Buck, J.D.; Pasmans, F.; Huyghebaert, G.; Haesebrouck, F.; Ducatelle, R. Clostridium perfringens in poultry: An emerging threat for animal and public health. Avian Pathol. 2004, 33, 537–549. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration (FDA). U.S. Guidance for Industry# 213, New Animal Drugs and New Animal Drug Combination Products Administered in or on Medicated Feed or Drinking Water of Food-Producing Animals: Recommendations for Drug Sponsors for Voluntarily Aligning Product Use Conditions with GFI# 209; Center for Veterinary Medicine: Rockville, MD, USA, 2013. Available online: http://www.fda.gov/downloads/AnimalVeterinary/GuidanceComplianceEnforcement/GuidanceforIndustry/UCM299624.pdf (accessed on 7 March 2024).
- Dahiya, J.P.; Wilkie, D.C.; Van Kessel, A.G.; Drew, M.D. Potential strategies for controlling necrotic enteritis in broiler chickens in post-antibiotic era. Anim. Feed Sci. Technol. 2006, 129, 60–88. [Google Scholar] [CrossRef]
- Kikusato, M. Phytobiotics to improve health and production of broiler chickens: Functions beyond the antioxidant activity. Anim. Biosci. 2021, 34, 345. [Google Scholar] [CrossRef]
- Ognik, K.; Konieczka, P.; Stępniowska, A.; Jankowski, J. Oxidative and epigenetic changes and gut permeability response in early treated chickens with antibiotic or probiotic. Animals 2020, 10, 2204. [Google Scholar] [CrossRef]
- Al-Sagan, A.A.; Khalil, S.; Hussein, E.O.; Attia, Y.A. Effects of fennel seed powder supplementation on growth performance, carcass characteristics, meat quality, and economic efficiency of broilers under thermoneutral and chronic heat stress conditions. Animals 2020, 10, 206. [Google Scholar] [CrossRef]
- Aljumaah, M.R.; Suliman, G.M.; Abdullatif, A.A.; Abudabos, A.M. Effects of phytobiotic feed additives on growth traits, blood biochemistry, and meat characteristics of broiler chickens exposed to Salmonella Typhimurium. Poult. Sci. 2020, 99, 5744–5751. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, X.; Ou, S.; Hou, D.; He, J. Sanguinarine modulate gut microbiome and intestinal morphology to enhance growth performance in broilers. PLoS ONE 2020, 15, e0234920. [Google Scholar] [CrossRef]
- Al-Mufarrej, S.I. Immune-responsiveness and performance of broiler chickens fed black cumin (Nigella sativa L.) powder. J. Saudi Soc. Agric. Sci. 2014, 13, 75–80. [Google Scholar] [CrossRef]
- El-Kamali, H.H.; Ahmed, A.H.; Mohammed, A.S.; Yahia, A.M.; El-Tayeb, I.H.; Ali, A.A. Antibacterial properties of essential oils from Nigella sativa seeds, Cymbopogon citratus leaves and Pulicaria undulata aerial parts. Fitoterapia 1998, 69, 77–78. [Google Scholar]
- Nair, M.K.M.; Vasudevan, P.; Venkitanarayanan, K. Antibacterial effect of black seed oil on Listeria monocytogenes. Food Control 2005, 16, 395–398. [Google Scholar] [CrossRef]
- Manjunatha, V.; Nixon, J.E.; Mathis, G.F.; Lumpkins, B.S.; Güzel-Seydim, Z.B.; Seydim, A.C.; Greene, A.K.; Jiang, X. Nigella sativa as an antibiotic alternative to promote growth and enhance health of broilers challenged with Eimeria maxima and Clostridium perfringens. Poult. Sci. 2023, 102, 102831. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Husain, A.; Mujeeb, M.; Khan, S.A.; Najmi, A.K.; Siddique, N.A.; Damanhouri, Z.A.; Anwar, F. A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac. J. Trop. Biomed. 2013, 3, 337–352. [Google Scholar] [CrossRef] [PubMed]
