Influence of Pediococcus pentosaceus GT001 on Performance, Meat Quality, Immune Function, Antioxidant and Cecum Microbial in Broiler Chickens Challenged by Salmonella typhimurium
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacteria Strain
2.2. Birds, Treatments, Design and Husbandry
2.3. Growth Performance
2.4. Serum Biochemistry
2.5. Intestinal Measurement and pH Assessment
2.6. Digestive Enzyme Measurement
2.7. Intestinal Morphology Measurement
2.8. Organs and Meat Quality Assessment
2.9. Salmonella and TVC Enumeration
2.10. Analysis of Cecum Microbial Ecology
2.11. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Serum Biochemistry
3.3. Serum Antioxidant Activities
3.4. Serum Cytokines and Immunology
3.5. Digestive Enzymes
3.6. Organs
3.7. Meat Quality
3.8. Intestinal pH and Length
3.9. Small Intestinal Morphology
3.10. Salmonella Load
3.11. Analysis of Cecum Microbial Ecology
3.11.1. Microbial Effective Sequence
3.11.2. Microbial Diversity
3.11.3. Microbial Composition
4. Discussion
4.1. Growth Performance
4.2. Serum Biochemistry Activities
4.3. Serum Antioxidant Activities
4.4. Cytokines and Immunological Activities in the Serum
4.5. Digestive Enzymes
4.6. Organs and Meat Quality
4.7. Intestinal Length and pH
4.8. Intestinal Morphology
4.9. Salmonella Load and Total Viable Count
4.10. Cecum Microbial Ecology
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thung, T.Y.; Mahyudin, N.A.; Basri, D.F.; Radzi, C.W.M.; Nakaguchi, Y.; Nishibuchi, M.; Radu, S. Prevalence and antibiotic resistance of Salmonella enteritidis and Salmonella typhimurium in raw chicken meat at retail markets in Malaysia. Poult. Sci. 2016, 95, 1888–1893. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.R.; Kellermann, A.; Santos, L.R.D.; Bessa, M.C.; Nascimento, V.P.D. Salmonella spp. in raw broiler parts: Occurrence, antimicrobial resistance profile and phage typing of the Salmonella enteritidis isolates. Braz. J. Microbiol. 2007, 38, 296–299. [Google Scholar] [CrossRef]
- Antunes, P.; Réu, C.; Sousa, J.C.; Peixe, L.; Pestana, N. Incidence of Salmonella from poultry products and their susceptibility to antimicrobial agents. Int. J. Food Microbiol. 2003, 82, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Saleem, G.; Ramzaan, R.; Khattak, F.; Akhtar, R. Effects of acetic acid supplementation in broiler chickens orally challenged with Salmonella pullorum. Turk. J. Vet. Anim. Sci. 2016, 40, 434–443. [Google Scholar] [CrossRef]
- Chang, C.H.; Teng, P.Y.; Lee, T.Y.; Yu, B. The effects of the supplementation of multi-strain probiotics on intestinal microbiota, metabolites and inflammation of young SPF chickens challenged with Salmonella enterica subsp. enterica. Anim. Sci. J. 2019, 90, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Abudabos, A.; Alyemni, A.; Al Marshad, B.A. Bacillus subtilis PB6 based-probiotic (CloSTATTM) improves intestinal morphological and microbiological status of broiler chickens under Clostridium perfringens challenge. Int. J. Agric. Biol. 2013, 15, 978–982. [Google Scholar]
- Rajput, I.R.; Li, W.F. Potential role of probiotics in mechanism of intestinal immunity. Pak. Vet. J. 2012, 32, 3. [Google Scholar]
