Identification of Predictive Biomarkers of Lameness in Transition Dairy Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Previous Generation of LC-MS Data
2.2. Previous Metabolite Annotation and Identification
2.3. Further MS/MS and Identity Confirmation with Standards
2.4. Enrichment and Pathway Analysis
3. Results
4. Discussion
4.1. Metabolite Annotation and Identification
4.2. Highest Level of Confidence: L1
4.3. Next Level of Confidence: L2
4.4. Enrichment and Pathway Analysis
4.5. Usefulness of Metabolite Detection in Urine of Transition Dairy Cows
4.6. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Randall, L.V.; Kim, D.-H.; Abdelrazig, S.M.A.; Bollard, N.J.; Hemingway-Arnold, H.; Hyde, R.M.; Thompson, J.S.; Green, M.J. Predicting Lameness in Dairy Cattle Using Untargeted Liquid Chromatography–Mass Spectrometry-Based Metabolomics and Machine Learning. J. Dairy Sci. 2023, 106, 7033–7042. [Google Scholar] [CrossRef] [PubMed]
- Cramer, G.; Solano, L. Detection and Diagnosis of Lameness in Cattle—Musculoskeletal System. Available online: https://www.msdvetmanual.com/musculoskeletal-system/lameness-in-cattle/detection-and-diagnosis-of-lameness-in-cattle (accessed on 26 May 2024).
- Rioja-Lang, F.; Bacon, H.; Connor, M.; Dwyer, C.M. Prioritisation of Animal Welfare Issues in the UK Using Expert Consensus. Vet. Rec. 2020, 187, 490. [Google Scholar] [CrossRef] [PubMed]
- GB Cattle Health & Welfare Group (CHAWG)—Fifth Report—2020|AHDB. Available online: https://ahdb.org.uk/knowledge-library/gb-cattle-health-welfare-group-fifth-report-2020 (accessed on 18 February 2022).
- Randall, L.V.; Thomas, H.J.; Remnant, J.G.; Bollard, N.J.; Huxley, J.N. Lameness Prevalence in a Random Sample of UK Dairy Herds. Vet. Rec. 2019, 184, 350. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, B.E.; Grove White, D.; Oikonomou, G. A Cross-Sectional Study Into the Prevalence of Dairy Cattle Lameness and Associated Herd-Level Risk Factors in England and Wales. Front. Vet. Sci. 2018, 5, 65. [Google Scholar] [CrossRef] [PubMed]
- Mellado, M.; Saavedra, E.; Gaytán, L.; Veliz, F.G.; Macías-Cruz, U.; Avendaño-Reyes, L.; García, E. The Effect of Lameness-Causing Lesions on Milk Yield and Fertility of Primiparous Holstein Cows in a Hot Environment. Livest. Sci. 2018, 217, 8–14. [Google Scholar] [CrossRef]
- Randall, L.V.; Green, M.J.; Chagunda, M.G.G.; Mason, C.; Green, L.E.; Huxley, J.N. Lameness in Dairy Heifers; Impacts of Hoof Lesions Present around First Calving on Future Lameness, Milk Yield and Culling Risk. Prev. Vet. Med. 2016, 133, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Khansefid, M.; Haile-Mariam, M.; Pryce, J.E. Including Milk Production, Conformation, and Functional Traits in Multivariate Models for Genetic Evaluation of Lameness. J. Dairy Sci. 2021, 104, 10905–10920. [Google Scholar] [CrossRef]
- Buonaiuto, G.; Lopez-Villalobos, N.; Costa, A.; Niero, G.; Degano, L.; Mammi, L.M.E.; Cavallini, D.; Palmonari, A.; Formigoni, A.; Visentin, G. Stayability in Simmental Cattle as Affected by Muscularity and Body Condition Score between Calvings. Front. Vet. Sci. 2023, 10, 1141286. [Google Scholar] [CrossRef] [PubMed]
