An Assessment of the Effects of Guanidinoacetic Acid on the Performance and Immune Response of Laying Hens Fed Diets with Three Levels of Metabolizable Energy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal and Diet Management
2.2. Productivity Variables
2.3. Egg Quality
2.4. Intestinal Histology
2.5. Determination of Interleukin and Cytokine Levels in Serum
2.6. Statistical Analysis
3. Results
3.1. Productivity Variables
3.2. Egg Quality
3.3. Intestinal Histology
3.4. Determination of Interleukin and Cytokine Levels in Serum
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salazar, A.; Mohanty, S.; Malaga, J. 2025 vision for Mexican chicken consumption. Int. J. Poult. Sci. 2005, 4, 292–295. [Google Scholar]
- Suresh, G.; Das, R.K.; Kaur Brar, S.; Rouissi, T.; Avalos Ramirez, A.; Chorfi, Y.; Godbout, S. Alternatives to antibiotics in poultry feed: Molecular perspectives. Crit. Rev. Microbiol. 2018, 44, 318–335. [Google Scholar] [CrossRef] [PubMed]
- Asiriwardhana, M.; Bertolo, R.F. Guanidinoacetic acid supplementation: A narrative review of its metabolism and effects in swine and poultry. Front. Anim. Sci. 2022, 3, 972868. [Google Scholar] [CrossRef]
- Ostojic, S.M.; Jorga, J. Guanidinoacetic acid in human nutrition: Beyond creatine synthesis. Food Sci. Nutr. 2023, 11, 1606–1611. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Shi, H.T.; Wang, Y.J.; Li, S.L.; Cao, Z.J.; Ji, S.K.; He, Y.; Zhang, H.T. Effect of Dietary Forage to Concentrate Ratios on Dynamic Profile Changes and Interactions of Ruminal Microbiota and Metabolites in Holstein Heifers. Front. Microbiol. 2017, 8, 2206. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.M.; Yan, Z.Y.; Liu, S.L.; Yin, Y.J.; Yang, T.; Chen, Q.H. Regulative Mechanism of Guanidinoacetic Acid on Skeletal Muscle Development and Its Application Prospects in Animal Husbandry: A Review. Front. Nutr. 2021, 8, 714567. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Malandro, M.; Stevens, B.R. Regulation of System Y(+) Arginine Transport Capacity in Differentiating Human Intestinal Caco-2 Cells. Am. J. Physiol.-Gastrointest. Liver Physiol. 1995, 268, G578–G585. [Google Scholar] [CrossRef] [PubMed]
- Tunnicliff, G. Membrane glycine transport proteins. J. Biomed. Sci. 2003, 10, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Takahara, T.; Amemiya, Y.; Sugiyama, R.; Maki, M.; Shibata, H. Amino acid-dependent control of mTORC1 signaling: A variety of regulatory modes. J. Biomed. Sci. 2020, 27, 87. [Google Scholar] [CrossRef]
- Tsuji-Tamura, K.; Sato, M.; Fujita, M.; Tamura, M. The role of PI3K/Akt/mTOR signaling in dose-dependent biphasic effects of glycine on vascular development. Biochem. Biophys. Res. Commun. 2020, 529, 596–602. [Google Scholar] [CrossRef]
- Majdeddin, M.; Braun, U.; Lemme, A.; Golian, A.; Kermanshahi, H.; De Smet, S.; Michiels, J. Guanidinoacetic acid supplementation improves feed conversion in broilers subjected to heat stress associated with muscle creatine loading and arginine sparing. Poult. Sci. 2020, 99, 4442–4453. [Google Scholar] [CrossRef] [PubMed]