- Gong, L.; He, H.; Li, D.; Cao, L.; Khan, T.A.; Li, Y.; Pan, L.; Yan, L.; Ding, X.; Sun, Y.; et al. A new isolate of Pediococcus pentosaceus (SL001) with antibacterial activity against fish pathogens and potency in facilitating the immunity and growth performance of grass carps. Front. Microbiol. 2019, 10, 1384. [Google Scholar] [CrossRef] [PubMed]
- Damodharan, K.; Lee, Y.S.; Palaniyandi, S.A.; Yang, S.H.; Suh1, J.-W. Preliminary probiotic and technological characterization of Pediococcus pentosaceus strain KID7 and in vivo assessment of its cholesterol-lowering activity. Front. Microbiol. 2015, 6, 1–14. [Google Scholar]
- De Souza de Azevedo, P.O.; Mendonca, C.M.N.; Moreno, A.C.R.; Bueno, A.V.I.; de Almeida, S.R.Y.; Seibert, L. Antibacterial and Antifungal Activity of Crude and Freeze-Dried Bacteriocin-Like Inhibitory Substance Produced by Pediococcus Pentosaceus. Sci Rep. 2020, 10, 12291. [Google Scholar] [CrossRef]
- Jiang, S.; Cai, L.; Lv, L.; Li, L. Pediococcus pentosaceus, a future additive or probiotic candidate. Microb. Cell Fact. 2021, 20, 45. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Poultry, 9th ed.; National Academy Press: Washington, DC, USA, 1994. [Google Scholar]
- Erdogmuş, S.Z.; Gülmez, N.; Fındik, A.; Şah, H.; Gülmez, M. Efficacy of probiotics on health status and growth performance of Eimeria tenella infected broiler chickens. Kafkas Univ. Vet. Fak. Derg. 2019, 25, 311–320. [Google Scholar] [CrossRef]
- Alarcon-Rojo, A.D.; Peña-González, E.M.; Janacua-Vidales, H.; Santana, V.; Ortega, J.A. Meat Quality and Lipid Oxidation of Pork after Dietary Supplementation with Oregano Essential Oil. World Appl. Sci. J. 2013, 21, 665–673. [Google Scholar]
- Dersjant-Li, Y.; Romero, L.F.; Wealleans, A.; Awati, A. Analysis of eight trial studies confirmed beneficial effect of a combination of enzymes and direct fed microbials on weight gain and feed utilisation efficiency in broilers. In Proceedings of the International Poultry Scientific Forum, Atlanta, GA, USA, 27–28 January 2014; Volume 69. [Google Scholar]
- Sikandar, A.; Cheema, A.H.; Adil, M.; Younus, M.; Zaneb, H.; Zaman, A.; Tipu, M.Y.; Masood, S. Ovine paratuberculosis—A histopathological study from Pakistan. J. Anim. Plant Sci. 2013, 23, 749–753. [Google Scholar]
- Vandeplas, S.; Dauphin, R.D.; Thiry, C. Efficiency of a Lactobacillus plantarum-xylanase combination on growth performances, microflora populations, and nutrient digestibilities of broilers infected with Salmonella typhimurium. Poult. Sci. 2009, 88, 1643–1654. [Google Scholar] [CrossRef] [PubMed]
- Sikandar, A.; Zaneb, H.; Nasir, A.; Adil, M.; Ali, H.M.; Muhammad, N.; Rehman, T.; Rehman, A.; Rehman, H.F. Effects of Bacillus subtilis on performance, immune system and gut in Salmonella-challenged broilers. S. Afr. J. Anim. Sci. 2020, 50, 2221–4062. [Google Scholar] [CrossRef]
- Chang, C.H.; Teng, P.Y.; Tzu Tai Lee, T.T.; Yu, B. Effects of multi-strain probiotic supplementation on intestinal microbiota, tight junctions, and inflammation in young broiler chickens challenged with Salmonella enterica subsp. Enterica. Asian-Australas. J. Anim. Sci. 2020, 33, 1797–1808. [Google Scholar] [CrossRef]
- Mountzouris, K.C.; Balaskas, C.; Xanthakos, I.; Tzivinikou, A.; Fegeros, K. Effects of a multi-species probiotic on biomarkers of competitive exclusion efficacy in broilers challenged with Salmonella enteritidis. Br. Poult. Sci. 2009, 50, 467–478. [Google Scholar] [CrossRef]