- Willshire, J.A.; Bell, N.J. An Economic Review of Cattle Lameness. Cattle Pract. 2009, 17, 136–141. [Google Scholar]
- Robcis, R.; Ferchiou, A.; Berrada, M.; Ndiaye, Y.; Herman, N.; Lhermie, G.; Raboisson, D. Cost of Lameness in Dairy Herds: An Integrated Bioeconomic Modeling Approach. J. Dairy Sci. 2023, 106, 2519–2534. [Google Scholar] [CrossRef]
- Booth, C.J.; Warnick, L.D.; Gröhn, Y.T.; Maizon, D.O.; Guard, C.L.; Janssen, D. Effect of Lameness on Culling in Dairy Cows. J. Dairy Sci. 2004, 87, 4115–4122. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, S.; Wilson, J. Early Detection and Prompt Effective Treatment of Lameness in Dairy Cattle. Livestock 2021, 26, 115–121. [Google Scholar] [CrossRef]
- Zhang, G.; Hailemariam, D.; Dervishi, E.; Deng, Q.; Goldansaz, S.A.; Dunn, S.M.; Ametaj, B.N. Alterations of Innate Immunity Reactants in Transition Dairy Cows before Clinical Signs of Lameness. Animals 2015, 5, 717–747. [Google Scholar] [CrossRef] [PubMed]
- Eckel, E.F.; Zhang, G.; Dervishi, E.; Zwierzchowski, G.; Mandal, R.; Wishart, D.S.; Ametaj, B.N. Urinary Metabolomics Fingerprinting around Parturition Identifies Metabolites That Differentiate Lame Dairy Cows from Healthy Ones. Animal 2020, 14, 2138–2149. [Google Scholar] [CrossRef] [PubMed]
- Dervishi, E.; Zhang, G.; Zwierzchowski, G.; Mandal, R.; Wishart, D.S.; Ametaj, B.N. Serum Metabolic Fingerprinting of Pre-Lameness Dairy Cows by GC–MS Reveals Typical Profiles That Can Identify Susceptible Cows. J. Proteom. 2020, 213, 103620. [Google Scholar] [CrossRef] [PubMed]
- Clish, C.B. Metabolomics: An Emerging but Powerful Tool for Precision Medicine. Cold Spring Harb. Mol. Case Stud. 2015, 1, a000588. [Google Scholar] [CrossRef] [PubMed]
- Hailemariam, D.; Mandal, R.; Saleem, F.; Dunn, S.M.; Wishart, D.S.; Ametaj, B.N. Identification of Predictive Biomarkers of Disease State in Transition Dairy Cows. J. Dairy Sci. 2014, 97, 2680–2693. [Google Scholar] [CrossRef] [PubMed]
- Neto, F.C.; Raftery, D. Expanding Urinary Metabolite Annotation through Integrated Mass Spectral Similarity Networking. Anal. Chem. 2021, 93, 12001–12010. [Google Scholar] [CrossRef] [PubMed]
- Nash, W.J.; Dunn, W.B. From Mass to Metabolite in Human Untargeted Metabolomics: Recent Advances in Annotation of Metabolites Applying Liquid Chromatography-Mass Spectrometry Data. TrAC Trends Anal. Chem. 2019, 120, 115324. [Google Scholar] [CrossRef]
- Song, Y.; Song, Q.; Liu, W.; Li, J.; Tu, P. High-Confidence Structural Identification of Metabolites Relying on Tandem Mass Spectrometry through Isomeric Identification: A Tutorial. TrAC Trends Anal. Chem. 2023, 160, 116982. [Google Scholar] [CrossRef]
- Yu, D.; Zhou, L.; Liu, X.; Xu, G. Stable Isotope-Resolved Metabolomics Based on Mass Spectrometry: Methods and Their Applications. TrAC Trends Anal. Chem. 2023, 160, 116985. [Google Scholar] [CrossRef]