- Ahmadipour, B.; Khajali, F.; Sharifi, M. Effect of guanidinoacetic acid supplementation on growth performance and gut morphology in broiler chickens. Poult. Sci. J. 2018, 6, 19–24. [Google Scholar]
- Salah, A.S.; Ahmed-Farid, O.A.; El-Tarabany, M.S. Effects of Guanidinoacetic acid supplements on laying performance, egg quality, liver nitric oxide and energy metabolism in laying hens at the late stage of production. J. Agric. Sci. 2020, 158, 241–246. [Google Scholar] [CrossRef]
- National Research Council and Subcommittee on Poultry Nutrition. Nutrient Requirements of Poultry: 1994; National Academies Press: Washington, DC, USA, 1994. [Google Scholar]
- Fosoul, S.S.A.S.; Azarfar, A.; Gheisari, A.; Khosravinia, H. Energy utilisation of broiler chickens in response to guanidinoacetic acid supplementation in diets with various energy contents. Br. J. Nutr. 2018, 120, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Bian, J.W.; Xing, T.; Zhao, L.; Li, J.L.; Zhang, L.; Gao, F. Effects of guanidinoacetic acid supplementation on growth performance, hypothalamus-pituitary-adrenal axis, and immunity of broilers challenged with chronic heat stress. Poult. Sci. 2023, 102, 103114. [Google Scholar] [CrossRef] [PubMed]
- Mafi, S.; Mansoori, B.; Taeb, S.; Sadeghi, H.; Abbasi, R.; Cho, W.C.; Rostamzadeh, D. mTOR-Mediated Regulation of Immune Responses in Cancer and Tumor Microenvironment. Front. Immunol. 2022, 12, 774103. [Google Scholar] [CrossRef]
- Liu, G.Y.; Sabatini, D.M. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 2020, 21, 183–203. [Google Scholar] [CrossRef] [PubMed]
- Thiele, D.H.-H. Archivo lohmann. Management 2007, 2, 2012. [Google Scholar]
- Cardiff, R.D.; Miller, C.H.; Munn, R.J. Manual hematoxylin and eosin staining of mouse tissue sections. Cold Spring Harb. Protoc. 2014, 2014, 655–658. [Google Scholar] [CrossRef]
- Qaisrani, S.N.; Moquet, P.C.; van Krimpen, M.M.; Kwakkel, R.P.; Verstegen, M.W.; Hendriks, W.H. Protein source and dietary structure influence growth performance, gut morphology, and hindgut fermentation characteristics in broilers. Poult. Sci. 2014, 93, 3053–3064. [Google Scholar] [CrossRef]
- Krzysica, P.; Verhoog, L.; de Vries, S.; Smits, C.; Savelkoul, H.F.J.; Tijhaar, E. Optimization of Capture ELISAs for Chicken Cytokines Using Commercially Available Antibodies. Animals 2022, 12, 3040. [Google Scholar] [CrossRef] [PubMed]
- Azizollahi, M.; Ghasemi, H.A.; Foroudi, F.; Hajkhodadadi, I. Effect of guanidinoacetic acid on performance, egg quality, yolk fatty acid composition, and nutrient digestibility of aged laying hens fed diets with varying substitution levels of corn with low-tannin sorghum. Poult. Sci. 2024, 103, 103297. [Google Scholar] [CrossRef] [PubMed]
- Ostojic, S.M.; Premusz, V.; Nagy, D.; Acs, P. Guanidinoacetic acid as a novel food for skeletal muscle health. J. Funct. Foods 2020, 73, 104129. [Google Scholar] [CrossRef]
- Laplante, M.; Sabatini, D.M. mTOR signaling at a glance. J. Cell Sci. 2009, 122, 3589–3594. [Google Scholar] [CrossRef] [PubMed]
