Effects of Defatted and Hydrolyzed Black Soldier Fly Larvae Meal as an Alternative Fish Meal in Weaning Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Black Soldier Fly Larvae Meal Sample
2.3. Digestibility Trial (Experiment 1)
2.3.1. Experimental Animals and Design
2.3.2. Diets and Feeding
2.3.3. Sampling and Analysis
2.4. Performance Trial (Experiment 2)
2.4.1. Experimental Animals and Design
2.4.2. Sampling and Analysis
2.5. Statistical Analysis
3. Results
3.1. Experimant 1
3.1.1. Nutrient Digestibility
3.1.2. Nitrogen Retention
3.1.3. Blood Profiles
3.2. Experimant 2
Production Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bruinsma, J. Agriculture: Towards 2015/2030; A FAO Perspective; Earthscan: London, UK, 2003; p. 432. [Google Scholar]
- Komarek, A.M.; Dunston, S.; Enahoro, D.; Godfray, H.C.J.; Herrero, M.; Mason-D’Croz, D.; Rich, F.M.; Scarborough, P.; Springmann, M.; Sulser, T.B.; et al. Income, consumer preferences, and the future of livestock-derived food demand. Glob. Environ. Chang. 2021, 70, 102343. [Google Scholar] [CrossRef]
- Miller, V.; Reedy, J.; Cudhea, F.; Zhang, J.; Shi, P.; Erndt-Marino, J.; Coates, F.; Micha, R.; Webb, P.; Mozaffarian, D.; et al. Global, regional, and national consumption of animal-source foods between 1990 and 2018: Findings from the Global Dietary Database. Lancet Planet. Health 2022, 6, 243–256. [Google Scholar] [CrossRef]
- Zhao, J.; Ban, T.; Miyawaki, H.; Hirayasu, H.; Izumo, A.; Iwase, S.I.; Kasai, K.; Kawasaki, K. Long-term dietary fish meal substitution with the black soldier fly larval meal modifies the caecal microbiota and microbial pathway in laying hens. Animals 2023, 13, 2629. [Google Scholar] [CrossRef]
- van Huis, A.; Gasco, L. Insects as feed for livestock production. Science 2023, 379, 138–139. [Google Scholar] [CrossRef]
- Yu, M.; Li, Z.; Chen, W.; Wang, G.; Rong, T.; Liu, Z.; Wang, F.; Ma, X. Hermetia illucens larvae as a fishmeal replacement alters intestinal specific bacterial populations and immune homeostasis in weanling piglets. J. Anim. Sci. 2020, 98, skz395. [Google Scholar] [CrossRef]
- Parisi, G.; Tulli, F.; Fortina, R.; Marino, R.; Bani, P.; Dalle Zotte, A.; De Angelis, A.; Piccolo, G.; Pinotti, L.; Schiavone, A.; et al. Protein hunger of the feed sector: The alternatives offered by the plant world. Ital. J. Anim. Sci. 2020, 19, 1204–1225. [Google Scholar] [CrossRef]
- Makkar, H.P.; Tran, G.; Heuzé, V.; Ankers, P. State-of-the-art on use of insects as animal feed. Anim. Feed. Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- Gasco, L.; Józefiak, A.; Henry, M. Beyond the protein concept: Health aspects of using edible insects on animals. J. Insects. Food. Feed. 2021, 7, 715–741. [Google Scholar] [CrossRef]
- Slade, E.M.; Riutta, T.; Roslin, T.; Tuomisto, H.L. The role of dung beetles in reducing greenhouse gas emissions from cattle farming. Sci. Rep. 2016, 6, 18140. [Google Scholar] [CrossRef]
- Chavez, M.; Uchanski, M. Insect left-over substrate as plant fertilizer. J. Insects. Food. Feed. 2021, 7, 683–694. [Google Scholar] [CrossRef]