- Sumner, L.W.; Lei, Z.; Nikolau, B.J.; Saito, K.; Roessner, U.; Trengove, R. Proposed Quantitative and Alphanumeric Metabolite Identification Metrics. Metabolomics 2014, 10, 1047–1049. [Google Scholar] [CrossRef]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.-M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed Minimum Reporting Standards for Chemical Analysis. Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Theodoridis, G.; Gika, H.; Raftery, D.; Goodacre, R.; Plumb, R.S.; Wilson, I.D. Ensuring Fact-Based Metabolite Identification in Liquid Chromatography–Mass Spectrometry-Based Metabolomics. Anal. Chem. 2023, 95, 3909–3916. [Google Scholar] [CrossRef] [PubMed]
- Ferlizza, E. Preliminary Study on Urine Chemistry and Protein Profile in Cows and Heifers. Pak. Vet. J. 2020, 40, 413–418. [Google Scholar] [CrossRef]
- Siad, N.; Deghnouche, K.; Siad, O.; Chala, A. Preliminary Study of Urine Analysis in Pregnant Cows: Insights for Improved Herd Management. Int. J. Environ. Stud. 2024, 81, 856–864. [Google Scholar] [CrossRef]
- He, W.; Cardoso, A.S.; Hyde, R.M.; Green, M.J.; Scurr, D.J.; Griffiths, R.L.; Randall, L.V.; Kim, D.-H. Metabolic Alterations in Dairy Cattle with Lameness Revealed by Untargeted Metabolomics of Dried Milk Spots Using Direct Infusion-Tandem Mass Spectrometry and the Triangulation of Multiple Machine Learning Models. Analyst 2022, 147, 5537–5545. [Google Scholar] [CrossRef] [PubMed]
- Zwierzchowski, G.; Zhang, G.; Mandal, R.; Wishart, D.S.; Ametaj, B.N. Milk Metabotyping Identifies Metabolite Alterations in the Whole Raw Milk of Dairy Cows with Lameness. J. Agric. Food Chem. 2020, 68, 4507–4514. [Google Scholar] [CrossRef] [PubMed]
- Cavallini, D.; Mammi, L.M.E.; Buonaiuto, G.; Palmonari, A.; Valle, E.; Formigoni, A. Immune-Metabolic-Inflammatory Markers in Holstein Cows Exposed to a Nutritional and Environmental Stressing Challenge. J. Anim. Physiol. Anim. Nutr. 2021, 105, 42–55. [Google Scholar] [CrossRef]
- Karnovsky, A.; Li, S. Pathway Analysis for Targeted and Untargeted Metabolomics. In Computational Methods and Data Analysis for Metabolomics; Li, S., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2020; pp. 387–400. ISBN 978-1-07-160239-3. [Google Scholar]
- Want, E.J. LC-MS Untargeted Analysis. In Metabolic Profiling: Methods and Protocols; Theodoridis, G.A., Gika, H.G., Wilson, I.D., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2018; pp. 99–116. ISBN 978-1-4939-7643-0. [Google Scholar]
- AHDB Mobility Scoring: How to Score Your Cows|AHDB. Available online: https://ahdb.org.uk/knowledge-library/mobility-scoring-how-to-score-your-cows (accessed on 10 January 2024).
- Kuhn, M.; Wing, J.; Weston, S.; Williams, A.; Keefer, C.; Engelhardt, A.; Cooper, T.; Mayer, Z.; Kenkel, B.; RC Team; et al. Caret: Classification and Regression Training 2022. Software. Available online: https://github.com/topepo/caret/ (accessed on 6 July 2024).
- R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 27 May 2024).