- Malago, J.J.; Koninkx, J.F.; Ovelgönne, H.H.; van Asten, F.J.; Swennenhuis, J.F.; van Dijk, J.E. Expression levels of heat shock proteins in enterocyte-like Caco-2 cells after exposure to Salmonella enteritidis. Cell Stress Chaperon. 2003, 8, 194–203. [Google Scholar] [CrossRef]
- de Azevedo, P.O.S.; Converti, A.; Gierus, M.; Oliveira, R.P.S. Antimicrobial activity of bacteriocin-like inhibitory substance produced by Pediococcus pentosaceus: From shake flasks to bioreactor. Mol. Biol. 2019, 46, 461–469. [Google Scholar] [CrossRef]
- Begum, S.A.; Upadhyaya, T.N.; Baruah, G.K. Hematobiochemical alterations of acute chlorpyriphos intoxication in indigenous chicken. J. Vet. World. 2015, 8, 750–754. [Google Scholar] [CrossRef]
- Mohamed, T.M.; Sun, W.; Bumbie, G.Z.; Elokil, A.A.; Mohammed, K.A.F.; Zebin, R.; Hu, P.; Wu, L.; Tang, Z. Feeding Bacillus subtilis ATCC19659 to Broiler Chickens Enhances Growth Performance and Immune Function by Modulating Intestinal Morphology and Cecum Microbiota. Front. Microbiol. 2022, 12, 798350. [Google Scholar] [CrossRef]
- Zhang, L.; Bai, K.; Zhang, J.; Xu, W.; Huang, Q.; Wang, T. Dietary effects of Bacillus subtilis fmbj on the antioxidant capacity of broilers at an early age. Poult. Sci. 2017, 96, 3564–3573. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Xu, H.; Mei, X.; Gong, L.; Wang, B.; Li, W.; Jiang, S. Direct-fed glucose oxidase and its combination with B. amyloliquefaciens SC06 on growth performance, meat quality, intestinal barrier, antioxidative status, and immunity of yellow feathered broilers. Poult. Sci. 2018, 97, 3540–3549. [Google Scholar] [CrossRef]
- Yang, H.; Deng, J.; Yuan, Y.; Fan, D.; Zhang, Y.; Zhang, R.; Han, B. Two novel exopolysaccharides from Bacillus amyloliquefaciens C-1: Antioxidation and effect on oxidative stress. Curr. Microbiol. 2015, 70, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Abudabos, A.M.; Alyemni, A.H.; Zakaria, H.A.H. Effect of Two Strains of Probiotics on the Antioxidant Capacity, Oxidative Stress, and Immune Responses of Salmonella-Challenged Broilers. Braz. J. Poult. Sci. 2015, 18, 175–180. [Google Scholar] [CrossRef]
- Erdoğan, Z.; Erdoğan, S.; Aslantaş, Ö.; Çelik, S. Effects of dietary supplementation of synbiotics and phytobiotics on performance, caecal coliform population and some oxidant/antioxidant parameters of broilers. J. Anim. Physiol. Anim. Nutr. 2010, 94, e40–e48. [Google Scholar] [CrossRef]
- Muir, W.I.; Bryden, W.L.; Husband, A.J. Evaluation of the efficacy of intraperitoneal immunization in reducing Salmonella typhimurium infection in chickens. Poult. Sci. 1998, 77, 1874–1883. [Google Scholar] [CrossRef]
- Alkhalf, A.; Alhaj, M.; Al-Homidan, I. Influence of probiotic supplementation on immune response of broiler chicks. Egypt. Poult. Sci. 2010, 30, 271–280. [Google Scholar]
- Dhama, K.; Singh, S.D. Probiotics improving poultry health and production: An overview. Poult. Punch. 2010, 26, 41. [Google Scholar]
- Wang, L.; Li, L.; Lv, Y.; Chen, Q.; Feng, J.; Zhao, X. Lactobacillus plantarum restores intestinal permeability disrupted by Salmonella infection in newly-hatched chicks. Sci. Rep. 2018, 8, 2229. [Google Scholar] [CrossRef] [PubMed]
