Soybean Oil, Linoleic Acid Source, in Lamb Diets: Intake, Digestibility, Performance, Ingestive Behaviour, and Blood Metabolites
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Location and Ethical Considerations
2.2. Animals, Design, and Experimental Diets
2.3. Ingestive Behaviour
2.4. Nutrient Intake, Digestibility, and Performance
2.5. Laboratory Analyses
2.6. Blood Parameters
2.7. Statistical Analyses
3. Results
3.1. Nutrient Intake, Digestibility, and Performance
3.2. Ingestive Behaviour
3.3. Serum Metabolites
4. Discussion
4.1. Nutrient Intake and Performance
4.2. Ingestive Behaviour
4.3. Serum Metabolites
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, C. Understanding interactions among diet, host and gut microbiota for personalized nutrition. Life Sci. 2022, 312, 121265. [Google Scholar] [CrossRef] [PubMed]
- Poli, A.; Agostoni, C.; Visioli, F. Dietary Fatty acids and inflammation: Focus on the n-6 Series. Int. J. Mol. Sci. 2023, 24, 4567. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, E.M.; Pires, A.V.; Susin, I.; Gentil, R.S.; Parente, M.O.M.; Nolli, C.P.; Meneghini, R.C.M.; Mendes, C.Q.; Ribeiro, C.V.D.M. Growth, feed intake, carcass characteristics, and meat fatty acid profile of lambs fed soybean oil partially replaced by fish oil blend. Anim. Feed Sci. Technol. 2014, 187, 9–18. [Google Scholar] [CrossRef]
- Yang, A.; Zhang, C.; Zhang, B.; Wang, Z.; Zhu, L.; Mu, Y.; Wang, S.; Qi, D. Effects of dietary cottonseed oil and cottonseed meal supplementation on liver lipid content, fatty acid profile and hepatic function in laying hens. Animals 2021, 11, 78. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, C.O.; Pina, D.S.; Cirne, L.G.A.; Santos, S.A.; Araújo, M.L.G.M.L.; Rodrigues, T.C.G.C.; Silva, W.P.; Souza, M.N.S.; Alba, H.D.R.; Carvalho, G.G.P. Effects of whole corn germ, a source of linoleic acid, on carcass characteristics and meat quality of feedlot lambs. Animals 2021, 11, 267. [Google Scholar] [CrossRef]
- Oliveira, M.X.S.; Palma, A.S.; Reis, B.R.; Franco, C.S.; Marconi, A.P.; Shiozaki, F.A.; Reis, L.G.; Salles, M.S.V.; Netto, A.S. Inclusion of soybean and linseed oils in the diet of lactating dairy cows makes the milk fatty acid profile nutritionally healthier for the human diet. PLoS ONE 2021, 16, e0246357. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, E.M.; Pires, A.V.; Susin, I.; Gentil, R.S.; Parente, M.O.M.; Nolli, C.P.; Meneghini, R.C.M.; Mendes, C.Q.; Ribeiro, C.V.D.M. Nutrient digestibility and ruminal fatty acid metabolism in lambs supplemented with soybean oil partially replaced by fish oil blend. Anim. Feed Sci. Technol. 2016, 216, 30–39. [Google Scholar] [CrossRef]
- Parvar, R.; Ghoorchi, T.; Shargh, M.S. Influence of dietary oils on performance, blood metabolites, purine derivatives, cellulase activity and muscle fatty acid composition in fattening lambs. Small Rumin. Res. 2017, 150, 22–29. [Google Scholar] [CrossRef]