- Hyde, R.; O’Grady, L.; Green, M. Stability Selection for Mixed Effect Models with Large Numbers of Predictor Variables: A Simulation Study. Prev. Vet. Med. 2022, 206, 105714. [Google Scholar] [CrossRef]
- Foroutan, A.; Fitzsimmons, C.; Mandal, R.; Piri-Moghadam, H.; Zheng, J.; Guo, A.; Li, C.; Guan, L.L.; Wishart, D.S. The Bovine Metabolome. Metabolites 2020, 10, 233. [Google Scholar] [CrossRef] [PubMed]
- Hoopmann, M.R.; Merrihew, G.E.; von Haller, P.D.; MacCoss, M.J. Post Analysis Data Acquisition for the Iterative MS/MS Sampling of Proteomics Mixtures. J. Proteome Res. 2009, 8, 1870–1875. [Google Scholar] [CrossRef] [PubMed]
- Defossez, E.; Bourquin, J.; von Reuss, S.; Rasmann, S.; Glauser, G. Eight Key Rules for Successful Data-dependent Acquisition in Mass Spectrometry-based Metabolomics. Mass Spectrom. Rev. 2023, 42, 131–143. [Google Scholar] [CrossRef] [PubMed]
- Goldansaz, S.A.; Guo, A.C.; Sajed, T.; Steele, M.A.; Plastow, G.S.; Wishart, D.S. Livestock Metabolomics and the Livestock Metabolome: A Systematic Review. PLoS ONE 2017, 12, e0177675. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Liigand, J.; Tian, S.; Arndt, D.; Greiner, R.; Wishart, D.S. CFM-ID 4.0: More Accurate ESI-MS/MS Spectral Prediction and Compound Identification. Anal. Chem. 2021, 93, 11692–11700. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Wishart, D.S. MSEA: A Web-Based Tool to Identify Biologically Meaningful Patterns in Quantitative Metabolomic Data. Nucleic Acids Res. 2010, 38, W71–W77. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.-É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the Gap between Raw Spectra and Functional Insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef] [PubMed]
- Wieder, C.; Frainay, C.; Poupin, N.; Rodríguez-Mier, P.; Vinson, F.; Cooke, J.; Lai, R.P.; Bundy, J.G.; Jourdan, F.; Ebbels, T. Pathway Analysis in Metabolomics: Recommendations for the Use of over-Representation Analysis. PLoS Comput. Biol. 2021, 17, e1009105. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Hu, S.; Baskin, E.; Patt, A.; Siddiqui, J.K.; Mathé, E.A. RaMP: A Comprehensive Relational Database of Metabolomics Pathways for Pathway Enrichment Analysis of Genes and Metabolites. Metabolites 2018, 8, 16. [Google Scholar] [CrossRef]
- Kanehisa, M. The KEGG Database. In ‘In Silico’ Simulation of Biological Processes; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2002; pp. 91–103. ISBN 978-0-470-85789-2. [Google Scholar]
- Bell, N.J.; Pedersen, S.I.L.; Randall, L.V.; Remnant, J.G.; Wilson, J.P. Lameness in Cattle. In Production Diseases in Farm Animals: Pathophysiology, Prophylaxis and Health Management; Gross, J.J., Ed.; Springer International Publishing: Cham, Switzerland, 2024; pp. 377–404. ISBN 978-3-031-51788-4. [Google Scholar]
- De Smet, R.; Van Kaer, J.; Van Vlem, B.; De Cubber, A.; Brunet, P.; Lameire, N.; Vanholder, R. Toxicity of Free P-Cresol: A Prospective and Cross-Sectional Analysis. Clin. Chem. 2003, 49, 470–478. [Google Scholar] [CrossRef]