- Masuda, T.; Kimura, M.; Okada, S.; Yasui, H. Pediococcus pentosaceus Sn26 Inhibits IgE Production and the Occurrence of Ovalbumin-Induced Allergic Diarrhea in Mice. Biosci. Biotechnol. Biochem. 2010, 74, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, E.A.; Mohamed, T.E.; Heba, M.S.; Amira, M.E.; Mohamed, M.S.; Gehan, B.A.Y.; Ayman, E.T.; Soliman, M.S.; Ahmed, E.A.; Attalla, F.E.; et al. Alternatives to antibiotics for organic poultry production: Types, modes of action and impacts on bird’s health and production. Poult. Sci. 2022, 101, 101696. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gu, Q. Effect of probiotic on growth performance and digestive enzyme activity of Arbor Acres broilers. Res. Vet. Sci. 2010, 89, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Kim, I.H. Supplemental effect of probiotic Bacillus subtilis B2A on productivity, organ weight, intestinal Salmonella microflora, and breast meat quality of growing broiler chicks. Poult. Sci. 2014, 93, 2054–2059. [Google Scholar] [CrossRef] [PubMed]
- Macelline Shemil Priyan, W.H.D.; Cho, H.M.; Awanthika, T.H.K.; Wickramasuriya, S.S.; Jayasena, D.D.; Tharangani, H.R.M.; Song, Z.; Heo, J.M. Determination of The Growth Performances and Meat Quality of Broilers Fed Saccharomyces cerevisiae as a Probiotic in Two Different Feeding Intervals. Korean J. Poult. Sci. 2017, 44, 161–172. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Zhou, T.X.; Ao, X.; Kim, I.H. Effects of β-glucan and Bacillus subtilis on growth performance, blood profiles, relative organ weight and meat quality in broilers fed maize-soybean meal based diets. Livest. Sci. 2012, 150, 419–424. [Google Scholar] [CrossRef]
- Kim, Y.J.; Yoon, Y.B. Effect of the feeding probiotics, illite, activated carbon, and hardwood vinegar on the meat quality and shelf-life in chicken thigh. Korean J. Food Sci. Anim. Resour. 2008, 28, 480–485. [Google Scholar] [CrossRef]
- Chen, H.; Dong, X.; Yao, Z.; Xu, B.; Zhen, S.; Li, C.; Li, X. Effects of pre chilling parameters on water-holding capacity of chilled pork and optimization of pre chilling parameters using response surface methodology. J. Anim. Sci. 2012, 90, 2836–2841. [Google Scholar] [CrossRef]
- Fletcher, D.L. Broiler breast meat color variation, pH, and texture. Poult. Sci. 1999, 78, 1323–1327. [Google Scholar] [CrossRef]
- Angel, R.; Dalloul, R.A.; Doerr, J. Performance of broiler chickens fed diets supplemented with a direct-fed microbial. Poult. Sci. 2005, 84, 1222–1231. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Zhu, L.; Qiu, H. Isolation and Probiotic Potential of Lactobacillus salivarius and Pediococcus pentosaceus in Specific Pathogen Free Chickens. Braz. J. Poult. Sci. 2017, 19, 325–332. [Google Scholar] [CrossRef]
- Sen, S.; Ingale, S.; Kim, Y.; Kim, J.; Kim, K.; Lohakare, J.; Kim, E.; Kim, H.; Ryu, M.; Kwon, I. Effect of supplementation of Bacillus subtilis LS 1–2 to broiler diets on growth performance, nutrient retention, caecal microbiology and small intestinal morphology. Res. Vet. Sci. 2012, 93, 264–268. [Google Scholar] [CrossRef] [PubMed]
- Shalaei, M.; Hosseini, S.M.; Zergani, E. Effect of different supplements on eggshell quality, some characteristics of gastrointestinal tract and performance of laying hens. Vet. Res. Forum. 2014, 5, 277–286. [Google Scholar] [PubMed]
- Patterson, A.; Burkholder, M. Application of prebiotics and probiotics in poultry production. Poult. Sci. 2003, 82, 627–631. [Google Scholar] [CrossRef] [PubMed]