- NRC—National Research Council. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; National Academic Press: Washington, DC, USA, 2007. [Google Scholar]
- Toral, P.G.; Monahan, F.J.; Hervás, G.; Frutos, P.; Moloney, A.P. Modulating ruminal lipid metabolism to improve the fatty acid composition of meat and milk. Challenges and opportunities. Animal 2018, 12, s272–s281. [Google Scholar] [CrossRef]
- Rodrigues, B.J.; Ítavo, C.C.B.F.; Ítavo, L.C.V.; Gomes, M.D.N.B.; Difante, G.D.S.; Arco, T.F.F.D.S.; Gurgel, A.L.C.; Higano, L.M.; Godoy, C.; Miguel, A.A.S.; et al. The lipid source can modify saturated and unsaturated fatty acids profile of meat of lambs. Food Sci. Technol. 2022, 42, e91721. [Google Scholar] [CrossRef]
- Félix-Bernal, J.A.; Estrada-Angulo, A.; Angulo-Escalante, M.A.; Castro-Pérez, B.I.; Landeros-López, H.; López-Soto, M.A.; Barreras, A.; Zinn, R.A.; Plascencia, A. Feeding value of supplemental Jatropha curcas crude oil in finishing diets for feedlot lambs. J. Anim. Sci. 2016, 94, 3875–3882. [Google Scholar] [CrossRef] [PubMed]
- Bahramkhani-Zaringoli, L.; Mirzaei-Alamouti, H.; Aschenbach, J.R.; Vazirigohar, M.; Patra, A.K.; Jafari-Anarkooli, I.; Ganjkhanlou, M.; Alipour, D.; Mansouryar, M. Effects of oil supplements on growth performance, eating behaviour, ruminal fermentation, and ruminal morphology in lambs during transition from a low-to a high-grain diet. Animals 2022, 12, 2566. [Google Scholar] [CrossRef] [PubMed]
- Van Cleef, F.O.S.; Ezequiel, J.M.B.; D’Aurea, A.P.; Almeida, M.T.C.; Perez, H.L.; Van Cleef, E.H.C.B. Feeding behaviour, nutrient digestibility, feedlot performance, carcass traits, and meat characteristics of crossbred lambs fed high levels of yellow grease or soybean oil. Small Rumin. Res. 2016, 137, 151–156. [Google Scholar] [CrossRef]
- Francisco, A.; Dentinho, M.T.; Alves, S.P.; Portugal, P.V.; Fernandes, F.; Sengo, S.; Jerónimo, E.; Oliveira, M.A.; Costa, P.; Sequeira, A.; et al. Growth performance, carcass and meat quality of lambs supplemented with increasing levels of a tanniferous bush (Cistus ladanifer L.) and vegetable oils. Meat Sci. 2015, 100, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Lima, P.R.; Apdini, T.; Freire, A.S.; Santana, A.S.; Moura, L.M.L.; Nascimento, J.C.S.; Rodrigues, R.T.S.; Dijkstra, J.; Garcez Neto, A.F.; Queiroz, M.A.Á.; et al. Dietary supplementation with tannin and soybean oil on intake, digestibility, feeding behaviour, ruminal protozoa and methane emission in sheep. Anim. Feed Sci. Technol. 2019, 249, 10–17. [Google Scholar] [CrossRef]