- Eom, J.S.; Lee, S.J.; Kim, H.S.; Choi, Y.; Jo, S.U.; Lee, S.S.; Kim, E.T.; Lee, S.S. Metabolic Profiling of Serum and Urine in Lactating Dairy Cows Affected by Subclinical Ketosis Using Proton Nuclear Magnetic Resonance Spectroscopy. J. Anim. Sci. Technol. 2022, 64, 247–261. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, J.M.G.; Cunha, A.L.R.R.; David, L.C.; Camelo, Í.N.; Martins, N.M.; Galvão, F.S.; Mendonça, D.R.; Venâncio, M.T.; Cunha, R.D.S.; Filho, A.R.C.; et al. A Veterinary Cerumenomic Assay for Bovine Laminitis Identification. Vet. Res. Commun. 2024, 48, 1003–1013. [Google Scholar] [CrossRef] [PubMed]
- Gathungu, R.M.; Kautz, R.; Kristal, B.S.; Bird, S.S.; Vouros, P. The Integration of LC-MS and NMR for the Analysis of Low Molecular Weight Trace Analytes in Complex Matrices. Mass Spectrom. Rev. 2020, 39, 35–54. [Google Scholar] [CrossRef] [PubMed]
- Markley, J.L.; Brüschweiler, R.; Edison, A.S.; Eghbalnia, H.R.; Powers, R.; Raftery, D.; Wishart, D.S. The Future of NMR-Based Metabolomics. Curr. Opin. Biotechnol. 2017, 43, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Elliott, P.; Posma, J.M.; Chan, Q.; Garcia-Perez, I.; Wijeyesekera, A.; Bictash, M.; Ebbels, T.M.D.; Ueshima, H.; Zhao, L.; van Horn, L.; et al. Urinary Metabolic Signatures of Human Adiposity. Sci. Transl. Med. 2015, 7, 285ra62. [Google Scholar] [CrossRef] [PubMed]
- Webb, L.A.; Sadri, H.; von Soosten, D.; Dänicke, S.; Egert, S.; Stehle, P.; Sauerwein, H. Changes in Tissue Abundance and Activity of Enzymes Related to Branched-Chain Amino Acid Catabolism in Dairy Cows during Early Lactation. J. Dairy Sci. 2019, 102, 3556–3568. [Google Scholar] [CrossRef]
- Webb, L.A.; Sadri, H.; Schuh, K.; Egert, S.; Stehle, P.; Meyer, I.; Koch, C.; Dusel, G.; Sauerwein, H. Branched-Chain Amino Acids: Abundance of Their Transporters and Metabolizing Enzymes in Adipose Tissue, Skeletal Muscle, and Liver of Dairy Cows at High or Normal Body Condition. J. Dairy Sci. 2020, 103, 2847–2863. [Google Scholar] [CrossRef] [PubMed]
- An, J.; He, H.; Lan, X.; Liu, L.; Wang, Z.; Ge, Y.; Shen, W.; Cheng, A.; Wan, F. Branched-Chain Amino Acids in Ruminant Nutrition: Function Effects and Summary of Recent Advances. Anim. Feed Sci. Technol. 2024, 312, 115972. [Google Scholar] [CrossRef]
- Wishart, D.S.; Guo, A.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L.; et al. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Res. 2022, 50, D622–D631. [Google Scholar] [CrossRef] [PubMed]
- Wilmanski, J.; Villanueva, E.; Deitch, E.A.; Spolarics, Z. Glucose-6-Phosphate Dehydrogenase Deficiency and the Inflammatory Response to Endotoxin and Polymicrobial Sepsis*. Crit. Care Med. 2007, 35, 510. [Google Scholar] [CrossRef]
- Zachut, M.; Kra, G.; Portnik, Y.; Shapiro, F.; Silanikove, N. Milk Glucose-6-Phosphate Dehydrogenase Activity and Glucose-6-Phosphate Are Associated with Oxidative Stress and Serve as Indicators of Energy Balance in Dairy Cows. RSC Adv. 2016, 6, 65412–65417. [Google Scholar] [CrossRef]
- Hod, A.; Daddam, J.R.; Kra, G.; Kamer, H.; Portnick, Y.; Moallem, U.; Zachut, M. Glucose-6-Phosphate Dehydrogenase Activity in Milk May Serve as a Non-Invasive Metabolic Biomarker of Energy Balance in Postpartum Dairy Cows. Metabolites 2023, 13, 312. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.R.; Fink-Gremmels, J. Mycotoxin Syndrome in Dairy Cattle: Characterisation and Intervention Results. World Mycotoxin J. 2014, 7, 357–366. [Google Scholar] [CrossRef]