- Sheppard, D.C.; Newton, G.L.; Thompson, S.A.; Savage, S. A value added manure management system using the black soldier fly. Bioresour. Technol. 1994, 50, 275–279. [Google Scholar] [CrossRef]
- Bondari, K.; Sheppard, D.C. Soldier fly, Hermetia illucens L., larvae as feed for channel catfish, Ictalurus punctatus (Rafinesque), and blue tilapia, Oreochromis aureus (Steindachner). Aquac. Res. 1987, 18, 209–220. [Google Scholar] [CrossRef]
- Driemeyer, H. Evaluation of Black Soldier Fly (Hermetia illucens) Larvae as an Alternative Protein Source in Pig Creep Diets in Relation to Production, Blood and Manure Microbiology Parameters. Ph.D. Dissertation, Stellenbosch University, Stellenbosch, South Africa, 2016. [Google Scholar]
- Velten, S.; Neumann, C.; Dorper, A.; Liebert, F. Response of piglets due to amino acid optimization of mixed diets with 75% replacement of soybean-meal by partly defatted insect meal (H. illucens). In Proceedings of the INSECTA, Berlin, Germany, 7–8 September 2017; p. 63. [Google Scholar]
- Spranghers, T.; Michiels, J.; Vrancx, J.; Ovyn, A.; Eeckhout, M.; De Clercq, P.; De Smet, S. Gut antimicrobial effects and nutritional value of black soldier fly (Hermetia illucens L.) prepupae for weaned piglets. Anim. Feed. Sci. Technol. 2018, 235, 33–42. [Google Scholar] [CrossRef]
- Cho, K.H.; Kang, S.W.; Yoo, J.S.; Song, D.K.; Chung, Y.H.; Kwon, G.T.; Kim, Y.Y. Effects of mealworm (Tenebrio molitor) larvae hydrolysate on nutrient ileal digestibility in growing pigs compared to those of defatted mealworm larvae meal, fermented poultry by-product, and hydrolyzed fish soluble. Asian-Australas. J. Anim. Sci. 2020, 33, 490. [Google Scholar] [CrossRef] [PubMed]
- Luparelli, A.V.; Saadoun, J.H.; Lolli, V.; Lazzi, C.; Sforza, S.; Caligiani, A. Dynamic changes in molecular composition of black soldier fly prepupae and derived biomasses with microbial fermentation. Food. Chem. X 2022, 14, 100327. [Google Scholar] [CrossRef] [PubMed]
- Hosseindoust, A.; Ha, S.; Mun, J.; Kim, J. Effects of meal processing of black soldier fly on standardized amino acids digestibility in pigs. J. Anim. Sci. Technol. 2023, 65, 1014. [Google Scholar] [CrossRef] [PubMed]
- NRC (National Research Council). Nutrient Requirements of Swine, 11th ed.; The National Academy Press: Washington, DC, USA, 2012.
- Adeola, O. Digestion and balance techniques in pigs. In Swine Nutrition; CRC Press: Boca Raton, FL, USA, 2000; pp. 923–936. [Google Scholar]
- AOAC. Official Methods of Analysis, 18th ed.; AOAC International: Washington, DC, USA, 2005. [Google Scholar]
- Smets, R.; Claes, J.; Van Der Borght, M. On the nitrogen content and a robust nitrogen-to-protein conversion factor of black soldier fly larvae (Hermetia illucens). Anal. Bioanal. Chem. 2021, 413, 6365–6377. [Google Scholar] [CrossRef] [PubMed]
- St-Hilaire, S.; Sheppard, C.; Tomberlin, J.K.; Irving, S.; Newton, L.; McGuire, M.A.; Mosley, E.E.; Hardy, R.W.; Sealey, W. Fly prepupae as a feedstuff for rainbow trout, Oncorhynchus mykiss. J. World Aquacult. Soc. 2007, 38, 59–67. [Google Scholar] [CrossRef]