- Parente, M.O.M.; Rocha, K.S.; Bessa, R.J.B.; Parente, H.N.; Zanine, A.M.; Machado, N.A.F.; Lourenço, J.B., Jr.; Bezerra, L.R.; Landim, A.V.; Alves, S.P. Effects of the dietary inclusion of babassu oil or buriti oil on lamb performance, meat quality and fatty acid composition. Meat Sci. 2020, 160, 107971. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Ma, Y.; Qua, Y.; Luo, H.; Liu, K.; Zuo, Z.; Lu, X. Effect of dietary oil sources on fatty acid composition of ruminal digesta and populations of specific bacteria involved in hydrogenation of 18-carbon unsaturated fatty acid in finishing lambs. Small Rumin. Res. 2016, 144, 126–134. [Google Scholar] [CrossRef]
- Freitas, J.E., Jr.; Takiya, C.S.; Del Valle, T.A.; Barletta, R.V.; Venturelli, B.C.; Vendramini, T.H.A.; Mingoti, R.D.; Calomeni, G.D.; Gardinal, R.; Gandra, J.R.; et al. Ruminal biohydrogenation and abomasal flow of fatty acids in lactating cows fed diets supplemented with soybean oil, whole soybeans, or calcium salts of fatty acids. J. Dairy Sci. 2018, 101, 7881–7891. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.S. Control of feed intake by hepatic oxidation in ruminant animals: Integration of homeostasis and homeorhesis. Animal 2020, 14, 55–64. [Google Scholar] [CrossRef]
- Johnson, T.R.; Combs, D.K. Effects of prepartum diet, inert rumen bulk, and dietary polythylene glicol on dry matter intake of lactating dairy cows. J. Dairy Sci. 1991, 74, 933–944. [Google Scholar] [CrossRef]
- Polli, V.A.; Restle, J.; Senna, D.B.; Almeida, R.S. Rumination of bovine and bubaline steers in feedlot regime. Rev. Bras. Zootec. 1996, 25, 987–993. [Google Scholar] [CrossRef]
- Bürger, P.J.; Pereira, J.C.; Silva, J.F.C.; Valadares Filho, S.C.; Cecon, P.R.; Casali, A.D.P. Ingestive behaviour in Holstein calves fed diets with different concentrate levels. Rev. Bras. Zootec. 2000, 29, 236–242. [Google Scholar] [CrossRef]
- Reis, M.J.; Santos, S.A.; Prates, L.L.; Detmann, E.; Carvalho, G.G.P.; Santos, A.C.S.; Rufino, L.M.; Mariz, L.D.; Neri, F.; Costa, E. Comparing sheep and cattle to quantify internal markers in tropical feeds using in situ ruminal incubation. Anim. Feed Sci. Technol. 2017, 232, 139–147. [Google Scholar] [CrossRef]
- AOAC—Association of Official Analytical Chemists. Official Methods of Analysis of the Association of Official Analytical Chemists, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Mertens, D.R. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: Collaborative study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar] [PubMed]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminants feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Hall, M.B. Calculation of Non-Structural Carbohydrate Content of Feeds That Contain Non-Protein Nitrogen; University of Florida: Gainesville, FL, USA, 2000. [Google Scholar]