- Abudabos, A.M.; Alyemni, A.H.; Dafalla, Y.M.; Khan, R.U. Effect of organic acid blend and Bacillus subtilis alone or in combination on growth traits, blood biochemical and antioxidant status in broilers exposed to Salmonella Typhimurium challenge during the starter phase. J. Appl. Anim. Res. 2017, 45, 538–542. [Google Scholar] [CrossRef]
- Guzel-Seydim, Z.B.; Kok-Tas, T.; Greene, A.K.; Seydim, A.C. Functional properties of kefir. Crit. Rev. Food Sci. Nutr. 2011, 51, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Bourrie, B.C.; Willing, B.P.; Cotter, P.D. The microbiota and health promoting characteristics of the fermented beverage kefir. Front. Microbiol. 2016, 7, 647. [Google Scholar] [CrossRef]
- Seydim, Z.B.; Greene, A.K.; Seydim, A.C. Kök taş T: Effects of fermented dairy products against cancer, pathogens and other health issues. In Functional Foods and Cancer: Functional Foods in Integrative Oncology, 1st ed.; Martirosyan, D.M., Zhou, J.-R., Eds.; Food Science Publisher: Dallas, TX, USA, 2017; pp. 35–61. [Google Scholar]
- Cho, J.H.; Zhang, Z.F.; Kim, I.H. Effects of single or combined dietary supplementation of β-glucan and kefir on growth performance, blood characteristics and meat quality in broilers. Br. Poult. Sci. 2013, 54, 216–221. [Google Scholar] [CrossRef]
- Nixon, J.E. Effect of Authentic Kefir and Nigella sativa on Broilers Challenged by Coccidia and Clostridium perfringens. Ph.D. Dissertation, Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC, USA, 2023. [Google Scholar]
- Lepp, D.; Roxas, B.; Parreira, V.R.; Marri, P.R.; Rosey, E.L.; Gong, J.; Songer, J.G.; Vedantam, G.; Prescott, J.F. Identification of novel pathogenicity loci in Clostridium perfringens strains that cause avian necrotic enteritis. PLoS ONE 2010, 5, e10795. [Google Scholar] [CrossRef]
- Hofacre, C.L.; Froyman, R.; Gautrias, B.; George, B.; Goodwin, M.A.; Brown, J. Use of Aviguard and other intestinal bioproducts in experimental Clostridium perfringens-associated necrotizing enteritis in broiler chickens. Avian Dis. 1998, 42, 579–584. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI). Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria, 9th ed.; CLSI Standard M11 ([Electronic]); Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018; ISBN 978-1-68440-022-5. [Google Scholar]
- Kök-Taş, T.; Seydim, A.C.; Özer, B.; Guzel-Seydim, Z.B. Effects of different fermentation parameters on quality characteristics of kefir. J. Dairy Sci. 2013, 96, 780–789. [Google Scholar] [CrossRef] [PubMed]
- Powell, J.E.; Witthuhn, R.C.; Todorov, S.D.; Dicks, L. Characterization of bacteriocin ST8KF produced by a kefir isolate Lactobacillus plantarum ST8KF. Int. Dairy J. 2007, 17, 190–198. [Google Scholar] [CrossRef]
- National Research Council (NRC); Division on Earth; Life Studies; Institute for Laboratory Animal Research; Committee for the Update of the Guide for the Care. Use of Laboratory Animals Guide for the Care and Use of Laboratory Animals, 8th ed.; National Academic Press: Washington, DC, USA, 2010. Available online: www.grants.nih.gov/grants/olaw/guide-for-the-care-and-use-of-laboratory-animals.pdf (accessed on 7 March 2024).