- Murawska, D.; Daszkiewicz, T.; Sobotka, W.; Gesek, M.; Witkowska, D.; Matusevičius, P.; Bakuła, T. Partial and total replacement of soybean meal with full-fat black soldier fly (Hermetia illucens L.) larvae meal in broiler chicken diets: Impact on growth performance, carcass quality and meat quality. Animals 2021, 11, 2715. [Google Scholar] [CrossRef]
- Van der Heide, M.E.; Nørgaard, J.V.; Engberg, R.M. Performance, nutrient digestibility and selected gut health parameters of broilers fed with black soldier fly, lesser mealworm and yellow mealworm. J. Insects. Food. Feed. 2021, 7, 1011–1022. [Google Scholar] [CrossRef]
- Almeida, F.N.; Htoo, J.K.; Thomson, J.; Stein, H.H. Effects of heat treatment on the apparent and standardized ileal digestibility of amino acids in canola meal fed to growing pigs. Anim. Feed. Sci. Technol. 2014, 187, 44–52. [Google Scholar] [CrossRef]
- Stein, H.H.; Shurson, G.C. Board-invited review: The use and application of distillers dried grains with solubles in swine diets. J. Anim. Sci. 2009, 87, 1292–1303. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, D.A.; Lee, S.A.; Stein, H.H. Digestibility of amino acids, but not fiber, fat, or energy, is greater in cold-fermented, low-oil distillers dried grains with solubles (DDGS) compared with conventional DDGS fed to growing pigs. J. Anim. Sci. 2020, 98, skaa297. [Google Scholar] [CrossRef] [PubMed]
- Dabbou, S.; Gai, F.; Biasato, I.; Capucchio, M.T.; Biasibetti, E.; Dezzutto, D.; Meneguz, M.; Plachà, I.; Gasco, L.; Schiavone, A. Black soldier fly defatted meal as a dietary protein source for broiler chickens: Effects on growth performance, blood traits, gut morphology and histological features. J. Anim. Sci. Biotechnol. 2018, 9, 49. [Google Scholar] [CrossRef] [PubMed]
- Tschirner, M.; Simon, A. Influence of different growing substrates and processing on the nutrient composition of black soldier fly larvae destined for animal feed. J. Insects. Food. Feed. 2015, 1, 249–259. [Google Scholar] [CrossRef]
- Khan, S.; Khan, R.U.; Alam, W.; Sultan, A. Evaluating the nutritive profile of three insect meals and their effects to replace soya bean in broiler diet. J. Anim. Physiol. Anim. Nutr. 2018, 102, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Zozo, B.; Wicht, M.M.; Mshayisa, V.V.; Van Wyk, J. The nutritional quality and structural analysis of black soldier fly larvae flour before and after defatting. Insects 2022, 13, 168. [Google Scholar] [CrossRef] [PubMed]
- Biasato, I.; Renna, M.; Gai, F.; Dabbou, S.; Meneguz, M.; Perona, G.; Martinez, S.; Lajusticia, A.C.B.; Bergagna, S.; Sardi, L.; et al. Partially defatted black soldier fly larva meal inclusion in piglet diets: Effects on the growth performance, nutrient digestibility, blood profile, gut morphology and histological features. J. Anim. Sci. Biotechnol. 2019, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Kroeckel, S.; Harjes, A.G.; Roth, I.; Katz, H.; Wuertz, S.; Susenbeth, A.; Schulz, C. When a turbot catches a fly: Evaluation of a pre-pupae meal of the Black Soldier Fly (Hermetia illucens) as fish meal substitute—Growth performance and chitin degradation in juvenile turbot (Psetta maxima). Aquaculture 2012, 364, 345–352. [Google Scholar] [CrossRef]