- Hardy, H.; Harris, J.; Lyon, E.; Beal, J.; Foey, A.D. Probiotics, prebiotics and immunomodulation of gut mucosal defences: Homeostasis and immunopathology. Nutrients 2013, 5, 1869–1912. [Google Scholar] [CrossRef] [PubMed]
- Shanmugasundaram, R.; Applegate, T.J.; Selvara, R.K. Effect of Bacillus subtilis and Bacillus licheniformis probiotic supplementation on cecal Salmonella load in broilers challenged with salmonella. J. Appl. Poult. Res. 2020, 29, 808–816. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, H.; Yu, Y. Effects of Bacillus Coagulans on growth performance, antioxidant capacity, immunity function, and gut health in broilers. Poult. Sci. 2021, 100, 10116. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, Y.; Wang, Y. Bacillus amyloliquefaciens SC06 alleviates the oxidative stress of IPEC-1 via modulating Nrf2/Keap1 signaling pathway and decreasing ROS production. Appl. Microbiol. Biotechnol. 2017, 101, 3015–3026. [Google Scholar] [CrossRef]
- Mohd Shaufi, M.A.; Sieo, C.C.; Chong, C.W.; Gan, H.M.; Ho, Y.W. Deciphering chicken gut microbial dynamics based on high-throughput 16S rRNA metagenomics analyses. Gut Pathog. 2015, 7, 4. [Google Scholar] [CrossRef]
- Trela, J.; Kieronczyk, B.; Hautekiet, V.; Józefiak, D. Combination of Bacillus licheniformis and salinomycin: Effect on the growth performance and git microbial populations of broiler chickens. Animals 2020, 10, 889. [Google Scholar] [CrossRef] [PubMed]
- Codd, G.A.; Morrison, L.F.; Metcalf, J.S. Cyanobacterial toxins: Risk management for health protection. Toxicol. Appl. Pharmacol. 2004, 203, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Heckert, R.A.; Estevez, I.; Russek-Cohen, E. Effects of density and perch availability on the immune status of broilers. Poult. Sci. 2002, 81, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Lan, F.; Li, X. The spatial and temporal characterization of gut microbiota in broilers. Front. Vet. Sci. 2021, 8, 7122. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, J.; Liu, H. Soybean oligosaccharide, stachyose, and raffinose in broilers diets: Effects on odor compound concentration and microbiota in cecal digesta. Poult. Sci. 2020, 99, 3532–3539. [Google Scholar] [CrossRef]
- Hosseindoust, A.; Park, J.W.; Kim, I.H. Effects of Bacillus subtilis, Kefir and β-glucan supplementation on growth performance, blood characteristics, meat quality and intestine microbiota in broilers. Korean J. Poult. Sci. 2016, 43, 159–167. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, W.; Zhang, H.; Wang, J.; Zhang, W.; Gao, J. Supplemental Bacillus subtilis DSM 32315 manipulates intestinal structure and microbial composition in broiler chickens. Sci. Rep. 2018, 8, 15358. [Google Scholar] [CrossRef] [PubMed]
- Bortoluzzi, C.; Serpa Vieira, B.; de Paula Dorigam, J.C.; Menconi, A.; Sokale, A.; Doranalli, K. Bacillus subtilis DSM 32315 supplementation attenuates the effects of Clostridium perfringens challenge on the growth performance and intestinal microbiota of broiler chickens. Microorganisms 2019, 7, 71. [Google Scholar] [CrossRef]
- Nobutani, K.; Sawada, D.; Fujiwara, S.; Kuwano, Y.; Nishida, K.; Nakayama, J. The effects of administration of the Lactobacillus gasseri strain CP 2305 on quality of life, clinical symptoms and changes in gene expression in patients with irritable bowel syndrome. J. Appl. Microbiol. 2017, 122, 212–224. [Google Scholar] [CrossRef]
