The Detection of a Functional 168 bp Deletion of the HOXB13 Gene Determining Short Tail and Its Association with Senior Growth Traits in Sheep Breeds Worldwide
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animal Sample Collection
2.3. Extraction of Genomic DNA
2.4. Primer Design
2.5. InDel Detection and Genotyping
2.6. Whole-Genome Sequencing (WGS)
2.7. Statistical Analysis
3. Results
3.1. Analysis of HOXB13 Gene Distribution in 33 Sheep Breeds Worldwide
3.2. InDel Genotyping and Sequencing
3.3. Genetic Parameter Analysis
3.4. Chi-Square Analysis
3.5. Association Analysis between 168 bp InDel Locus of HOXB13 Gene and Growth Traits of Luxi Black-Headed Sheep
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Trait | Sample Size | Regions (Mean ± SE) | p-Value | ||||
---|---|---|---|---|---|---|---|
Wild | Oceania | Europe | East Asia | Africa | |||
Frequency | 33 | 0.00 ± 0.00 (n = 1) | 0.97 ± 0.00 (n = 1) | 0.66 ± 0.14 (n = 9) | 0.24 ± 0.07 (n = 18) | 0.49 ± 0.18 (n = 4) | 0.017 |
Null Hypothesis | Test | Significance | Decision |
---|---|---|---|
The distribution of I is the same across categories of regions | Independent samples Kruskal-Wallis test | 0.023 | Reject the null hypothesis |
References
- Li, X.; Yang, J.; Shen, M.; Xie, X.L.; Liu, G.J.; Xu, Y.X.; Lv, F.H.; Yang, H.; Yang, Y.L.; Liu, C.B.; et al. Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits. Nat. Commun. 2020, 11, 2815. [Google Scholar] [CrossRef] [PubMed]
- Scobie, D.R.; Bray, A.R.; O’Connell, D. A Breeding Goal to Improve the Welfare of Sheep. Anim. Welf. 1999, 8, 391–406. [Google Scholar] [CrossRef]
- Li, M.; Yin, C.; Zhao, F.; Liu, Y. Copy number variation association studies for sheep tail-relevant traits in Hulunbuir sheep. Anim. Genet. 2022, 53, 897–900. [Google Scholar] [CrossRef] [PubMed]
- Oberpenning, J.; Bohlouli, M.; Engel, P.; Hümmelchen, H.; Wagner, H.; Wehrend, A.; König, S. Multiple-trait and structural equation modelling approaches to infer genetic relationships between tail length and weight traits in Merinoland sheep. J. Anim. Breed. Genet. 2023, 140, 132–143. [Google Scholar] [CrossRef] [PubMed]
- Yagoubi, Y.; Smeti, S.; Mahouachi, M.; Nasraoui, M.; Ben Saïd, S.; Mohamed-Brahmi, A.; Atti, N. Impact of Body Reserves Dynamic on Productivity and Reproductive Performance in Fat-Tail and Thin-Tail Sheep Breeds over Contrasting Production Cycles. Animals 2024, 14, 891. [Google Scholar] [CrossRef] [PubMed]
- Guerra, M.H.; Moreni, A.; Saadoun, A.; Cabrera, M.C. Macrominerales, minerales traza y estado del hierro heme y no heme en músculo Longissimus dorsi, de cinco razas de corderos doble propósito criados en sistema de pastoreo en Uruguay. Rev. Cient. Fac. Cienc. Vet. Univ. Zulia 2024, 34, 8. [Google Scholar]
- Woolley, S.A.; Salavati, M.; Clark, E.L. Recent advances in the genomic resources for sheep. Mamm. Genome 2023, 34, 545–558. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Hickey, L.T.; Stahl, A.; Werner, C.R.; Hayes, B.; Snowdon, R.J.; Voss-Fels, K.P. Exploring and Harnessing Haplotype Diversity to Improve Yield Stability in Crops. Front. Plant. Sci. 2017, 8, 1534. [Google Scholar] [CrossRef]