- Sharma, N.; Singh, N.K.; Singh, O.P.; Pandey, V.; Verma, P.K. Oxidative Stress and Antioxidant Status during Transition Period in Dairy Cows. Asian-Australas. J. Anim. Sci. 2011, 24, 479–484. [Google Scholar] [CrossRef]
- Nyce, J.W. Autoinflammatory Reaction in Dogs Treated for Cancer via G6PD Inhibition. Case Rep. Vet. Med. 2017, 2017, 4275305. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.-C.; Stern, A.; Chiu, D.T.-Y. G6PD: A Hub for Metabolic Reprogramming and Redox Signaling in Cancer. Biomed. J. 2021, 44, 285–292. [Google Scholar] [CrossRef]
- Al-Sharif, M.; Abdo, M.; Shabrawy, O.E.; El-Naga, E.M.A.; Fericean, L.; Banatean-Dunea, I.; Ateya, A. Investigating Polymorphisms and Expression Profile of Immune, Antioxidant, and Erythritol-Related Genes for Limiting Postparturient Endometritis in Holstein Cattle. Vet. Sci. 2023, 10, 370. [Google Scholar] [CrossRef] [PubMed]
- Heintze, J.; Costa, J.R.; Weber, M.; Ketteler, R. Ribose 5-Phosphate Isomerase Inhibits LC3 Processing and Basal Autophagy. Cell. Signal. 2016, 28, 1380–1388. [Google Scholar] [CrossRef] [PubMed]
- Perl, A. Review: Metabolic Control of Immune System Activation in Rheumatic Diseases. Arthritis Rheumatol. 2017, 69, 2259–2270. [Google Scholar] [CrossRef]
- Bradford, B.J.; Yuan, K.; Farney, J.K.; Mamedova, L.K.; Carpenter, A.J. Invited Review: Inflammation during the Transition to Lactation: New Adventures with an Old Flame. J. Dairy Sci. 2015, 98, 6631–6650. [Google Scholar] [CrossRef]
- Herzberg, D.; Strobel, P.; Müller, H.; Meneses, C.; Werner, M.; Bustamante, H. Proteomic Profiling of Proteins in the Dorsal Horn of the Spinal Cord in Dairy Cows with Chronic Lameness. PLoS ONE 2020, 15, e0228134. [Google Scholar] [CrossRef]
- Lagace, D.C.; Timothy O’Brien, W.; Gurvich, N.; Nachtigal, M.W.; Klein, P.S. Valproic Acid: How It Works. Or Not. Clin. Neurosci. Res. 2004, 4, 215–225. [Google Scholar] [CrossRef]
- Maity, S.; Rubić, I.; Kuleš, J.; Horvatić, A.; Đuričić, D.; Samardžija, M.; Ljubić, B.B.; Turk, R.; Gračner, D.; Maćešić, N.; et al. Integrated Metabolomics and Proteomics Dynamics of Serum Samples Reveals Dietary Zeolite Clinoptilolite Supplementation Restores Energy Balance in High Yielding Dairy Cows. Metabolites 2021, 11, 842. [Google Scholar] [CrossRef] [PubMed]
- Holstege, D.M.; Puschner, B.; Le, T. Determination of Grayanotoxins in Biological Samples by LC-MS/MS. J. Agric. Food Chem. 2001, 49, 1648–1651. [Google Scholar] [CrossRef] [PubMed]
- Muca, E.; Cavallini, D.; Raspa, F.; Bordin, C.; Bergero, D.; Valle, E. Integrating New Learning Methods into Equine Nutrition Classrooms: The Importance of Students’ Perceptions. J. Equine Vet. Sci. 2023, 126, 104537. [Google Scholar] [CrossRef] [PubMed]
- Muca, E.; Buonaiuto, G.; Lamanna, M.; Silvestrelli, S.; Ghiaccio, F.; Federiconi, A.; De Matos Vettori, J.; Colleluori, R.; Fusaro, I.; Raspa, F.; et al. Reaching a Wider Audience: Instagram’s Role in Dairy Cow Nutrition Education and Engagement. Animals 2023, 13, 3503. [Google Scholar] [CrossRef] [PubMed]
- Stein, S. Mass Spectral Reference Libraries: An Ever-Expanding Resource for Chemical Identification. Anal. Chem. 2012, 84, 7274–7282. [Google Scholar] [CrossRef]