- Cui, Y.L.; Run, S.C.; Wan, F.C. Bacteriostasis of Bacillus coagulans TBC 169 to enteropathogenic bacteria. Chin. J. Microecol. 2015, 7, 333–338. [Google Scholar]
- Shokryazdan, P.; Faseleh Jahromi, M.; Liang, J.B.; Ramasamy, K.; Sieo, C.C.; Ho, Y.W. Effects of a Lactobacillus salivarius mixture on performance, intestinal health and serum lipids of broiler chickens. PLoS ONE 2017, 12, e0175959. [Google Scholar] [CrossRef] [PubMed]
Items (kg) | Starter (0–14 Days) | Grower (15–28 Days) | Finisher (29–42 Days) |
---|---|---|---|
Maize | 59.2 | 62.0 | 64.0 |
Soybean meal (48% CP) a | 30.0 | 27.5 | 25.5 |
Vegetable oil | 2.0 | 2.0 | 2.0 |
Premix b | 1.0 | 1.0 | 1.0 |
DL-methionine | 0.2 | 0.2 | 0.2 |
L-lysine | 0.2 | 0.2 | 0.2 |
Salt | 0.3 | 0.3 | 0.3 |
Dicalcium phosphate | 0.5 | 0.5 | 0.5 |
Fish | 5.3 | 5.0 | 5.0 |
Limestone | 1.3 | 1.3 | 1.3 |
Total | 100 | 100 | 100 |
Calculated nutrient value | |||
Energy (Kcal/kg) c | 3285 | 3286 | 3288 |
Crude protein (%) | 22.19 | 21.09 | 20.34 |
Total phosphorus (%) | 0.73 | 0.69 | 0.65 |
Methionine (%) | 0.24 | 0.23 | 0.23 |
Methionine + Cysteine (%) | 0.93 | 0.90 | 0.89 |
Lysine (%) | 1.40 | 1.31 | 1.26 |
Ether extract (%) | 5.25 | 5.29 | 5.33 |
Crude fiber (%) | 3.06 | 2.97 | 2.89 |
Items | Treatments 1 | SEM 2 | p-Value | |||
---|---|---|---|---|---|---|
B | B + S | B + P | B + P + S | |||
Initial weight (g) | 39.3 | 39.4 | 38.8 | 39.4 | ||
Final weight (g) | 2465.4 a | 2254.6 b | 2477.7 a | 2385.0 a | 36.6 | 0.009 |
Feed intake/day (g) | 93.2 | 94.4 | 92.2 | 88.5 | 3.52 | 0.677 |
Weight gain (g) | 2426.2 a | 2215.3 b | 2438.9 a | 2345.6 a | 36.6 | 0.009 |
Average daily gain (g/d) | 57.8 a | 52.7 b | 58.1 a | 55.8 a | 0.87 | 0.009 |
Feed conversion ratio | 1.6 | 1.8 | 1.6 | 1.6 | 0.08 | 0.252 |
Mortality % | 0 | 6.7 | 0 | 3.3 |
Items 2 | Treatments 1 | SEM 3 | p-Value | |||
---|---|---|---|---|---|---|
B | B + S | B + P | B + P + S | |||
Liver function | ||||||
Albumin (g/L) | 14.3 a | 9.9 b | 15.4 a | 10.9 b | 0.78 | <0.001 |
Globulin (g/L) | 19.4 ab | 14.5 b | 20.6 a | 14.2 b | 1.29 | 0.004 |
Creatinine (ummol/L) | 27.5 a | 17.9 c | 27.1 a | 21.4 b | 0.98 | <0.001 |
Total protein (g/L) | 32.9 ab | 24.6 c | 34.3 a | 28.1 bc | 1.46 | 0.001 |
ALT (U/L) | 14.4 b | 9.8 c | 18.9 a | 16.6 ab | 0.81 | <0.001 |
AST (U/L) | 177.6 ab | 152.2 c | 181.1 a | 169.5 b | 2.24 | <0.001 |
Lipid profile (mmol/L) | ||||||
T. cholesterol | 282.6 a | 223.6 b | 139.8 c | 163.5 c | 16.0 | <0.001 |
TG | 69.8 a | 64.1 a | 48.9 b | 48.1 b | 2.78 | <0.001 |
HDL | 65.2 a | 63.1 a | 40.7 b | 38.5 b | 2.97 | <0.001 |
LDL | 168.3 b | 157.0 b | 277.2 a | 250.4 a | 15.0 | <0.001 |
Items 2 | Treatments 1 | SEM 3 | p-Value | |||
---|---|---|---|---|---|---|
B | B + S | B + P | B + P + S | |||
T-AOC (nmol/L) | 0.53 ab | 0.45 b | 0.60 a | 0.48 b | 0.02 | 0.001 |
SOD (nmol/L) | 138.1 b | 127.7 c | 146.8 a | 137.0 b | 1.58 | <0.001 |
MDA (U/mL) | 6.7 a | 6.1 a | 4.9 b | 5.2 b | 0.22 | <0.001 |
CAT (U/mL) | 322.6 c | 329.8 c | 391.7 a | 348.5 b | 4.15 | <0.001 |
GHS-Px (U/mL) | 539.4 b | 525.6 c | 592.2 a | 563.6 b | 7.02 | <0.001 |
Items 2 | Treatments 1 | SEM 3 | p-Value | |||
---|---|---|---|---|---|---|
B | B + S | B + P | B + P + S | |||
Cytokines (pg/mL) | ||||||
TNF-α | 119.2 ab | 103.9 c | 115.9 a | 111.8 b | 1.70 | <0.01 |
IL 6 | 65.4 ab | 57.4 c | 63.6 a | 61.8 b | 0.63 | <0.01 |