- Cruz, C.H.; Santos, S.A.; Carvalho, G.G.P.; Azevedo, J.A.G.; Detmann, E.; Valadares Filho, S.C.; Mariz, L.D.S.; Pereira, E.S.; Nicory, I.M.C.; Tosto, M.S.L.; et al. Estimating digestible nutrients in diets for small ruminants fed with tropical forages. Livest. Sci. 2021, 249, 104532. [Google Scholar] [CrossRef]
- NRC—National Research Council. Nutrient Requirements of Dairy Cattle, 7th ed.; National Academic Press: Washington, DC, USA, 2001. [Google Scholar]
- O’Fallon, J.V.; Busboom, J.R.; Nelson, M.L.; Gaskins, C.T. A direct method for fatty acid methyl ester synthesis: Application to wet meat tissues, oils, and feedstuffs. J. Anim. Sci. 2007, 85, 1511–1521. [Google Scholar] [CrossRef] [PubMed]
- Kramer, J.K.C.; Fellner, V.; Dugan, M.E.R.; Sauder, F.D.; Mossoba, M.M.; Yurawecz, M.P. Evaluating acid and base catalysts in the methylation of milk and rumen fatty acids with special emphasis on conjugated dienes and total trans fatty acids. Lipids 1997, 32, 1219–1228. [Google Scholar] [CrossRef]
- Yair, R.; Allen, M.S. The effects of fructose and phosphate infusions on dry matter intake of lactating cows. J. Dairy Sci. 2017, 100, 2651–2659. [Google Scholar] [CrossRef]
- Stocks, S.E.; Allen, M.S. Hypophagic effects of propionate increase with elevated hepatic acetyl coenzyme A concentration for cows in the early postpartum period. J. Dairy Sci. 2012, 95, 3259–3268. [Google Scholar] [CrossRef]
- Kucuk, O.; Hess, B.W.; Rule, D.C. Soybean oil supplementation of a high-concentrate diet does not affect site and extent of organic matter, starch, neutral detergent fibre, or nitrogen digestion, but influences both ruminal metabolism and intestinal flow of fatty acids in limit-fed lambs. J. Anim. Sci. 2004, 82, 2985–2994. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.S. Drives and limits to feed intake in ruminants. Anim. Prod. Sci. 2014, 54, 1513–1524. [Google Scholar] [CrossRef]
- Ribeiro, R.D.X.; Carvalho, G.G.P.; Silva, T.M.; Costa, J.B.; Bezerra, L.R.; Cambuí, G.B.; Barbosa, A.M.; Oliveira, R.L. Effects of crude glycerin from biodiesel on the diets of lambs: Intake, digestibility, performance, feeding behaviour, and serum metabolites. J. Anim. Sci. 2018, 96, 1952–1961. [Google Scholar] [CrossRef] [PubMed]
- Messana, J.D.; Berchielli, T.T.; Arcuri, P.B.; Ribeiro, A.F.; Fiorentini, G.; Canesin, R.C. Effects of different lipid levels on protozoa population, microbial protein synthesis and rumen degradability in cattle. Acta Sci. Anim. Sci. 2012, 34, 279–285. [Google Scholar] [CrossRef]
- Allen, M.S.; Bradffoiord, B.J.; Oba, M. Board-invited review: The hepatic oxidation theory of the control of feed intake and its application to ruminants. J. Anim. Sci. 2009, 87, 3317–3334. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, J.J.; Harvery, J.W.; Bruss, M.L. Clinical Biochemistry of Domestic Animals, 5th ed.; Academic Press: San Diego, CA, USA, 1997. [Google Scholar]