- Valini, G.A.D.; Duarte, M.D.; Rodrigues, G.D.; Veroneze, R.; Saraiva, A.; Hausman, G.; Rocha, G.C. Guanidinoacetic acid supplementation on growth performance and molecular mechanisms of lean mass gain in nursery pigs. Ciência Rural 2020, 50, e20190948. [Google Scholar] [CrossRef]
- Raei, A.; Karimi, A.; Sadeghi, A. Performance, antioxidant status, nutrient retention and serum profile responses of laying Japanese quails to increasing addition levels of dietary guanidinoacetic acid. Ital. J. Anim. Sci. 2020, 19, 75–85. [Google Scholar] [CrossRef]
- Pimenta, J.G.F.; Barbosa, H.J.S.; Fraga, M.G.; Triginelli, M.V.; Costa, B.T.A.; Ferreira, M.A.; Mendonça, M.O.; Cancado, S.V.; Lara, L.J.C. Inclusion of guanidinoacetic acid in the diet of laying hens at late phase of feeding. Anim. Prod. Sci. 2023, 63, 596–603. [Google Scholar] [CrossRef]
- Khakran, G.; Chamani, M.; Foroudi, F.; Sadeghi, A.A.; Afshar, M.A. Effect of Guanidine Acetic Acid addition to Corn-Soybean Meal Based Diets on Productive Performance, Blood Biochemical Parameters and Reproductive Hormones of Laying Hens. Kafkas Univ. Vet. Fak. 2018, 24, 99–105. [Google Scholar] [CrossRef]
- Córdova-Noboa, H.A.; Oviedo-Rondón, E.O.; Sarsour, A.H.; Barnes, J.; Sapcota, D.; López, D.; Gross, L.; Rademacher-Heilshorn, M.; Braun, U. Effect of guanidinoacetic acid supplementation on live performance, meat quality, pectoral myopathies and blood parameters of male broilers fed corn-based diets with or without poultry by-products. Poult. Sci. 2018, 97, 2494–2505. [Google Scholar] [CrossRef]
- Choi, J.H.; Namkung, H.; Paik, I.K. Feed consumption pattern of laying hens in relation to time of oviposition. Asian-Australas. J. Anim. Sci. 2004, 17, 371–373. [Google Scholar] [CrossRef]
- Silva, L.M.G.S.; Murakami, A.E.; Fernandes, J.I.M.; Dalla Rosa, D.; Urgnani, J.F. Effects of dietary arginine supplementation on broiler breeder egg production and hatchability. Braz. J. Poult. Sci. 2012, 14, 267–273. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, B.B.; Wang, B.W.; Zhang, M.A.; Fan, W.L.; Li, W.L. Effects of dietary arginine supplementation on production performance, serum biochemicals, antioxidant capacity, and immunity of laying Wulong geese. Poult. Sci. 2023, 102, 102727. [Google Scholar] [CrossRef] [PubMed]
- Dao, H.T.; Sharma, N.K.; Bradbury, E.J.; Swick, R.A. Response of laying hens to L-arginine, L-citrulline and guanidinoacetic acid supplementation in reduced protein diet. Anim. Nutr. 2021, 7, 460–471. [Google Scholar] [CrossRef]
- Sarjuni, S.; Mozin, S.; Malewa, A.; Sucipto, I.; Saifuddin, S. Blood profile and nutrients digestibility of native chickens fed functional diets with different energy and protein level. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Detroit, MI, USA, 16 December 2021; p. 012189. [Google Scholar]
- Peng, X.Y.; Xing, T.; Li, J.L.; Zhang, L.; Jiang, Y.; Gao, F. Guanidinoacetic acid supplementation improves intestinal morphology, mucosal barrier function of broilers subjected to chronic heat stress. J. Anim. Sci. 2023, 101, skac355. [Google Scholar] [CrossRef]