IL 10 | 31.3 b | 30.3 b | 35.6 a | 32.3 b | 0.76 | <0.01 |
Immunology (g/L) | ||||||
IgA | 1.2 a | 0.9 b | 1.3 a | 1.2 a | 0.05 | 0.001 |
IgG | 8.9 a | 8.3 b | 9.2 a | 8.8 a | 0.10 | <0.01 |
IgM | 0.97 ab | 0.83 c | 1.04 a | 0.91 b | 0.02 | <0.01 |
Items (ng/mL) | Treatments 1 | SEM 2 | p-Value | |||
---|---|---|---|---|---|---|
B | B + S | B + P | B + P + S | |||
Serum | ||||||
Amylase | 54.7 b | 46.9 c | 63.1 a | 61.1 a | 0.981 | <0.01 |
Lipase | 29.7 b | 27.9 b | 40.8 a | 38.0 a | 1.47 | <0.01 |
Intestine | ||||||
Amylase | 24.1 b | 21.5 c | 27.3 a | 23.3 bc | 0.529 | <0.01 |
Lipase | 12.9 b | 11.4 c | 14.7 a | 13.6 ab | 0.336 | <0.01 |
Items (g) | Treatments 1 | SEM 2 | p-Value | |||
---|---|---|---|---|---|---|
B | B + S | B + P | B + P + S | |||
Total viscera | 251.5 | 237.4 | 244.9 | 255.7 | 9.39 | 0.548 |
Liver | 44.2 | 38.4 | 39.6 | 40.6 | 2.46 | 0.406 |
Heart | 9.3 | 8.7 | 8.8 | 9.3 | 0.43 | 0.636 |
Kidney | 10.1 | 10.5 | 10.6 | 8.8 | 0.65 | 0.232 |
Gizzard | 52.9 | 47.7 | 54.7 | 50.8 | 2.11 | 0.153 |
Empty gizzard | 36.4 | 35.3 | 38.8 | 37.4 | 1.53 | 0.429 |
Spleen | 4.1 ab | 2.2 c | 5.3 a | 3.5 bc | 0.34 | <0.01 |
Bursa | 4.0 a | 2.3 b | 4.6 a | 4.6 a | 0.47 | 0.009 |
Pancreas | 4.7 | 4.1 | 4.4 | 4.9 | 0.25 | 0.099 |
Lungs | 11.1 | 9.7 | 10.7 | 9.6 | 0.52 | 0.156 |
Small intestine | 62.1 ab | 55.2 b | 60.5 a | 68.4 a | 2.93 | 0.043 |
Items 2 | Treatments 1 | SEM 3 | p-Value | |||
---|---|---|---|---|---|---|
B | B + S | B + P | B + P + S | |||
Color L* | 51.4 | 49.6 | 52.1 | 49.3 | 0.962 | 0.156 |
a* | 10.2 | 9.2 | 10.1 | 9.3 | 0.538 | 0.494 |
b* | 8.9 | 9.3 | 9.1 | 8.2 | 0.409 | 0.299 |
Breast pH | 5.9 | 5.7 | 6.8 | 5.7 | 0.103 | 0.429 |
Drip loss % | 11.3 | 11.9 | 10.1 | 10.9 | 1.11 | 0.723 |
Items | Treatments 1 | SEM 2 | p-Value | |||
---|---|---|---|---|---|---|
B | B + S | B + P | B + P + S | |||
Length (cm) | ||||||
Duodenum | 30.8 | 26.5 | 31.6 | 29.0 | 2.11 | 0.359 |
Jejunum | 77.6 | 73.2 | 77.4 | 75.0 | 4.44 | 0.065 |
Ileum | 73.0 | 61.5 | 71.4 | 68.6 | 2.94 | 0.062 |
pH | ||||||
Duodenum | 6.0 ab | 5.8 c | 6.2 a | 5.9 bc | 0.06 | <0.01 |
Jejunum | 6.7 a | 6.4 b | 6.2 b | 6.2 b | 0.05 | <0.01 |
Ileum | 6.9 a | 6.7 b | 6.4 bc | 6.2 c | 0.07 | <0.01 |
Items 2 | Treatments 1 | SEM 3 | p-Value | |||
---|---|---|---|---|---|---|
B | B + S | B + P | B + P + S | |||
Duodenum (μm) | ||||||
VH | 1137.5 b | 991.3 c | 1258.5 a | 1114.5 b | 19.0 | <0.01 |
CD | 190.2 a | 165.2 b | 202.2 a | 187.8 a | 5.24 | 0.001 |
VH:CD | 6.0 | 6.0 | 6.2 | 6.0 | 0.20 | 0.770 |
Jejunum (μm) | ||||||
VH | 1046.1 a | 820.0 c | 942.6 b | 952.2 b | 16.7 | <0.001 |
CD | 182.4 b | 164.3 c | 203.6 a | 185.1 b | 3.25 | <0.001 |
VH:CD | 5.2 | 5.0 | 5.1 | 5.2 | 0.10 | 0.584 |
Ileum (μm) | ||||||
VH | 764.7 b | 632.7 c | 857.5 a | 774.3 b | 19.6 | <0.001 |
CD | 151.9 b | 124.9 c | 166.0 a | 150.4 b | 3.35 | <0.001 |
VH:CD | 5.0 | 5.1 | 5.2 | 5.2 | 0.18 | 0.917 |
Items 2 | Treatments 1 | SEM 3 | p-Value | |||
---|---|---|---|---|---|---|
B | B + S | B + P | B + P + S | |||
Salmonella (log 104) | ||||||
Day 3 PI | 0 b | 4.56 a | 0 b | 0.0015 b | 1722 | <0.01 |
Day 7 PI | 0 b | 4.30 a | 0 b | 0.0005 b | 1414 | <0.01 |
Day 14 PI | 0 b | 3.92 a | 0 b | 0 b | 1279 | <0.01 |
TVC (log 104) | <0.01 | |||||
Day 3 PI | 10.50 c | 20.62 b | 21.12 b | 28.70 a | 5108 | <0.01 |
Day 7 PI | 18.50 a | 20.80 a | 3.64 b | 3.10 b | 18,906 | <0.01 |