- Shen, J.; Chen, Y.; Moraes, L.E.; Yu, Z.; Zhu, W. Effects of dietary protein sources and nisin on rumen fermentation, nutrient digestion, plasma metabolites, nitrogen utilization, and growth performance in growing lambs. J. Anim. Sci. 2018, 96, 1929–1938. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, A.E.; Macedo, V.P.; Franca, R.T.; Lopes, S.T.A.; Lopes, L.S.; Stefani, L.M.; Volpato, A.; Lima, H.L.; Paiano, D.; Machado, G.; et al. Effect of adding palm oil to the diet of dairy sheep on milk production and composition, function of liver and kidney, and the concentration of cholesterol, triglycerides and progesterone in blood serum. Small Rumin. Res. 2014, 117, 78–83. [Google Scholar] [CrossRef]
- Noro, M.; Wittwer, F. Relationships between liver ureagenesis and gluconeogenesis in ruminants fed with a high nitrogen diet. Vet. Méx. 2012, 43, 143–154. [Google Scholar]
Item | Soybean Oil Level, g/kg Diet DM | Soybean Oil | ||||
---|---|---|---|---|---|---|
0 | 30 | 60 | 90 | 120 | ||
Ingredients, g/kg DM basis | ||||||
Sorghum silage | 400 | 400 | 400 | 400 | 400 | - |
Soybean meal | 116 | 120 | 124 | 128 | 133 | - |
Ground corn | 461 | 427 | 393 | 359 | 324 | - |
Soybean oil | 0 | 30 | 60 | 90 | 120 | - |
Urea | 8 | 8 | 8 | 8 | 8 | - |
Mineral supplement 1 | 15 | 15 | 15 | 15 | 15 | - |
Chemical composition, g/kg DM basis | ||||||
Dry matter, g/kg as-fed basis | 663.3 | 667.8 | 672.4 | 677.0 | 681.7 | 999.9 |
Ash | 41.6 | 41.5 | 41.3 | 41.1 | 41.0 | - |
Crude protein | 148.9 | 147.9 | 146.8 | 145.7 | 145.0 | - |
Ether extract | 30.9 | 59.6 | 88.2 | 116.9 | 145.5 | 999.9 |
aNDFomp 2 | 273.9 | 270.7 | 267.5 | 264.3 | 261.1 | - |
Acid detergent fiber | 131.2 | 130.7 | 130.1 | 129.6 | 129.0 | - |
Hemicellulose | 142.7 | 140.0 | 137.4 | 134.7 | 132.0 | - |
Cellulose | 111.3 | 110.9 | 110.5 | 110.1 | 109.7 | - |
Lignin | 19.9 | 19.8 | 19.6 | 19.5 | 19.4 | - |
Indigestible neutral detergent fiber | 75.3 | 75.0 | 74.6 | 74.3 | 73.9 | - |
Non-fibrous carbohydrates | 519.1 | 494.9 | 470.7 | 446.6 | 421.9 | - |
Total digestible nutrients | 754.7 | 774.7 | 794.6 | 814.6 | 834.5 | 1969.6 |
Metabolizable energy, Mcal/kg | 3.0 | 3.2 | 3.4 | 3.5 | 3.7 | 7.7 |
NDIP, g/kg CP | 80.0 | 78.8 | 77.5 | 76.2 | 74.8 | - |
ADIP, g/kg CP | 18.6 | 18.4 | 18.3 | 18.1 | 17.8 | - |
Fatty acid profile, g/100 g total fatty acids | ||||||
Caprylic (C8:0) | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Capric (C10:0) | 0.05 | 0.05 | 0.05 | 0.04 | 0.04 | 0.06 |
Lauric (C12:0) | 0.08 | 0.08 | 0.07 | 0.07 | 0.07 | 0.09 |
Miristic (C14:0) | 0.56 | 0.55 | 0.54 | 0.53 | 0.52 | 0.47 |
Palmitic (C16:0) | 4.67 | 4.88 | 5.09 | 5.29 | 5.50 | 14.25 |
Palmitoleic (C16:1) | 0.12 | 0.12 | 0.12 | 0.12 | 0.13 | 0.20 |
Estearic (C18:0) | 1.15 | 1.24 | 1.34 | 1.43 | 1.53 | 4.52 |
Oleic (C18:1 n-9) | 7.95 | 8.17 | 8.40 | 8.62 | 8.83 | 22.91 |