- Awad, W.A.; Böhm, J.; Razzazi-Fazeli, E.; Ghareeb, K.; Zentek, J. Effect of addition of a probiotic microorganism to broiler diets contaminated with deoxynivalenol on performance and histological alterations of intestinal villi of broiler chickens. Poult. Sci. 2006, 85, 974–979. [Google Scholar] [CrossRef]
- Saeid, J.; Mohamed, A.; Baddy, M.A. Effect of garlic powder (Allium sativum) and black seed (Nigella sativa) on broiler growth performance and intestinal morphology. Iran. J. Appl. Anim. Sci. 2013, 3, 185–188. [Google Scholar]
- Prakatur, I.; Miskulin, M.; Pavic, M.; Marjanovic, K.; Blazicevic, V.; Miskulin, I.; Domacinovic, M. Intestinal Morphology in Broiler Chickens Supplemented with Propolis and Bee Pollen. Animals 2019, 9, 301. [Google Scholar] [CrossRef]
- Belote, B.L.; Soares, I.; Sanches, A.W.D.; de Souza, C.; Scott-Delaunay, R.; Lahaye, L.; Kogut, M.H.; Santin, E. Applying different morphometric intestinal mucosa methods and the correlation with broilers performance under Eimeria challenge. Poult. Sci. 2023, 102, 102849. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Cui, Z.; Wang, H.; Huang, B.; Ma, H. Dietary supplementation of dimethyl itaconate protects against chronic heat stress-induced growth performance impairment and lipid metabolism disorder in broiler chickens. J. Anim. Sci. 2023, 101, skad120. [Google Scholar] [CrossRef]
- Vargas, A.; Granados, J.; Llorente, P. Regulación de la expresión genética de linfocinas. Biomédica 1994, 14, 180–186. [Google Scholar] [CrossRef]
- Damoiseaux, J. The IL-2-IL-2 receptor pathway in health and disease: The role of the soluble IL-2 receptor. Clin. Immunol. 2020, 218, 108515. [Google Scholar] [CrossRef] [PubMed]
- Ivashkiv, L.B. IFNgamma: Signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat. Rev. Immunol. 2018, 18, 545–558. [Google Scholar] [CrossRef] [PubMed]
- Trinh, X.B.; Tjalma, W.A.; Vermeulen, P.B.; Van den Eynden, G.; Van der Auwera, I.; Van Laere, S.J.; Helleman, J.; Berns, E.M.; Dirix, L.Y.; van Dam, P.A. The VEGF pathway and the AKT/mTOR/p70S6K1 signalling pathway in human epithelial ovarian cancer. Br. J. Cancer 2009, 100, 971–978. [Google Scholar] [CrossRef] [PubMed]
Ingredients (%) | T1 | T2 | T3 | T4 | T5 | T6 |
---|---|---|---|---|---|---|
Metabolizable energy | 2850 kcal/kg | 2800 kcal/Kg | 2750 kcal/kg | 2850 kcal/kg | 2800 kcal/kg | 2750 kcal/kg |
Yellow corn | 57.2 | 58.48 | 59.76 | 57.2 | 58.48 | 59.76 |
Soybean meal | 23.86 | 23.68 | 23.49 | 23.86 | 23.68 | 23.49 |
Calcium carbonate | 10.19 | 10.19 | 10.2 | 10.19 | 10.19 | 10.2 |
Wheat bran | 3 | 3 | 3 | 3 | 3 | 3 |
Vegetable oil | 3.43 | 2.33 | 1.24 | 3.43 | 2.33 | 1.24 |
Orthophosphate | 0.94 | 0.93 | 0.93 | 0.94 | 0.93 | 0.93 |
Salt | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 |
Min/vit. premix CEIEPAv layer * | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
99% L-methionine | 0.25 | 0.25 | 0.24 | 0.25 | 0.25 | 0.24 |
L-lysine-HCl | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 |
FREE-TOX | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Yellow pigment | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
L-threonine | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
Larvadex | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