- Qin, P.; Lu, H.; Du, H.; Wang, H.; Chen, W.; Chen, Z.; He, Q.; Ou, S.; Zhang, H.; Li, X.; et al. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations. Cell 2021, 184, 3542–3558.e16. [Google Scholar] [CrossRef]
- Jin, S.; Han, Z.; Hu, Y.; Si, Z.; Dai, F.; He, L.; Cheng, Y.; Li, Y.; Zhao, T.; Fang, L.; et al. Structural variation (SV)-based pan-genome and GWAS reveal the impacts of SVs on the speciation and diversification of allotetraploid cottons. Mol. Plant 2023, 16, 678–693. [Google Scholar] [CrossRef]
- Gui, S.; Wei, W.; Jiang, C.; Luo, J.; Chen, L.; Wu, S.; Li, W.; Wang, Y.; Li, S.; Yang, N.; et al. A pan-Zea genome map for enhancing maize improvement. Genome Biol. 2022, 23, 178. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Yang, Q.; Zhang, M.; Zhang, S.; Cai, H.; Dang, R.; Lei, C.; Chen, H.; Lan, X. Identification of a Novel Polymorphism in Bovine lncRNA ADNCR Gene and Its Association with Growth Traits. Anim. Biotechnol. 2019, 30, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Ahlawat, S.; Maitra, A.; Roy, M.; Mandakmale, S.; Tantia, M.S. Polymorphism of BMP4 gene in Indian goat breeds differing in prolificacy. Gene 2013, 532, 140–145. [Google Scholar] [CrossRef] [PubMed]
- An, X.; Hou, J.; Gao, T.; Lei, Y.; Li, G.; Song, Y.; Wang, J.; Cao, B. Single-nucleotide polymorphisms g.151435C>T and g.173057T>C in PRLR gene regulated by bta-miR-302a are associated with litter size in goats. Theriogenology 2015, 83, 1477–1483.e1. [Google Scholar] [CrossRef] [PubMed]
- Thomas, N.; Venkatachalapathy, T.; Aravindakshan, T.; Raghavan, K.C. Molecular cloning, SNP detection and association analysis of 5’ flanking region of the goat IGF1 gene with prolificacy. Anim. Reprod. Sci. 2016, 167, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Jin, M.; Fei, X.; Wang, H.; Lu, J.; Di, R.; Wei, C. The HOX gene family and its impact on the formation of animal vertebrae. J. Anim. Vet. Adv. 2022, 53, 999–1009. [Google Scholar]
- Maroulakou, I.G.; Spyropoulos, D.D. The study of HOX gene function in hematopoietic, breast and lung carcinogenesis. Anticancer. Res. 2003, 23, 2101–2110. [Google Scholar] [PubMed]
- Gaunt, S.J. Hox cluster genes and collinearities throughout the tree of animal life. Int. J. Dev. Biol. 2018, 62, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Gong, M.; Zhang, X.; Wang, F.; Liu, Z.; Zhang, L.; Yang, Q.; Xu, Y.; Xu, M.; Zhang, H.; et al. A sheep pangenome reveals the spectrum of structural variations and their effects on tail phenotypes. Genome Res. 2023, 33, 463–477. [Google Scholar] [CrossRef]
- Zeltser, L.; Desplan, C.; Heintz, N. Hoxb-13: A new Hox gene in a distant region of the HOXB cluster maintains colinearity. Development 1996, 122, 2475–2484. [Google Scholar] [CrossRef]
- Gofflot, F.; Hall, M.; Morriss-Kay, G.M. Genetic patterning of the developing mouse tail at the time of posterior neuropore closure. Dev. Dyn. 1997, 210, 431–445. [Google Scholar] [CrossRef]
- Economides, K.D.; Zeltser, L.; Capecchi, M.R. HOXB13 mutations cause overgrowth of caudal spinal cord and tail vertebrae. Dev. Biol. 2003, 256, 317–330. [Google Scholar] [CrossRef] [PubMed]
- Denans, N.; Iimura, T.; Pourquié, O. Hox genes control vertebrate body elongation by collinear Wnt repression. Elife 2015, 4, e04379. [Google Scholar] [CrossRef] [PubMed]