- Guler, T.; Dalkilic, B.; Ertas, O.N.; Ciftci, M. The effect of dietary black cumin seeds (Nigella sativa L.) on the performance of broilers. Asian-Australas. J. Animal Sci. 2006, 19, 425–430. [Google Scholar] [CrossRef]
- Guler, T.; Ertas, O.N.; Kizil, M.; Dalkilic, B.; Ciftci, M. Effect of dietary supplemental black cumin seeds on antioxidant activity in broilers. Medycyna Wet. 2007, 63, 1060–1063. [Google Scholar]
- Khan, S.H.; Ansari, J.; Haq, A.U.; Abbas, G. Black cumin seeds as phytogenic product in broiler diets and its effects on performance, blood constituents, immunity and caecal microbial population. Ital. J. Anim. Sci. 2012, 11, e77. [Google Scholar] [CrossRef]
- Al-Jassir, M.S. Chemical composition and microflora of black cumin (Nigella sativa L.) seeds growing in Saudi Arabia. Food Chem. 1992, 45, 239–242. [Google Scholar] [CrossRef]
- Houghton, P.J.; Zarka, R.; de las Heras, B.; Hoult, J. Fixed oil of Nigella sativa and derived thymoquinone inhibit eicosanoid generation in leukocytes and membrane lipid peroxidation. Planta Med. 1995, 61, 33–36. [Google Scholar] [CrossRef]
- Işık, S.; Kartal, M.; Erdem, S.A. Quantitative analysis of thymoquinone in Nigella Sativa L. (Black Cumin) seeds and commercial seed oils and seed oil capsules from Turkey. J. Fac. Pharm. Ankara Univ. 2017, 41, 34–41. [Google Scholar]
- Celiktas, O.Y.; Kocabas, E.H.; Bedir, E.; Sukan, F.V.; Ozek, T.; Baser, K. Antimicrobial activities of methanol extracts and essential oils of Rosmarinus officinalis, depending on location and seasonal variations. Food Chem. 2007, 100, 553–559. [Google Scholar] [CrossRef]
- Magalhães, K.T.; Pereira, G.V.d.M.; Campos, C.R.; Dragone, G.; Schwan, R.F. Brazilian kefir: Structure, microbial communities and chemical composition. Braz. J. Microbiol. 2011, 42, 693–702. [Google Scholar] [CrossRef] [PubMed]
- Thoreux, K.; Schmucker, D.L. Kefir milk enhances intestinal immunity in young but not old rats. J. Nutr. 2001, 131, 807–812. [Google Scholar] [CrossRef] [PubMed]
- Cenesiz, S.; Özcan, A. Effects of kefir as a probiotic on serum cholesterol, total lipid, aspartate amino transferase and alanine amino transferase activities in broiler chicks. Medycyna Wet. 2008, 64, 168–170. [Google Scholar]
- Silva, K.R.; Rodrigues, S.A.; Filho, L.X.; Lima, Á.S. Antimicrobial activity of broth fermented with kefir grains. Appl. Biochem. Biotechnol. 2009, 152, 316–325. [Google Scholar] [CrossRef] [PubMed]
- Ulusoy, B.H.; Çolak, H.; Hampikyan, H.; Erkan, M.E. An in vitro study on the antibacterial effect of kefir against some food-borne pathogens. Türk Mikrobiyoloji Cemiyeti Dergisi 2007, 37, 103–107. [Google Scholar]
- Shivaramaiah, S.; Wolfenden, R.E.; Barta, J.R.; Morgan, M.J.; Wolfenden, A.D.; Hargis, B.M.; Téllez, G. The role of an early Salmonella Typhimurium infection as a predisposing factor for necrotic enteritis in a laboratory challenge model. Avian Dis. 2011, 55, 319–323. [Google Scholar] [CrossRef]
- Zhou, M.; Zeng, D.; Ni, X.; Tu, T.; Yin, Z.; Pan, K.; Jing, B. Effects of Bacillus licheniformis on the growth performance and expression of lipid metabolism-related genes in broiler chickens challenged with Clostridium perfringens-induced necrotic enteritis. Lipids Health Dis. 2016, 15, 48. [Google Scholar] [CrossRef] [PubMed]