- Razdan, A.; Pettersson, D. Effect of chitin and chitosan on nutrient digestibility and plasma lipid concentrations in broiler chickens. Br. J. Nutr. 1994, 72, 277–288. [Google Scholar] [CrossRef]
- Bovera, F.; Piccolo, G.; Gasco, L.; Marono, S.; Loponte, R.; Vassalotti, G.; Mastellone, V.; Lombardi, P.; Attia, Y.A.; Nizza, A. Yellow mealworms larvae (Tenebrio molitor L.) as protein source for broilers: Effects on growth performance and blood profiles. Br. Poult. Sci. 2015, 56, 569–575. [Google Scholar] [PubMed]
- Kim, J.; Park, K.; Ji, S.Y.; Kim, B.G. Nutrient digestibility in black soldier fly larva was greater than in adults for pigs and could be estimated using fiber. J. Anim. Sci. Technol. 2023, 65, 1002. [Google Scholar] [CrossRef]
- Caligiani, A.; Marseglia, A.; Leni, G.; Baldassarre, S.; Maistrello, L.; Dossena, A.; Sforza, S. Composition of black soldier fly prepupae and systematic approaches for extraction and fractionation of proteins, lipids and chitin. Food. Res. Int. 2018, 105, 812–820. [Google Scholar] [CrossRef] [PubMed]
- Do, S.; Koutsos, L.; Utterback, P.L.; Parsons, C.M.; De Godoy, M.R.; Swanson, K.S. Nutrient and AA digestibility of black soldier fly larvae differing in age using the precision-fed cecectomized rooster assay. J. Anim. Sci. 2020, 98, skz363. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schlüter, O.K. Potential and challenges of insects as an innovative source for food and feed production. Innov. Food. Sci. Emerg. Technol. 2013, 17, 1–11. [Google Scholar] [CrossRef]
- Jin, X.H.; Heo, P.S.; Hong, J.S.; Kim, N.J.; Kim, Y.Y. Supplementation of dried mealworm (Tenebrio molitor larva) on growth performance, nutrient digestibility and blood profiles in weaning pigs. Asian-Australas. J. Anim. Sci. 2016, 29, 979. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Song, M.; Lee, J.; Oh, H.; Song, D.; An, J.; Cho, H.; Park, S.; Jeon, K.; Lee, B.; et al. Effect of black soldier fly larvae as substitutes for fishmeal in broiler diet. J. Anim. Sci. Technol. 2023, 65, 1290–1307. [Google Scholar] [CrossRef]
- Crosbie, M.; Zhu, C.; Karrow, N.A.; Huber, L.A. The effects of partially replacing animal protein sources with full fat black soldier fly larvae meal (Hermetia illucens) in nursery diets on growth performance, gut morphology, and immune response of pigs. Transl. Anim. Sci. 2021, 5, txab057. [Google Scholar] [CrossRef] [PubMed]
- Nekrasov, R.; Zelenchenkova, A.; Chabaev, M.; Ivanov, G.; Antonov, A.; Pastukhova, N. PSIII-37 Dried Black Soldier Fly larvae as a dietary supplement to the diet of growing pigs. J. Anim. Sci. 2018, 96, 314. [Google Scholar] [CrossRef]
- Chia, S.Y.; Tanga, C.M.; Osuga, I.M.; Alaru, A.O.; Mwangi, D.M.; Githinji, M.; Subramanian, S.; Fiaboe, K.K.M.; Ekesi, S.; van Loon, J.J.A.; et al. Effect of dietary replacement of fishmeal by insect meal on growth performance, blood profiles and economics of growing pigs in Kenya. Animals 2019, 9, 705. [Google Scholar] [CrossRef]