- Aires, R.; de Lemos, L.; Nóvoa, A.; Jurberg, A.D.; Mascrez, B.; Duboule, D.; Mallo, M. Tail Bud Progenitor Activity Relies on a Network Comprising Gdf11, Lin28, and Hox13 Genes. Dev. Cell 2019, 48, 383–395.e8. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Tan, T.; Geng, Y.; Tao, Y.; Pan, J.; Zhang, J.; Xu, Q.; Shen, H.; Zuo, L.; Chen, Y. HOXB13 facilitates hepatocellular carcinoma progression by activating AKT/mTOR signaling pathway. Ann. Hepatol. 2023, 28, 100759. [Google Scholar] [CrossRef]
- MacArthur Clark, J.A.; Sun, D. Guidelines for the ethical review of laboratory animal welfare People’s Republic of China National Standard GB/T 35892-2018 [Issued 6 February 2018 Effective from 1 September 2018]. Anim. Models Exp. Med. 2020, 3, 103–113. [Google Scholar] [CrossRef]
- Nei, M. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 1973, 70, 3321–3323. [Google Scholar] [CrossRef] [PubMed]
- Mallo, M.; Wellik, D.M.; Deschamps, J. Hox genes and regional patterning of the vertebrate body plan. Dev. Biol. 2010, 344, 7–15. [Google Scholar] [CrossRef]
- Garcia-Fernàndez, J. Hox, ParaHox, ProtoHox: Facts and guesses. Heredity 2005, 94, 145–152. [Google Scholar] [CrossRef]
- Godsave, S.; Dekker, E.J.; Holling, T.; Pannese, M.; Boncinelli, E.; Durston, A. Expression patterns of Hoxb genes in the Xenopus embryo suggest roles in anteroposterior specification of the hindbrain and in dorsoventral patterning of the mesoderm. Dev. Biol. 1994, 166, 465–476. [Google Scholar] [CrossRef]
- Krumlauf, R. Hox genes, clusters and collinearity. Int. J. Dev. Biol. 2018, 62, 659–663. [Google Scholar] [CrossRef] [PubMed]
- Duboule, D. The rise and fall of Hox gene clusters. Development 2007, 134, 2549–2560. [Google Scholar] [CrossRef] [PubMed]
- Carlson, M.R.; Komine, Y.; Bryant, S.V.; Gardiner, D.M. Expression of Hoxb13 and Hoxc10 in developing and regenerating Axolotl limbs and tails. Dev. Biol. 2001, 229, 396–406. [Google Scholar] [CrossRef]
- Wang, Z. Comparative Analysis of Differences in Body Size and Weight between Inner Mongolia Albas Cashmere Goat and Daqing Mountain Goat; Inner Mongolia Agricultural University: Hohhot, China, 2020. [Google Scholar]
- Hong, X.; Ji, J.; Duan, Y.; Zhang, R. An automatic measurement method for cow hip width based on point cloud precise segmentation. J. Nanjing Agric. Univ. 2024, 1–12. [Google Scholar]
Variant ID | Primer Names | Primer Sequences (5′ to 3′) | Tm (°C) | Product Sizes (bp) |
---|---|---|---|---|
INS.57332 | P1 | F: TTATGAGCTTCTCTCCGCCAG | 59.59 | 514/682 |
R: CTTCAGCGAGCTTCGAGACA | 60.11 | |||
P2 | F: CTGGGTTGTTCCCAACTGGA | 59.82 | 510/678 | |
R: AGCCTTCAATCTCCTTGGCG | 60.39 | |||
P3 | F: CCGACGTAGCTGGGTTGTTC | 61.01 | 488/656 | |
R: GGTATAATTGCCGGGCTCCAT | 60.27 |
Region | Breed | Tail Type | Sample Size | Breed Type | DD | ID | II | I | D |
---|---|---|---|---|---|---|---|---|---|
Wild | Mouflon | Short thin-tailed | n = 33 | Wild sheep | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 |
Oceania | Border–Leicester | - | n = 19 | Meat–wool | 0.00 | 0.05 | 0.95 | 0.97 | 0.03 |
Europe | Gotland | Short thin-tailed | n = 10 | Meat–wool | 0.90 | 0.10 | 0.00 | 0.05 | 0.95 |
Ouessant | Short thin-tailed | n = 10 | Wool | 0.70 | 0.20 | 0.10 | 0.20 | 0.80 | |