- Arslan, S.O.; Gelir, E.; Armutcu, F.; Coskun, O.; Gurel, A.; Sayan, H.; Celik, I.L. The protective effect of thymoquinone on ethanol-induced acute gastric damage in the rat. Nutr. Res. 2005, 25, 673–680. [Google Scholar] [CrossRef]
- Toghyani, M.; kazem Mosavi, S.; Modaresi, M.; Landy, N. Evaluation of kefir as a potential probiotic on growth performance, serum biochemistry and immune responses in broiler chicks. Anim. Nutr. 2015, 1, 305–309. [Google Scholar] [CrossRef]
- Ghasemi-Sadabadi, M.; Ebrahimnezhad, Y.; Shaddel-Tili, A.; Bannapour-Ghaffari, V.; Kozehgari, H.; Didehvar, M. The effects of fermented milk products (kefir and yogurt) and probiotic on performance, carcass characteristics, blood parameters, and gut microbial population in broiler chickens. Arch. Anim. Breed. 2019, 62, 361–374. [Google Scholar] [CrossRef]
- Pan, D.; Yu, Z. Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes 2014, 5, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Caly, D.L.; D’Inca, R.; Auclair, E.; Drider, D. Alternatives to antibiotics to prevent necrotic enteritis in broiler chickens: A microbiologist’s perspective. Front. Microbiol. 2015, 6, 1336. [Google Scholar] [CrossRef] [PubMed]
- Sokale, A.O.; Menconi, A.; Mathis, G.F.; Lumpkins, B.; Sims, M.D.; Whelan, R.A.; Doranalli, K. Effect of Bacillus subtilis DSM 32315 on the intestinal structural integrity and growth performance of broiler chickens under necrotic enteritis challenge. Poult. Sci. 2019, 98, 5392–5400. [Google Scholar] [CrossRef] [PubMed]
- Guzel-Seydim, Z.B.; Gökırmaklı, Ç.; Greene, A.K. A comparison of milk kefir and water kefir: Physical, chemical, microbiological and functional properties. Trends Food Sci. Technol. 2021, 113, 42–53. [Google Scholar] [CrossRef]
- Karmakar, S.; Sahay Khare, R.; Ojha, S.; Kundu, K.; Kundu, S. Development of probiotic candidate in combination with essential oils from medicinal plant and their effect on enteric pathogens: A review. Gastroent. Res. Prac. 2012, 1, 457150. [Google Scholar]
- De Vrese, M.; Schrezenmeir, A.J. Probiotics, prebiotics, and synbiotics. Food Biotechnol. 2008, 111, 1–66. [Google Scholar]
- Peng, Q.; Zeng, X.F.; Zhu, J.L.; Wang, S.; Liu, X.T.; Hou, C.L.; Thacker, P.A.; Qiao, S.Y. Effects of dietary Lactobacillus plantarum B1 on growth performance, intestinal microbiota, and short chain fatty acid profiles in broiler chickens. Poult. Sci. 2016, 95, 893–900. [Google Scholar] [CrossRef] [PubMed]
- Loh, T.C.; Thanh, N.T.; Foo, H.L.; Hair-Bejo, M.; Azhar, B.K. Feeding of different levels of metabolite combinations produced by Lactobacillus plantarum on growth performance, fecal microflora, volatile fatty acids and villi height in broilers. Anim. Sci. J. 2010, 81, 205–214. [Google Scholar] [CrossRef]
- Zhai, H.; Liu, H.; Wang, S.; Wu, J.; Kluenter, A. Potential of essential oils for poultry and pigs. Anim. Nutr. 2018, 4, 179–186. [Google Scholar] [CrossRef]
- Smulikowska, S.; Czerwiński, J.; Mieczkowska, A. Effect of an organic acid blend and phytase added to a rapeseed cake-containing diet on performance, intestinal morphology, caecal microflora activity and thyroid status of broiler chickens. J. Anim. Physiol. Anim. Nutr. 2010, 94, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Czerwiński, J.; H⊘jberg, O.; Smulikowska, S.; Engberg, R.M.; Mieczkowska, A. Influence of dietary peas and organic acids and probiotic supplementation on performance and caecal microbial ecology of broiler chickens. Br. Poult. Sci. 2010, 51, 258–269. [Google Scholar] [CrossRef] [PubMed]