- Yu, M.; Li, Z.; Chen, W.; Rong, T.; Wang, G.; Ma, X. Hermetia illucens larvae as a potential dietary protein source altered the microbiota and modulated mucosal immune status in the colon of finishing pigs. J. Anim. Sci. Biotechnol. 2019, 10, 50. [Google Scholar] [CrossRef] [PubMed]
- Crosbie, M.; Zhu, C.; Shoveller, A.K.; Huber, L.A. Standardized ileal digestible amino acids and net energy contents in full fat and defatted black soldier fly larvae meals (Hermetia illucens) fed to growing pigs. Translnal. Anim. Sci. 2020, 4, txaa104. [Google Scholar] [CrossRef] [PubMed]
- Jozefiak, A.; Engberg, R.M. Insect proteins as a potential source of antimicrobial peptides in livestock production. A review. J. Anim. Feed. Sci. 2017, 26, 87–99. [Google Scholar] [CrossRef]
- Cho, K.H.; Sampath, V.; Kim, A.J.; Yoo, J.S.; Kim, I.H. Evaluation of full-fatted and hydrolysate mealworm (Tenebrio molitor) larvae as a substitute for spray-dried plasma protein diet in weaning pigs. J. Anim. Physiol. Anim. Nutr. 2023, 107, 589–597. [Google Scholar] [CrossRef]
Items | FM | Defatted BLM | Hydrolyzed BLM |
---|---|---|---|
General Components | |||
GE, kcal/kg | 4542.20 | 4578.12 | 4638.92 |
DM, % | 93.00 | 93.25 | 93.41 |
CP, % | 67.00 | 56.02 | 59.97 |
EE, % | 9.00 | 6.26 | 11.44 |
CF, % | 0.30 | 10.28 | 8.62 |
Ash, % | 10.02 | 16.93 | 10.02 |
Essential Amino Acids, % | |||
Lys | 5.60 | 3.51 | 3.40 |
Thr | 3.10 | 2.20 | 2.00 |
Trp | 1.05 | 0.61 | 0.54 |
Met | 2.56 | 1.03 | 0.83 |
Phe | 2.22 | 2.27 | 2.42 |
Ile | 2.71 | 2.29 | 2.41 |
Leu | 4.42 | 3.80 | 3.87 |
His | 2.21 | 1.70 | 1.48 |
Arg | 4.37 | 2.77 | 2.68 |
Val | 3.48 | 3.85 | 3.55 |
Non-Essential Amino Acids, % | |||
Ala | 4.73 | 3.55 | 4.24 |
Asp | 6.50 | 5.03 | 5.11 |
Glu | 7.85 | 6.11 | 6.14 |
Gly | 4.70 | 3.08 | 3.03 |
Ser | 2.77 | 2.38 | 2.07 |
Tyr | 1.83 | 3.28 | 3.66 |
Cys | 0.91 | 0.55 | 0.37 |
Pro | 2.83 | 3.27 | 3.55 |
Items | FM | Defatted BLM | Hydrolyzed BLM |
---|---|---|---|
Ingredients, % | |||
Corn | 36.43 | 36.12 | 36.07 |
Extruded corn | 15.00 | 15.00 | 15.00 |
Lactose | 10.00 | 10.00 | 10.00 |
Soybean meal, 44% CP | 14.50 | 14.81 | 14.86 |
Soy protein concentrate, 65% CP | 8.00 | 8.00 | 8.00 |
Fishmeal | 5.00 | - | - |
Defatted BLM | - | 5.00 | - |
Hydrolyzed BLM | - | - | 5.00 |
Whey | 5.00 | 5.00 | 5.00 |
Soy oil | 2.20 | 2.20 | 2.20 |
Monocalcium phosphate | 1.26 | 1.26 | 1.26 |
Limestone | 1.40 | 1.40 | 1.40 |
L-Lysine-HCl, 78% | 0.06 | 0.06 | 0.06 |
DL-Methionine, 50% | 0.15 | 0.15 | 0.15 |
Choline chloride, 25% | 0.10 | 0.10 | 0.10 |
Vitamin premix 2 | 0.25 | 0.25 | 0.25 |
Trace mineral premix 3 | 0.25 | 0.25 | 0.25 |
Salt | 0.40 | 0.40 | 0.40 |
Total | 100.00 | 100.00 | 100.00 |
Calculated Value | |||
ME, kcal/kg | 3493 | 3493 | 3493 |
CP, % | 20.55 | 20.55 | 20.55 |
Lysine, % | 1.55 | 1.55 | 1.55 |
Methionine, % | 0.41 | 0.41 | 0.41 |
Analyzed Value | |||
ME, kcal/kg | 3442.02 | 3426.98 | 3427.33 |
CP, % | 19.61 | 19.56 | 19.60 |