Bacitracin | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 |
Antioxidant • | 0.015 | 0.015 | 0.015 | 0.015 | 0.015 | 0.015 |
Phytase | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Canthaxanthin | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 |
Total | 100 | 100 | 100 | 100 | 100 | 100 |
GAA & | 0.08 | 0.08 | 0.08 |
Metabolizable Energy (kcal/kg) | GAA (%) | Egg Production (%) | Egg Weight (g) | Egg Mass (g) | Feed Consumption (g) | Feed Conversion Rate |
---|---|---|---|---|---|---|
2850 | - | 95.3 a | 63.5 | 60.5 a | 111.0 b | 1.8 b |
2800 | - | 93.8 ab | 63 | 59.1 b | 111.1 ab | 1.9 ab |
2750 | - | 93.3 b | 63.3 | 59.3 ab | 113.6 a | 1.9 b |
p-value | 0.019 | 0.267 | 0.023 | 0.049 | 0.002 | |
- | 0 | 93.3 | 63.2 | 59.5 | 112.4 a | 1.9 |
- | 0.08 | 94.3 | 63.4 | 59.8 | 111.4 b | 1.9 |
p-value | 0.414 | 0.499 | 0.496 | 0.278 | 0.115 | |
2850 | 0 | 95.2 a | 63.2 | 60.2 ab | 110.2 ab | 1.8 |
2800 | 0 | 94.4 ab | 63.3 | 59.8 ab | 113.6 a | 1.9 |
2750 | 0 | 92.0 b | 63.2 | 58.6 b | 113.5 a | 1.9 |
2850 | 0.08 | 95.3 a | 63.9 | 60.9 a | 109.5 ab | 1.8 |
2800 | 0.08 | 93.2 ab | 62.8 | 58.5 b | 108.7 b | 1.9 |
2750 | 0.08 | 94.6 ab | 63.5 | 60.1 ab | 113.7 a | 1.9 |
p-value | 0.026 | 0.105 | 0.03 | 0.022 | 0.414 | |
SEM | 0.318 | 0.123 | 0.237 | 0.506 | 0.01 |
Metabolizable Energy (kcal/kg) | GAA (%) | Haugh Units (HUs) | Egg Shell Resistance (Kgf/cm2) | Egg Shell Thickness (μm) | Yolk Color FAN DSM |
---|---|---|---|---|---|
2850 | - | 93.7 | 4.5 | 349 | 11.4 |
2800 | - | 93.6 | 4.5 | 348 | 11.2 |
2750 | - | 92.9 | 4.6 | 350 | 11.8 |
p-value | 0.4 | 0.4 | 0.1 | 0.6 | |
- | 0 | 93.4 | 4.5 | 348 | 11.6 |
- | 0.08 | 93.5 | 4.5 | 350 | 11.3 |
p-value | 0.781 | 0.973 | 0.811 | 0.665 | |
2850 | 0 | 93.9 | 4.6 | 355 | 11.4 |
2800 | 0 | 93.9 | 4.4 | 345 | 11.1 |
2750 | 0 | 92.3 | 4.5 | 342 | 12.2 |
2850 | 0.08 | 93.6 | 4.4 | 343 | 11.3 |
2800 | 0.08 | 93.4 | 4.6 | 350 | 11.2 |
2750 | 0.08 | 93.6 | 4.6 | 357 | 11.4 |
p-value | 0.386 | 0.022 | 0.554 | 0.789 | |
SEM | 0.506 | 0.028 | 0.005 | 0.263 |
Metabolizable Energy (kcal/kg) | GAA (%) | Duodenum | Jejunum | ||||
---|---|---|---|---|---|---|---|
Villus Height (μm) | Villus Width (μm) | Crypt Depth (μm) | Villus Height (μm) | Villus Width (μm) | Crypt Depth (μm) | ||
2850 | - | 2029.28 | 257.63 | 332.3 | 1336.47 | 207.81 a | 203.99 a |
2800 | - | 2015.8 | 259.63 | 310.76 | 1355.33 | 186.01 b | 209.55 a |
2750 | - | 2004.09 | 260.46 | 328.37 | 1302.01 | 200.66 ab | 178.50 b |
p-value | 0.7278 | 0.9739 | 0.1973 | 0.2363 | 0.0249 | 0.0001 | |
- | 0 | 2058.75 a | 245.49 b | 299.59 b | 1345.05 | 205.10 a | 192.55 |
- | 0.08 | 1974.03 b | 272.99 a | 348.02 a | 1317.49 | 191.23 b | 202.14 |
p-value | <0.001 | 0.008 | <0.001 | 0.2885 | 0.0373 | 0.1244 | |
2850 | 0 | 2061.89 | 239.68 | 306.79 | 1314.23 | 220.74 | 202.03 abc |
2800 | 0 | 2084.98 | 253.44 | 294.07 | 1413.71 | 184.44 | 191.26 bc |
2750 | 0 | 2029.38 | 243.36 | 297.93 | 1307.2 | 210.13 | 184.36 bc |
2850 | 0.08 | 2029.19 | 275.58 | 357.82 | 1358.7 | 194.9 | 205.95 ab |
2800 | 0.08 | 1969.71 | 265.82 | 327.45 | 1296.94 | 187.58 | 227.83 a |