- Viant, M.R.; Kurland, I.J.; Jones, M.R.; Dunn, W.B. How Close Are We to Complete Annotation of Metabolomes? Curr. Opin. Chem. Biol. 2017, 36, 64–69. [Google Scholar] [CrossRef]
Mass [m/z] | Name | Formula | Species | Polarity | RT 1 [min] | Type of Identification | MSI 2 Classification of Confidence in Identification | Sample Collection Time |
---|---|---|---|---|---|---|---|---|
91.0541 | Unknown | Unknown | [M+H]+1 | Positive | 4.90 | NA | L4 | AT |
107.0500 * | 4-Methylphenol | C7 H8 O | [M−H]−1 | Negative | 4.44 | Accurate mass, MS/MS | L2 | AT |
120.1019 | Unknown | Unknown | [M+H]+1 | Positive | 6.79 | NA | L4 | POST |
129.0561 * | Ketoleucine | C6 H10 O3 | [M−H]−1 | Negative | 8.24 | Accurate mass | L3 | POST |
133.1335 | Unknown | Unknown | [M+H]+1 | Positive | 8.17 | NA | L4 | AT |
143.1080 | Valproic acid | C8 H16 O2 | [M−H]−1 | Negative | 3.87 | Accurate mass | L3 | AT |
151.0613 * | Unknown | Unknown | [M+H]+1 | Positive | 6.75 | NA | L4 | PRE |
158.0811 | CEGABA | C7 H13 N O4 | [M+H−H2O]+1 | Positive | 6.94 | Accurate mass | L3 | AT |
163.0963 | Unknown | Unknown | [M+H]+1 | Positive | 7.00 | NA | L4 | AT |
174.0562 | Indole-2-acetic acid | C10 H9 N O2 | [M−H]−1 | Negative | 7.16 | Accurate mass | L3 | AT |
177.0406 | D-Glucono-delta-lactone | C6 H10 O6 | [M−H]−1 | Negative | 7.57 | Accurate mass | L3 | POST |
193.0700 | Unknown | Unknown | [M−H]−1 | Negative | 6.29 | NA | L4 | PRE |
195.0664 * | AH0675000 | C10 H12 O4 | [M−H]−1 | Negative | 7.55 | Accurate mass | L3 | PRE |
195.1225 | Unknown | Unknown | [M+H]+1 | Positive | 4.76 | NA | L4 | PRE |
199.1440 | Unknown | Unknown | [M+H]+1 | Positive | 6.36 | NA | L4 | AT |
201.0771 | Unknown | Unknown | [2M−H]−1 | Negative | 7.66 | NA | L4 | POST |
201.1596 * | Unknown | Unknown | [M+H]+1 | Positive | 6.62 | NA | L4 | PRE |
203.0021 | Unknown | Unknown | [M−H]−1 | Negative | 7.07 | NA | L4 | AT |
215.0203 * | Unknown | Unknown | [M−H]−1 | Negative | 7.39 | NA | L4 | POST |
216.0514 | Unknown | Unknown | [M−H]−1 | Negative | 8.31 | NA | L4 | POST |
229.9764 | Unknown | Unknown | [M−H]−1 | Negative | 8.28 | NA | L4 | AT |
243.1236 | Unknown | Unknown | [2M−H]−1 | Negative | 6.83 | NA | L4 | AT |
251.0771 * | Unknown | Unknown | [M+H]+1 | Positive | 7.05 | NA | L4 | POST |
256.1751 | Unknown | Unknown | [M+NH4]+1 | Positive | 4.45 | NA | L4 | PRE |
280.1385 | Unknown | Unknown | [M+H]+1 | Positive | 7.12 | NA | L4 | PRE |
283.1034 | 1-Methylinosine | C11 H14 N4 O5 | [M+H]+1 | Positive | 6.75 | Accurate mass | L3 | PRE |
290.1229 | Unknown | Unknown | [M+H]+1 | Positive | 7.91 | NA | L4 | POST |
291.0180 * | Unknown | Unknown | [M−H]−1 | Negative | 6.65 | NA | L4 | POST |
299.0229 | Unknown | Unknown | [M−H]−1 | Negative | 3.58 | NA | L4 | POST |
301.0748 | Unknown | Unknown | [M−H]−1 | Negative | 3.36 | NA | L4 | PRE |
312.1297 | N2-Dimethylguanosine | C12 H17 N5 O5 | [M+H]+1 | Positive | 6.69 | Accurate mass | L3 | PRE |
314.1593 | Unknown | Unknown | [M+H]+1 | Positive | 4.23 | NA | L4 | AT |
316.1384 | Unknown | Unknown | [M+H]+1 | Positive | 5.03 | NA | L4 | POST |
322.0930 | Unknown | Unknown | [M−H]−1 | Negative | 4.85 | NA | L4 | AT |
489.1922 | Unknown | Unknown | [M+H]+1 | Positive | 8.70 | NA | L4 | PRE |
661.2039 | Unknown | Unknown | [M−H]−1 | Negative | 6.41 | NA | L4 | PRE |