Suffolk–White | Long thin-tailed | n = 13 | Meat–wool | 0.00 | 0.08 | 0.92 | 0.96 | 0.04 | |
Solognote | Long thin-tailed | n = 10 | Meat | 0.00 | 0.00 | 1.00 | 1.00 | 0.00 | |
FinnSheep | Short thin-tailed | n = 11 | Wool | 0.73 | 0.27 | 0.00 | 0.14 | 0.86 | |
Suffolk Sheep | Long thin-tailed | n = 11 | Meat | 0.00 | 0.09 | 0.91 | 0.95 | 0.05 | |
German merino Sheep | Long thin-tailed | n = 21 | Wool | 0.10 | 0.29 | 0.62 | 0.76 | 0.24 | |
Poll–Dorset | Long thin-tailed | n = 21 | Meat | 0.00 | 0.00 | 1.00 | 1.00 | 0.00 | |
East Friesian Dairy Sheep | Long thin-tailed | n = 54 | Milk | 0.06 | 0.07 | 0.87 | 0.91 | 0.09 | |
East Asia | Tibetan Oula Sheep | - | n = 10 | Meat | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 |
Waggir Sheep | Short fat-tailed | n = 10 | Meat | 0.80 | 0.20 | 0.00 | 0.10 | 0.90 | |
Sishui Fur Sheep | Long fat-tailed | n = 10 | Lambskin–meat | 0.20 | 0.10 | 0.70 | 0.75 | 0.25 | |
Wuzhumuqin | - | n = 11 | Meat–fat | 0.82 | 0.09 | 0.09 | 0.14 | 0.86 | |
Large-tailed Han Sheep | Long fat-tailed | n = 11 | Meat–fat–lambskin–wool | 0.00 | 0.55 | 0.45 | 0.73 | 0.27 | |
Small-Tail Han Sheep | Short fat-tailed | n = 12 | Lambskin–meat | 0.83 | 0.17 | 0.00 | 0.08 | 0.92 | |
Wadi Sheep | Short fat-tailed | n = 12 | Meat–wool | 0.75 | 0.25 | 0.00 | 0.13 | 0.88 | |
HybridF1(Kazakh×Texel) | - | n = 15 | Meat | 0.53 | 0.40 | 0.07 | 0.27 | 0.73 | |
Bayinbuluke Sheep | Fat-rumped | n = 16 | Meat–fat | 0.75 | 0.25 | 0.00 | 0.13 | 0.88 | |
Kazakh Sheep | Fat-rumped | n = 19 | Meat–fat | 0.68 | 0.26 | 0.05 | 0.18 | 0.82 | |
Tan Sheep | Long fat-tailed | n = 17 | Wool | 0.06 | 0.00 | 0.94 | 0.94 | 0.06 | |
Yunnan Sheep | Short thin-tailed | n = 21 | Meat–wool–lambskin | 0.48 | 0.43 | 0.10 | 0.31 | 0.69 | |
Duolang Sheep | Short fat-tailed | n = 22 | Meat–fat | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | |
Bashibai Sheep | Fat-rumped | n = 22 | Wool–meat | 0.86 | 0.09 | 0.05 | 0.09 | 0.91 | |
Cele Black Sheep | Short fat-tailed | n = 26 | Lambskin | 0.38 | 0.46 | 0.15 | 0.38 | 0.62 | |
Altay Sheep | Fat-rumped | n = 27 | Meat | 0.93 | 0.04 | 0.04 | 0.06 | 0.94 | |
Tibetan Sheep | Short thin-tailed | n = 25 | Coarse wool | 0.80 | 0.20 | 0.00 | 0.10 | 0.90 | |
Hu Sheep | Short fat-tailed | n = 46 | Meat | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | |
Africa | Bonga Sheep | - | n = 10 | Meat | 0.00 | 0.50 | 0.50 | 0.75 | 0.25 |
Morocco local populations | Long thin-tailed | n = 10 | Meat | 0.00 | 0.50 | 0.50 | 0.75 | 0.25 | |
Kefis Sheep | - | n = 13 | Lambskin | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | |
Dorper Sheep | - | n = 10 | Meat | 0.40 | 0.30 | 0.30 | 0.45 | 0.55 |
Guiqian Semi-Fine Wool Sheep | Yuansheng Milk Sheep | Lanzhou Fat-Tailed Sheep | Luxi Black-Headed Sheep | Aoduhu Hybrid Sheep | Australian White Sheep | |
---|---|---|---|---|---|---|
Sample Size | 590 | 253 | 46 | 631 | 1123 | 749 |
II | 0.207 (n = 122) | 0.012 (n = 3) | 0.000 (n = 0) | 0.016 (n = 10) | 0.038 (n = 43) | 0.042 (n = 31) |
ID | 0.380 (n = 224) | 0.277 (n = 70) | 0.087 (n = 4) | 0.155 (n = 98) | 0.220 (n = 247) | 0.435 (n = 326) |
DD | 0.413 (n = 244) | 0.711 (n = 180) | 0.913 (n = 42) | 0.829 (n = 523) | 0.742 (n = 833) | 0.523 (n = 392) |
I | 0.397 | 0.151 | 0.044 | 0.094 | 0.148 | 0.259 |