Lysine, % | 1.48 | 1.44 | 1.43 |
Methionine, % | 0.49 | 0.43 | 0.39 |
Items, % | FM | Defatted BLM | Hydrolyzed BLM | SE | p-Value |
---|---|---|---|---|---|
Week 1 | |||||
DM | 84.55 | 85.40 | 84.03 | 1.806 | 0.865 |
CP | 74.98 | 76.04 | 75.07 | 2.842 | 0.958 |
GE | 83.80 | 84.95 | 82.29 | 1.913 | 0.624 |
Week 2 | |||||
DM | 84.50 | 85.42 | 82.09 | 1.368 | 0.240 |
CP | 80.27 a | 80.36 a | 73.19 b | 1.903 | 0.026 |
GE | 84.38 | 84.96 | 80.66 | 1.489 | 0.120 |
Items, % | FM | Defatted BLM | Hydrolyzed BLM | SE | p-Value |
---|---|---|---|---|---|
Essential Amino Acids | |||||
Lys | 76.48 | 77.74 | 74.88 | 2.679 | 0.756 |
Thr | 72.44 | 73.29 | 69.19 | 3.400 | 0.673 |
Trp | 66.22 | 66.91 | 64.58 | 4.009 | 0.916 |
Met | 79.73 | 75.18 | 72.76 | 3.162 | 0.314 |
Phe | 76.82 | 75.69 | 74.94 | 2.873 | 0.898 |
Ile | 62.24 | 63.58 | 60.99 | 4.347 | 0.915 |
Leu | 70.73 | 69.83 | 68.57 | 3.241 | 0.895 |
His | 70.82 | 68.55 | 69.51 | 3.058 | 0.871 |
Arg | 73.35 | 75.31 | 70.53 | 2.942 | 0.528 |
Val | 66.05 | 66.58 | 63.69 | 3.164 | 0.792 |
Total | 71.71 | 71.63 | 69.27 | 3.143 | 0.826 |
Non-Essential Amino Acids | |||||
Ala | 65.73 | 64.08 | 64.41 | 4.108 | 0.956 |
Asp | 80.57 | 79.49 | 78.30 | 2.471 | 0.813 |
Glu | 77.65 | 80.17 | 75.96 | 2.730 | 0.561 |
Gly | 66.60 | 64.47 | 62.99 | 3.789 | 0.798 |
Ser | 79.03 | 79.37 | 77.97 | 2.547 | 0.922 |
Tyr | 70.38 | 68.98 | 68.61 | 2.958 | 0.905 |
Cys | 69.98 | 69.77 | 63.03 | 2.771 | 0.165 |
Pro | 74.19 | 75.37 | 73.29 | 3.088 | 0.893 |
Total | 74.70 | 74.69 | 72.52 | 2.923 | 0.833 |
Items, % | FM | Defatted BLM | Hydrolyzed BLM | SE | p-Value |
---|---|---|---|---|---|
Essential Amino Acids | |||||
Lys | 79.31 | 79.55 | 74.67 | 1.877 | 0.152 |
Thr | 74.84 | 76.04 | 69.46 | 2.450 | 0.163 |
Trp | 70.50 | 71.50 | 68.97 | 2.869 | 0.823 |
Met | 83.76 | 79.60 | 78.27 | 1.671 | 0.084 |
Phe | 77.07 | 76.67 | 75.44 | 2.142 | 0.856 |
Ile | 63.34 | 64.97 | 61.24 | 2.861 | 0.661 |
Leu | 74.59 | 72.85 | 70.04 | 2.106 | 0.332 |
His | 74.63 | 73.61 | 71.76 | 2.292 | 0.676 |
Arg | 75.03 | 78.22 | 71.59 | 2.062 | 0.109 |
Val | 67.74 | 68.15 | 63.77 | 2.866 | 0.507 |
Total | 74.18 | 74.01 | 70.22 | 2.170 | 0.369 |
Non-Essential Amino Acids | |||||
Ala | 66.82 | 68.36 | 65.01 | 2.641 | 0.675 |
Asp | 82.58 | 82.15 | 79.29 | 1.559 | 0.298 |
Glu | 79.64 | 82.14 | 80.06 | 1.985 | 0.643 |
Gly | 69.76 | 67.44 | 65.98 | 2.850 | 0.648 |
Ser | 82.60 | 83.17 | 80.44 | 1.510 | 0.425 |
Tyr | 74.02 | 73.08 | 70.71 | 2.307 | 0.591 |
Cys | 74.77 | 75.65 | 71.10 | 2.071 | 0.287 |
Pro | 76.74 | 78.38 | 74.13 | 2.028 | 0.354 |
Total | 77.19 | 77.81 | 75.04 | 1.974 | 0.591 |
Items | FM | Defatted BLM | Hydrolyzed BLM | SE | p-Value |
---|---|---|---|---|---|
Week 1 | |||||
N intake, g/d | 18.07 | 16.93 | 18.24 | 1.625 | 0.827 |
N excretion in urine, g/d | 2.15 | 2.20 | 2.29 | 0.250 | 0.921 |
N excretion in feces, g/d | 4.44 | 3.99 | 4.76 | 0.682 | 0.731 |
Total N excretion, g/d | 6.59 | 6.19 | 7.05 | 0.740 | 0.720 |
N retention, g/d | 11.48 | 10.74 | 11.19 | 1.149 | 0.901 |