- Olukosi, O.A.; Dono, N.D. Modification of digesta pH and intestinal morphology with the use of benzoic acid or phytobiotics and the effects on broiler chicken growth performance and energy and nutrient utilization. J. Anim. Sci. 2014, 92, 3945–3953. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Vahjen, W.; Dadi, T.; Saliu, E.; Boroojeni, F.G.; Zentek, J. Synergistic effects of probiotics and phytobiotics on the intestinal microbiota in young broiler chicken. Microrganisms 2019, 7, 684. [Google Scholar] [CrossRef] [PubMed]
- Khadr, N.A.; Abdel-Fattah, F. Response of broiler chickens to diet containing black seed (Nigella sativa L.) as medical plant. Benha Vet. Med. J. 2006, 17, 323–343. [Google Scholar]
- Ahmad, S. Comparative Efficiency of Garlic, Turmeric and Kalongi as Growth Promoter in Broiler. Master’s Thesis, Department of Poultry Sciences, University of Agriculture, Faisalabad, Pakistan, 2005. [Google Scholar]
- Ihsan, K. Effect of Different Levels of Kalongi (N. sativa) Seeds on the Performance of Broilers. Master’s Thesis, Department of Poultry Sciences, University of Agriculture, Faisalabad, Pakistan, 2003. [Google Scholar]
- Kourkoutas, Y.; Sipsas, V.; Papavasiliou, G.; Koutinas, A.A. An economic evaluation of freeze-dried kefir starter culture production using whey. J. Dairy Sci. 2007, 90, 2175–2180. [Google Scholar] [CrossRef] [PubMed]
- Koutinas, A.A.; Bekatorou, A.; Katechaki, E.; Dimitrellou, D.; Kopsahelis, N.; Papapostolou, H.; Panas, P.; Sideris, K.; Kallis, M.; Bosnea, L.A. Scale-up of thermally dried kefir production as starter culture for hard-type cheese making: An economic evaluation. Appl. Biochem. Biotechnol. 2010, 160, 1734–1743. [Google Scholar] [CrossRef]
- Hadrich, D. Microbiome research is becoming the key to better understanding health and nutrition. Front. Genet. 2018, 9, 212. [Google Scholar] [CrossRef]
Treatments | E. maxima | C. perfringens Strain Cp#4 | Cages/Trt |
---|---|---|---|
1. Negative control | D * 14 | No | 8 |
2. Positive control | D 14 | D 19, 20, 21 | 8 |
3. Antibiotic control (BMD 50 g/t) | D 14 | D 19, 20, 21 | 8 |
4. 5% Black cumin seeds (BCS) | D 14 | D 19, 20, 21 | 8 |
5. 20% Kefir | D 14 | D 19, 20, 21 | 8 |
6. 5% BCS (D 14–28) and 20% kefir | D 14 | D 19, 20, 21 | 8 |
BCS Products | Percentage Yield of Oil | Inhibition Zone (mm) for BCS Hexane Extract Tested against Cp#4 |
---|---|---|
A | 30.25 ± 0.01 1a | 30.75 ± 0.35 1a |
B | 30.83 ± 0.0 a | 18.25 ± 0.35 b |
C | 29.42 ± 0.01 a | 15.25 ± 0.35 c |
D | 29.67 ± 0.02 a | 15.00 ± 0.00 c |
Treatment | Total Cage Feed Intake (FI) (kg) | |||
---|---|---|---|---|
D * 0–14 | D 14–21 | D 14–28 | D 0–28 | |
1. Negative control | 7.22 ± 0.50 1a | 3.89 ± 0.31 a | 7.32 ± 0.50 a | 10.65 ± 0.31 a |
2. Positive control | 6.82 ± 0.86 ab | 3.54 ± 0.36 ab | 5.91 ± 0.43 b | 9.19 ± 0.88 bc |
3. Antibiotic control (BMD 50 g/t) | 6.58 ± 0.46 b | 3.60 ± 0.34 ab | 5.67 ± 1.29 b | 8.64 ± 1.26 bc |