2750 | 0.08 | 1923.2 | 277.57 | 358.8 | 1296.82 | 191.2 | 172.65 c |
p-value | 0.0396 | 0.5859 | 0.5478 | 0.0376 | 0.1772 | 0.0061 | |
SEM | 31.601 | 12.673 | 12.675 | 31.703 | 8.098 | 7.607 |
Metabolizable Energy (kcal/kg) | GAA (%) | IFNγ | IL-16 | IL-6 | IL-2 | IFNα | M-CSF | MIP-1β | MIP-3α | VEGF |
---|---|---|---|---|---|---|---|---|---|---|
(pg/mL) | ||||||||||
2850 | - | 942.4 | 246.8 | 848.3 | 704.3 | 703.8 | 3510 | 290 | 280.1 | 3062.7 |
2800 | - | 483 | 153.9 | 543.4 | 525.9 | 329.7 | 1647.2 | 167.7 | 166.4 | 2879.2 |
2750 | - | 662.8 | 191.9 | 721.3 | 549.3 | 492 | 2314.8 | 215.8 | 261.9 | 3099.3 |
p-value | 0.46 | 0.56 | 0.69 | 0.22 | 0.44 | 0.45 | 0.49 | 0.4 | 0.4 | |
- | 0 | 1045.0 a | 280.0 a | 1070.8 a | 722.9 a | 769.0 a | 3825.1 a | 337.5 a | 331.7 a | 2730.5 b |
- | 0.08 | 347.1 b | 115.2 b | 337.8 b | 463.5 b | 248.1 b | 1156.3 b | 111.5 b | 140.6 b | 3297.0 a |
p-value | 0.02 | 0.02 | 0.01 | 0.01 | 0.03 | 0.03 | 0.01 | 0.01 | 0.001 | |
2850 | 0 | 1463.2 | 367.8 | 1394.3 | 889.9 a | 1119.8 | 5698.5 | 468.3 | 407.5 | 2954.8 ab |
2800 | 0 | 861.7 | 251.6 | 940.2 | 679.5 ab | 607.3 | 3013 | 283 | 264.8 | 2418.1 b |
2750 | 0 | 810.2 | 220.5 | 878 | 599.3 ab | 579.8 | 2763.7 | 261.2 | 322.7 | 2818.5 ab |
2850 | 0.08 | 421.7 | 125.9 | 302.3 | 518.7 ab | 287.9 | 1321.5 | 111.8 | 152.6 | 3170.6 a |
2800 | 0.08 | 104.2 | 56.2 | 146.6 | 372.3 b | 52.1 | 281.4 | 52.4 | 67.9 | 3340.3 a |
2750 | 0.08 | 515.4 | 163.4 | 564.6 | 499.4 ab | 404.3 | 1865.9 | 170.4 | 201.1 | 3380.0 a |
p-value | 0.54 | 0.16 | 0.12 | 0.03 | 0.46 | 0.16 | 0.06 | 0.11 | 0.002 | |
SEM | 146.54 | 33.55 | 136.65 | 45.5 | 112.23 | 568.37 | 40.21 | 37.29 | 81.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Gómora, S.; Gómez-Verduzco, G.; Márquez-Mota, C.C.; Cortés-Cuevas, A.; Vazquez-Mendoza, O.V.; Ávila-González, E. An Assessment of the Effects of Guanidinoacetic Acid on the Performance and Immune Response of Laying Hens Fed Diets with Three Levels of Metabolizable Energy. Animals 2024, 14, 1675. https://doi.org/10.3390/ani14111675
García-Gómora S, Gómez-Verduzco G, Márquez-Mota CC, Cortés-Cuevas A, Vazquez-Mendoza OV, Ávila-González E. An Assessment of the Effects of Guanidinoacetic Acid on the Performance and Immune Response of Laying Hens Fed Diets with Three Levels of Metabolizable Energy. Animals. 2024; 14(11):1675. https://doi.org/10.3390/ani14111675
Chicago/Turabian StyleGarcía-Gómora, Santiago, Gabriela Gómez-Verduzco, Claudia C. Márquez-Mota, Arturo Cortés-Cuevas, Oscar Vicente Vazquez-Mendoza, and Ernesto Ávila-González. 2024. "An Assessment of the Effects of Guanidinoacetic Acid on the Performance and Immune Response of Laying Hens Fed Diets with Three Levels of Metabolizable Energy" Animals 14, no. 11: 1675. https://doi.org/10.3390/ani14111675
APA StyleGarcía-Gómora, S., Gómez-Verduzco, G., Márquez-Mota, C. C., Cortés-Cuevas, A., Vazquez-Mendoza, O. V., & Ávila-González, E. (2024). An Assessment of the Effects of Guanidinoacetic Acid on the Performance and Immune Response of Laying Hens Fed Diets with Three Levels of Metabolizable Energy. Animals, 14(11), 1675. https://doi.org/10.3390/ani14111675