Linoleic (C18:2 n-6) | 12.7 | 13.8 | 14.9 | 16.0 | 17.1 | 59.1 |
α-linolenic (C18:3 n-3) | 0.72 | 0.91 | 1.10 | 1.29 | 1.48 | 6.75 |
Item 1 | Soybean Oil Level, g/kg Diet DM | SEM 2 | p-Value 3 | |||||
---|---|---|---|---|---|---|---|---|
0 | 30 | 60 | 90 | 120 | L | Q | ||
Intake, g/d | ||||||||
Dry matter 4 | 1279.3 | 1093.4 | 977.2 | 966.9 | 782.8 | 32.7 | <0.001 | 0.503 |
Crude protein 5 | 198.0 | 169.4 | 152.4 | 147.1 | 119.8 | 5.56 | <0.001 | 0.592 |
Ether extract 6 | 42.8 | 72.3 | 98.0 | 128.7 | 133.3 | 6.68 | <0.001 | 0.002 |
aNDFomp 7 | 297.3 | 245.4 | 206.4 | 203.0 | 187.1 | 8.18 | <0.001 | 0.005 |
Non-fibrous carbohydrates 8 | 709.6 | 576.8 | 492.4 | 444.2 | 352.3 | 23.0 | <0.001 | 0.173 |
Total digestible nutrients 9 | 935.6 | 851.1 | 860.4 | 773.3 | 764.3 | 26.8 | 0.004 | 0.733 |
Intake, g/kg BW | ||||||||
Dry matter 10 | 32.1 | 27.4 | 27.6 | 25.0 | 23.6 | 0.58 | <0.001 | 0.143 |
aNDFomp 11 | 7.24 | 6.20 | 5.90 | 5.46 | 5.07 | 0.16 | <0.001 | 0.010 |
Apparent digestibility coefficient, % | ||||||||
Dry matter | 73.5 | 74.0 | 74.4 | 71.5 | 75.6 | 1.8 | 0.782 | 0.561 |
Crude protein 12 | 66.2 | 67.0 | 71.1 | 68.6 | 74.2 | 2.2 | 0.016 | 0.720 |
Ether extract 13 | 82.1 | 85.7 | 88.7 | 87.6 | 88.0 | 1.4 | 0.005 | 0.061 |
aNDFomp 14 | 46.7 | 48.1 | 46.9 | 47.2 | 57.7 | 2.9 | 0.033 | 0.083 |
Non-fibrous carbohydrates 15 | 88.0 | 87.8 | 86.7 | 82.9 | 83.7 | 1.4 | 0.005 | 0.912 |
Total digestible nutrients 16 | 74.7 | 78.9 | 83.1 | 83.7 | 91.1 | 1.8 | <0.001 | 0.713 |
Performance | ||||||||
Initial body weight, kg | 35.5 | 35.3 | 35.3 | 35.1 | 33.9 | 0.45 | 0.204 | 0.403 |
Final body weight, kg 17 | 43.9 | 45.8 | 42.6 | 41.6 | 36.9 | 0.70 | <0.001 | 0.122 |
Average daily gain, g/day 18 | 239.3 | 211.4 | 192.0 | 162.5 | 93.7 | 10.9 | <0.001 | 0.105 |
Feeding efficiency, g gain/Kg DMI 19 | 186.9 | 190.0 | 171.9 | 167.5 | 119.8 | 7.22 | 0.001 | 0.026 |
Item | Soybean Oil Level, g/kg Diet DM | SEM 1 | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0 | 30 | 60 | 90 | 120 | L 2 | Q 3 | ||
Times, h/day | ||||||||
Feeding 4 | 2.5 | 2.2 | 2.5 | 2.9 | 3.0 | 0.2 | 0.004 | 0.158 |
Rumination | 6.8 | 6.3 | 6.4 | 6.3 | 5.9 | 0.3 | 0.122 | 0.985 |
Idling | 14.7 | 15.5 | 15.1 | 14.8 | 15.1 | 0.4 | 0.906 | 0.590 |
Efficiency, g DM/h | ||||||||
Feeding 5 | 493.4 | 488.6 | 412.4 | 330.1 | 295.5 | 25.8 | <0.001 | 0.502 |
Rumination 6 | 185.9 | 174.5 | 162.6 | 152.1 | 140.9 | 10.3 | 0.001 | 0.961 |
Efficiency, g NDF/h | ||||||||
Feeding 7 | 110.5 | 106 | 92.4 | 74.5 | 68.5 | 5.5 | <0.001 | 0.723 |
Rumination 8 | 41.9 | 37.8 | 36.2 | 34.1 | 32.8 | 1.8 | 0.001 | 0.548 |
Chews | ||||||||
gDM per bolus 9 | 2.1 | 2.2 | 2.3 | 2.0 | 1.7 | 0.1 | 0.036 | 0.037 |
Number of ruminations per bolus 10 | 64.0 | 73.4 | 78.1 | 69.6 | 70.0 | 2.6 | 0.329 | 0.003 |