881.2806 | Unknown | Unknown | [M+H]+1 | Positive | 7.82 | NA | L4 | AT |
Target m/z (i.e., the m/z of the Metabolite in the Inclusion List) | Standards | ||
---|---|---|---|
Adduct | Polarity | Name | |
107.0500 | M−H | Negative | p-Cresol (4-methylphenol) |
120.1019 | M+NH4 | Positive | 2-Methybutyric acid |
120.1019 | M+NH4 | Positive | Ethyl propionate |
120.1019 | M+H | Positive | N-Methyldiethanolamine |
120.1019 | M+NH4 | Positive | Pivalic acid |
120.1019 | M+NH4 | Positive | Valeric acid |
129.0561 | M−H | Negative | Acetylbutyric acid |
133.1335 | 2M+H−H2O | Positive | 1-Amino-2-propanol |
133.1335 | M+NH4−H2O | Positive | Diisopropylamine |
143.1080 | M−H | Negative | Valproic acid |
151.0613 | M+IsoProp+H | Positive | Oxalate |
174.0562 | M−H | Negative | 3-Indoleacetic acid |
177.0406 | M−H2O−H | Negative | D-Gluconic acid |
177.0406 | M−H | Negative | D-Glucono-1,4-lactone |
177.0406 | M−H | Negative | Gluconolactone |
177.0406 | M+FA−H | Negative | Glutaric acid |
177.0406 | M+FA−H | Negative | Methyl succinate |
177.0406 | M+Hac−H | Negative | Methylmalonic acid |
177.0406 | M+Hac−H | Negative | Succinic acid |
195.0664 | M−H | Negative | Dimethoxyphenylacetic acid |
195.0664 | M+FA−H | Negative | Hydroxycoumarin |
195.0664 | M+Hac−H | Negative | Phenylacetic acid |
195.0664 | M+Hac−H | Negative | Toluic acid |
195.0664 | M+FA−H | Negative | Tolylacetic acid |
195.1225 | M+IsoProp+H | Positive | Deoxyribose |
215.0203 | M+FA−H | Negative | Gallate |
251.0771 | M+H−H2O | Positive | Inosine |
283.1034 | 2M+H−H2O | Positive | D-Arabinose |
283.1034 | 2M+H−H2O | Positive | D-Ribose |
290.1229 | M+NH4 | Positive | Arbutin |
312.1297 | M+IsoProp+Na+H | Positive | Deoxyuridine |
316.1384 | 2M+2H+3H2O | Positive | 1-Naphthol |
316.1384 | 2M+2H+3H2O | Positive | 2-Naphthol |
Mass [m/z] | Name | Type of Identification | MSI Classification of Confidence in Identification |
---|---|---|---|
174.05623 | Arbutin | NA | NA |
291.01797 | Arbutin | NA | NA |
107.05003 | Cresol | Accurate mass, RT, MS/MS | L1 |
243.12357 | Diethylene Glycol | NA | NA |
216.05141 | Gluconolactone | NA | NA |
177.04063 | Gluconolactone | Accurate mass, RT, MS/MS | L1 |
195.06644 | Gluconolactone | NA | NA |
243.12357 | Glycerol | NA | NA |
143.10802 | Methylpentanoic acid | NA | NA |
143.10802 | Valproic acid | Accurate mass, RT | L2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardoso, A.S.; Whitby, A.; Green, M.J.; Kim, D.-H.; Randall, L.V. Identification of Predictive Biomarkers of Lameness in Transition Dairy Cows. Animals 2024, 14, 2030. https://doi.org/10.3390/ani14142030
Cardoso AS, Whitby A, Green MJ, Kim D-H, Randall LV. Identification of Predictive Biomarkers of Lameness in Transition Dairy Cows. Animals. 2024; 14(14):2030. https://doi.org/10.3390/ani14142030
Chicago/Turabian StyleCardoso, Ana S., Alison Whitby, Martin J. Green, Dong-Hyun Kim, and Laura V. Randall. 2024. "Identification of Predictive Biomarkers of Lameness in Transition Dairy Cows" Animals 14, no. 14: 2030. https://doi.org/10.3390/ani14142030
APA StyleCardoso, A. S., Whitby, A., Green, M. J., Kim, D.-H., & Randall, L. V. (2024). Identification of Predictive Biomarkers of Lameness in Transition Dairy Cows. Animals, 14(14), 2030. https://doi.org/10.3390/ani14142030