4. 5% BCS | 6.72 ± 0.49 ab | 3.65 ± 0.28 ab | 5.22 ± 0.63 b | 8.29 ± 0.73 c |
5. 20% Kefir | 6.46 ± 0.58 bc | 3.44 ± 0.34 b | 5.74 ± 1.04 b | 8.76 ± 1.17 bc |
6. 5% BCS (D 14–28) and 20% kefir | 5.87 ± 0.73 c | 3.49 ± 0.50 b | 7.05 ± 0.92 a | 9.42 ± 0.70 b |
Treatment | Body Weight Gain (BWG) (kg/Bird) | |||
---|---|---|---|---|
D * 0–14 | D 14–21 | D 14–28 | D 0–28 | |
1. Negative control | 0.57 ± 0.06 1a | 0.34 ± 0.03 a | 0.81 ± 0.06 a | 1.04 ± 0.08 a |
2. Positive control | 0.45 ± 0.04 c | 0.24 ± 0.02 d | 0.63 ± 0.06 b | 0.85 ± 0.06 b |
3. Antibiotic control (BMD 50 g/t) | 0.50 ± 0.05 bc | 0.27 ± 0.04 bc | 0.78 ± 0.19 a | 1.00 ± 0.19 a |
4. 5% BCS | 0.51 ± 0.04 b | 0.28 ± 0.02 b | 0.73 ± 0.19 ab | 0.97 ± 0.20 ab |
5. 20% Kefir | 0.47 ± 0.04 bc | 0.24 ± 0.03 cd | 0.63 ± 0.11 b | 0.86 ± 0.12 b |
6. 5% BCS (D 14–28) and 20% kefir | 0.51 ± 0.09 bc | 0.28 ± 0.04 b | 0.73 ± 0.07 ab | 0.96 ± 0.04 ab |
Treatment | Feed Conversion Ratio (FCR = FI:BWG) | |||
---|---|---|---|---|
D * 0–14 | D 14–21 | D 14–28 | D 0–28 | |
1. Negative control | 1.58 ± 0.10 b 1bc | 1.42 ± 0.04 e | 1.43 ± 0.05 d | 1.53 ± 0.08 d |
2. Positive control | 1.88 ± 0.19 a | 1.86 ± 0.10 a | 1.98 ± 0.11 a | 1.95 ± 0.13 a |
3. Antibiotic control (BMD 50 g/t) | 1.66 ± 0.11 b | 1.66 ± 0.11 cd | 1.58 ± 0.08 c | 1.61 ± 0.07 cd |
4. 5% BCS | 1.67 ± 0.09 b | 1.70 ± 0.05 bc | 1.75 ± 0.09 b | 1.70 ± 0.08 bc |
5. 20% Kefir | 1.72 ± 0.08 b | 1.77 ± 0.14 ab | 1.78 ± 0.08 b | 1.74 ± 0.08 b |
6. 5% BCS (D 14–28) and 20% kefir | 1.48 ± 0.22 c | 1.59 ± 0.11 d | 1.70 ± 0.04 b | 1.58 ± 0.10 d |
Treatment | NE Score (0–3) | NE Mortality | |
---|---|---|---|
Number | % | ||
1. Negative control | 0.0 c | 0/64 | 0.0 c |
2. Positive control | 0.50 ab | 20/64 | 31.25 a |
3. Antibiotic control (BMD 50 g/t) | 0.21 bc | 15/64 | 23.44 ab |
4. 5% BCS | 0.38 abc | 20/64 | 31.25 a |
5. 20% Kefir | 0.63 a | 15/64 | 23.44 ab |
6. 5% BCS (D * 14–28) and 20% kefir | 0.29 abc | 9/64 | 14.06 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manjunatha, V.; Nixon, J.E.; Mathis, G.F.; Lumpkins, B.S.; Güzel-Seydim, Z.B.; Seydim, A.C.; Greene, A.K.; Jiang, X. Combined Effect of Nigella sativa and Kefir on the Live Performance and Health of Broiler Chickens Affected by Necrotic Enteritis. Animals 2024, 14, 2074. https://doi.org/10.3390/ani14142074
Manjunatha V, Nixon JE, Mathis GF, Lumpkins BS, Güzel-Seydim ZB, Seydim AC, Greene AK, Jiang X. Combined Effect of Nigella sativa and Kefir on the Live Performance and Health of Broiler Chickens Affected by Necrotic Enteritis. Animals. 2024; 14(14):2074. https://doi.org/10.3390/ani14142074
Chicago/Turabian StyleManjunatha, Vishal, Julian E. Nixon, Greg F. Mathis, Brett S. Lumpkins, Zeynep B. Güzel-Seydim, Atif C. Seydim, Annel K. Greene, and Xiuping Jiang. 2024. "Combined Effect of Nigella sativa and Kefir on the Live Performance and Health of Broiler Chickens Affected by Necrotic Enteritis" Animals 14, no. 14: 2074. https://doi.org/10.3390/ani14142074
APA StyleManjunatha, V., Nixon, J. E., Mathis, G. F., Lumpkins, B. S., Güzel-Seydim, Z. B., Seydim, A. C., Greene, A. K., & Jiang, X. (2024). Combined Effect of Nigella sativa and Kefir on the Live Performance and Health of Broiler Chickens Affected by Necrotic Enteritis. Animals, 14(14), 2074. https://doi.org/10.3390/ani14142074