N retention, % of N intake | 63.06 | 63.00 | 61.72 | 2.391 | 0.906 |
Week 2 | |||||
N intake, g/d | 17.99 | 16.78 | 17.65 | 1.188 | 0.765 |
N excretion in urine, g/d | 2.40 | 2.23 | 2.00 | 0.256 | 0.543 |
N excretion in feces, g/d | 3.59 | 3.42 | 4.80 | 0.512 | 0.149 |
Total N excretion, g/d | 5.99 | 5.65 | 6.80 | 0.404 | 0.155 |
N retention, g/d | 11.99 | 11.13 | 10.85 | 0.881 | 0.644 |
N retention, % of N intake | 66.73 a | 65.80 ab | 61.30 b | 1.368 | 0.030 |
Items | FM | Defatted BLM | Hydrolyzed BLM | SE | p-Value |
---|---|---|---|---|---|
WBCs, 103/μL | 21.55 | 21.12 | 21.84 | 0.768 | 0.800 |
RBCs, 106/μL | 6.54 | 6.64 | 6.89 | 0.248 | 0.601 |
Lymphocytes, % | 59.90 | 61.65 | 60.17 | 2.596 | 0.877 |
Neutrophils, % | 36.17 | 34.17 | 34.78 | 2.382 | 0.833 |
Total protein, g/dL | 4.73 | 4.72 | 5.00 | 0.195 | 0.529 |
BUN, mg/dL | 8.00 b | 9.33 ab | 10.67 a | 0.689 | 0.048 |
Items | FM | Defatted BLM | Hydrolyzed BLM | SE | p-Value |
---|---|---|---|---|---|
BW, kg | |||||
Initial | 8.19 | 8.17 | 8.38 | 0.377 | 0.908 |
Week 2 | 11.33 | 11.32 | 11.49 | 0.353 | 0.926 |
Week 4 | 15.88 | 16.87 | 16.41 | 0.422 | 0.276 |
Week 6 | 21.80 b | 23.68 a | 22.81 ab | 0.422 | 0.017 |
Weeks 0–2 | |||||
ADG, g | 224.20 | 225.00 | 222.32 | 10.561 | 0.983 |
ADFI, g | 408.33 | 393.30 | 395.49 | 14.365 | 0.730 |
FCR | 1.82 | 1.75 | 1.78 | 0.112 | 0.721 |
FCG, USD/kg gain | 1.26 | 1.14 | 1.18 | 0.074 | 0.566 |
Weeks 2–4 | |||||
ADG, g | 325.27 b | 396.61 a | 351.34 ab | 14.975 | 0.010 |
ADFI, g | 631.47 | 662.87 | 646.54 | 17.851 | 0.474 |
FCR | 1.94 | 1.67 | 1.84 | 0.080 | 0.077 |
FCG, USD/kg gain | 1.31 a | 1.10 b | 1.22 ab | 0.053 | 0.039 |
Weeks 4–6 | |||||
ADG, g | 422.68 | 486.61 | 457.14 | 24.889 | 0.216 |
ADFI, g | 962.26 | 991.44 | 976.88 | 19.048 | 0.565 |
FCR | 2.28 | 2.04 | 2.14 | 0.128 | 0.401 |
FCG, USD/kg gain | 1.56 | 1.36 | 1.43 | 0.085 | 0.270 |
Weeks 0–6 | |||||
ADG, g | 324.05 b | 369.40 a | 343.60 ab | 7.281 | 0.001 |
ADFI, g | 667.35 | 682.53 | 672.97 | 9.794 | 0.550 |
FCR | 2.06 a | 1.85 b | 1.96 ab | 0.052 | 0.031 |
FCG, USD/kg gain | 1.38 a | 1.21 b | 1.29 ab | 0.034 | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Park, Y.; Song, D.; Chang, S.; Cho, J. Effects of Defatted and Hydrolyzed Black Soldier Fly Larvae Meal as an Alternative Fish Meal in Weaning Pigs. Animals 2024, 14, 1692. https://doi.org/10.3390/ani14111692
Lee J, Park Y, Song D, Chang S, Cho J. Effects of Defatted and Hydrolyzed Black Soldier Fly Larvae Meal as an Alternative Fish Meal in Weaning Pigs. Animals. 2024; 14(11):1692. https://doi.org/10.3390/ani14111692
Chicago/Turabian StyleLee, Jihwan, Younguk Park, Dongcheol Song, Seyeon Chang, and Jinho Cho. 2024. "Effects of Defatted and Hydrolyzed Black Soldier Fly Larvae Meal as an Alternative Fish Meal in Weaning Pigs" Animals 14, no. 11: 1692. https://doi.org/10.3390/ani14111692
APA StyleLee, J., Park, Y., Song, D., Chang, S., & Cho, J. (2024). Effects of Defatted and Hydrolyzed Black Soldier Fly Larvae Meal as an Alternative Fish Meal in Weaning Pigs. Animals, 14(11), 1692. https://doi.org/10.3390/ani14111692