Rumination time per bolus, sec 11 | 40.6 | 46.0 | 50.6 | 44.3 | 45.2 | 1.7 | 0.165 | 0.003 |
Number of ruminated boluses 12 | 606.4 | 492.6 | 460.3 | 516.0 | 476.2 | 29.5 | 0.016 | 0.040 |
Total chewing times, h/day | 9.3 | 8.5 | 8.9 | 9.2 | 8.9 | 0.4 | 0.907 | 0.590 |
Item | Soybean Oil Level, g/kg Diet DM | SEM 1 | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0 | 30 | 60 | 90 | 120 | L 2 | Q 3 | ||
Total proteins, g/dL 4 | 6.5 | 6.4 | 6.7 | 7.2 | 7.1 | 0.1 | <0.001 | 0.760 |
Albumin (A), g/dL | 2.6 | 2.6 | 2.6 | 2.6 | 2.5 | 0.1 | 0.940 | 0.183 |
Globulin (G), g/dL 5 | 3.9 | 3.9 | 4.1 | 4.6 | 4.6 | 0.1 | <0.001 | 0.443 |
A:G ratio 6 | 0.66 | 0.7 | 0.7 | 0.6 | 0.6 | 0.0 | <0.001 | 0.175 |
N-ureic, g/dL 7 | 20.3 | 18.4 | 15.9 | 10.5 | 11.1 | 0.8 | <0.001 | 0.506 |
Glucose, g/dL 8 | 83.3 | 76.2 | 72.7 | 69.7 | 63.1 | 2.4 | <0.001 | 0.848 |
Total cholesterol, mg/dL | 54.2 | 59.5 | 55.1 | 60.3 | 54.7 | 4.8 | 0.910 | 0.589 |
Triglycerides, mg/dL 9 | 46.0 | 27.4 | 32.3 | 29.3 | 44.5 | 2.3 | 0.875 | <0.001 |
Alanine aminotransferase, UI/L | 13.7 | 13.4 | 15.5 | 12.3 | 12.6 | 1.0 | 0.295 | 0.287 |
Aspartate aminotransferase, UI/L 10 | 86.3 | 99.8 | 115.0 | 214.9 | 163.2 | 13.8 | <0.001 | 0.393 |
Gamma-glutamyltransferase, UI/L | 74.8 | 71.3 | 66.7 | 78.1 | 84.6 | 4.8 | 0.091 | 0.058 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, V.G.O.; da Silva, L.O.; de Freitas Júnior, J.E.; Alba, H.D.R.; Silva, W.P.; Pina, D.d.S.; Leite, L.C.; Rodrigues, C.S.; Santos, S.A.; Becker, C.A.; et al. Soybean Oil, Linoleic Acid Source, in Lamb Diets: Intake, Digestibility, Performance, Ingestive Behaviour, and Blood Metabolites. Animals 2024, 14, 2075. https://doi.org/10.3390/ani14142075
Lima VGO, da Silva LO, de Freitas Júnior JE, Alba HDR, Silva WP, Pina DdS, Leite LC, Rodrigues CS, Santos SA, Becker CA, et al. Soybean Oil, Linoleic Acid Source, in Lamb Diets: Intake, Digestibility, Performance, Ingestive Behaviour, and Blood Metabolites. Animals. 2024; 14(14):2075. https://doi.org/10.3390/ani14142075
Chicago/Turabian StyleLima, Victor G. O., Liliane O. da Silva, José E. de Freitas Júnior, Henry D. R. Alba, Willian P. Silva, Douglas dos S. Pina, Laudí C. Leite, Carlindo S. Rodrigues, Stefanie A. Santos, Carly A. Becker, and et al. 2024. "Soybean Oil, Linoleic Acid Source, in Lamb Diets: Intake, Digestibility, Performance, Ingestive Behaviour, and Blood Metabolites" Animals 14, no. 14: 2075. https://doi.org/10.3390/ani14142075
APA StyleLima, V. G. O., da Silva, L. O., de Freitas Júnior, J. E., Alba, H. D. R., Silva, W. P., Pina, D. d. S., Leite, L. C., Rodrigues, C. S., Santos, S. A., Becker, C. A., & de Carvalho, G. G. P. (2024). Soybean Oil, Linoleic Acid Source, in Lamb Diets: Intake, Digestibility, Performance, Ingestive Behaviour, and Blood Metabolites. Animals, 14(14), 2075. https://doi.org/10.3390/ani14142075