Day 14 PI | 39.80 a | 22.60 b | 3.10 c | 2.76 c | 7794 | <0.01 |
Item | Treatments 1 | SEM 2 | p-Value | |||
---|---|---|---|---|---|---|
B | B + S | B + P | B + P + S | |||
Goods coverage | 1 | 1 | 1 | 1 | 0.002 | 0.96 |
Shannon | 7.06 | 7.01 | 7.07 | 7.03 | 0.119 | 0.990 |
Simpson | 0.97 | 0.97 | 0.98 | 0.97 | 0.005 | 0.867 |
Chao1 | 562.7 | 526.8 | 568.8 | 594.2 | 32.6 | 0.549 |
Observed OTUs | 566.7 | 527.2 | 591.5 | 549.5 | 31.6 | 0.539 |
Item | Treatments 1 | SEM 2 | p-Value | |||
---|---|---|---|---|---|---|
Relative Abundance (%) | ||||||
B | B + S | B + P | B + P + S | |||
Phylum | ||||||
Cyanobacteria | 0.07 a | 0.01 b | 0.09 a | 0.02 b | 0.02 | 0.033 |
Actinobacteria | 0.07 b | 0.05 b | 0.07 b | 0.15 a | 0.02 | 0.002 |
Proteobacteria | 3.88 | 2.78 | 3.39 | 3.21 | 0.58 | 0.615 |
Family | ||||||
Peptostreptococcaceae | 0.10 | 0.10 | 0.30 | 0.20 | 0.116 | 0.139 |
Bacteroidaceae | 5.24 | 3.87 | 4.20 | 4.31 | 1.19 | 0.504 |
Clostridiaceae | 0.01 b | 0.01 b | 0.05 a | 0.01 b | 0.014 | 0.054 |
Lactobacillaceae | 4.96 a | 2.43 b | 5.24 a | 2.76 b | 0.688 | 0.010 |
Genus | ||||||
Clostridiales_unclassified | 1.67 | 1.27 | 1.69 | 1.32 | 0.191 | 0.297 |
Lactobacillus | 4.87 a | 2.39 b | 5.01 a | 2.51 b | 0.678 | 0.010 |
Anaerofustis | 0.005 | 0.001 | 0.006 | 0.004 | 0.002 | 0.211 |
Escherichia-Shigella | 0.51 a | 0.13 b | 0.13 b | 0.13 b | 0.120 | 0.006 |
CHKCI001 | 0.50 a | 0.20 b | 0.30 b | 0.21 b | 0.08 | 0.044 |
CHKCI002 | 0.03 | 0.01 | 0.02 | 0.02 | 0.007 | 0.463 |
Papillibacter | 0.03 | 0.02 | 0.04 | 0.03 | 0.007 | 0.269 |
GCA-900066225 | 0.41 | 0.28 | 0.37 | 0.36 | 0.113 | 0.210 |
GCA-900066575 | 0.87 a | 0.53 b | 0.75 ab | 0.61 b | 0.082 | 0.044 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bumbie, G.Z.; Abormegah, L.; Asiedu, P.; Oduro-Owusu, A.D.; Koranteng, A.A.-A.; Ansah, K.O.; Lamptey, V.K.; Chen, C.; Mohamed, T.M.; Tang, Z. Influence of Pediococcus pentosaceus GT001 on Performance, Meat Quality, Immune Function, Antioxidant and Cecum Microbial in Broiler Chickens Challenged by Salmonella typhimurium. Animals 2024, 14, 1676. https://doi.org/10.3390/ani14111676
Bumbie GZ, Abormegah L, Asiedu P, Oduro-Owusu AD, Koranteng AA-A, Ansah KO, Lamptey VK, Chen C, Mohamed TM, Tang Z. Influence of Pediococcus pentosaceus GT001 on Performance, Meat Quality, Immune Function, Antioxidant and Cecum Microbial in Broiler Chickens Challenged by Salmonella typhimurium. Animals. 2024; 14(11):1676. https://doi.org/10.3390/ani14111676
Chicago/Turabian StyleBumbie, Gifty Ziema, Leonardo Abormegah, Peter Asiedu, Akua Durowaa Oduro-Owusu, Achiamaa Asafu-Adjaye Koranteng, Kwabena Owusu Ansah, Vida Korkor Lamptey, Chen Chen, Taha Mohamed Mohamed, and Zhiru Tang. 2024. "Influence of Pediococcus pentosaceus GT001 on Performance, Meat Quality, Immune Function, Antioxidant and Cecum Microbial in Broiler Chickens Challenged by Salmonella typhimurium" Animals 14, no. 11: 1676. https://doi.org/10.3390/ani14111676
APA StyleBumbie, G. Z., Abormegah, L., Asiedu, P., Oduro-Owusu, A. D., Koranteng, A. A.-A., Ansah, K. O., Lamptey, V. K., Chen, C., Mohamed, T. M., & Tang, Z. (2024). Influence of Pediococcus pentosaceus GT001 on Performance, Meat Quality, Immune Function, Antioxidant and Cecum Microbial in Broiler Chickens Challenged by Salmonella typhimurium. Animals, 14(11), 1676. https://doi.org/10.3390/ani14111676