D | 0.603 | 0.849 | 0.956 | 0.906 | 0.852 | 0.741 |
Ho | 0.521 | 0.744 | 0.916 | 0.830 | 0.747 | 0.616 |
He | 0.479 | 0.256 | 0.084 | 0.170 | 0.253 | 0.384 |
Ne | 1.919 | 1.345 | 1.092 | 1.205 | 1.338 | 1.623 |
PIC | 0.364 | 0.224 | 0.081 | 0.156 | 0.221 | 0.310 |
HWE p-value | 0.672 | 0.424 | 0.180 | 0.312 | 0.420 | 0.572 |
Breed | Guiqian Semi-Fine Wool Sheep | Yuansheng Milk Sheep | Lanzhou Fat-Tailed Sheep | Luxi Black-Headed Sheep | Aoduhu Hybrid Sheep | Australian White Sheep |
---|---|---|---|---|---|---|
Guiqian semi-fine wool sheep | 1.5634 × 10−18 ** | 3.7934 × 10−10 ** | 7.2345 × 10−54 ** | 1.1586 × 10−47 ** | 3.0586 × 10−20 ** | |
Yuansheng milk sheep | 4.3482 × 10−13 ** | 0.015 * | 0.000173 ** | 0.024 * | 6.1185 × 10−7 ** | |
Lanzhou fat-tailed sheep | 1.2154 × 10−7 ** | 0.058 | 0.298 | 0.028 * | 0.000002 ** | |
Luxi black-headed sheep | 1.3407 × 10−36 ** | 0.017 * | 0.419 | 0.000065 ** | 8.5599 × 10−32 ** | |
Aoduhu hybrid sheep | 1.5138 × 10−29 ** | 0.922 | 0.052 | 0.001 ** | 1.2266 × 10−22 ** | |
Australian white sheep | 1.0143 × 10−7 ** | 0.000289 ** | 0.000319 ** | 6.6551 × 10−16 ** | 3.7062 × 10−9 ** |
Traits | Sample Size | Observed Genotypes (Mean ± SE) | p-Value | |
---|---|---|---|---|
ID | DD | |||
Hip width (cm) | 98 | 18.17 ± 0.84 | 20.64 ± 0.38 | 0.023 |
Body weight (kg) | 100 | 60.67 ± 4.62 | 64.48 ± 1.44 | 0.373 |
Body height (cm) | 100 | 67.25 ± 1.18 | 68.72 ± 0.42 | 0.233 |
Body length (cm) | 100 | 75.58 ± 1.56 | 76.35 ± 0.63 | 0.670 |
Hip cross height (cm) | 100 | 69.83 ± 1.10 | 69.94 ± 0.38 | 0.920 |
Chest depth (cm) | 100 | 30.30 ± 0.95 | 33.32 ± 2.70 | 0.682 |
Chest width (cm) | 100 | 21.64 ± 1.44 | 23.96 ± 0.51 | 0.118 |
Chest girth (cm) | 100 | 96.42 ± 3.10 | 96.59 ± 0.98 | 0.952 |
Abdomen circumference (cm) | 100 | 117.92 ± 2.67 | 118.32 ± 0.96 | 0.885 |
Cannon (bone) circumference (cm) | 100 | 9.08 ± 0.33 | 9.26 ± 0.10 | 0.561 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Q.; Liu, P.; Zhang, M.; Kang, Y.; Lv, L.; Xu, H.; Zhang, Q.; Li, R.; Pan, C.; Lan, X. The Detection of a Functional 168 bp Deletion of the HOXB13 Gene Determining Short Tail and Its Association with Senior Growth Traits in Sheep Breeds Worldwide. Animals 2024, 14, 1617. https://doi.org/10.3390/ani14111617
Zhu Q, Liu P, Zhang M, Kang Y, Lv L, Xu H, Zhang Q, Li R, Pan C, Lan X. The Detection of a Functional 168 bp Deletion of the HOXB13 Gene Determining Short Tail and Its Association with Senior Growth Traits in Sheep Breeds Worldwide. Animals. 2024; 14(11):1617. https://doi.org/10.3390/ani14111617
Chicago/Turabian StyleZhu, Qihui, Peiyao Liu, Mingshi Zhang, Yuxin Kang, Linmi Lv, Hongwei Xu, Qingfeng Zhang, Ran Li, Chuanying Pan, and Xianyong Lan. 2024. "The Detection of a Functional 168 bp Deletion of the HOXB13 Gene Determining Short Tail and Its Association with Senior Growth Traits in Sheep Breeds Worldwide" Animals 14, no. 11: 1617. https://doi.org/10.3390/ani14111617
APA StyleZhu, Q., Liu, P., Zhang, M., Kang, Y., Lv, L., Xu, H., Zhang, Q., Li, R., Pan, C., & Lan, X. (2024). The Detection of a Functional 168 bp Deletion of the HOXB13 Gene Determining Short Tail and Its Association with Senior Growth Traits in Sheep Breeds Worldwide. Animals, 14(11), 1617. https://doi.org/10.3390/ani14111617