Using Activity Measures and GNSS Data from a Virtual Fencing System to Assess Habitat Preference and Habitat Utilisation Patterns in Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Method
2.1. Animals and Location
2.2. Data and Statistical Analysis
3. Results
3.1. Habitat Preference
3.2. Daily Activity Patterns and Behaviour Classification
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jachowski, D.S.; Slotow, R.; Millspaugh, J.J. Good virtual fences make good neighbors: Opportunities for conservation. Anim. Conserv. 2014, 17, 187–196. [Google Scholar] [CrossRef]
- Herlin, A.; Brunberg, E.; Hultgren, J.; Høgberg, N.; Rydberg, A.; Skarin, A. Animal welfare implications of digital tools for monitoring and management of cattle and sheep on pasture. Animals 2021, 11, 829. [Google Scholar] [CrossRef] [PubMed]
- Goliński, P.; Sobolewska, P.; Stefańska, B.; Golińska, B. Virtual Fencing Technology for Cattle Management in the Pasture Feeding System—A Review. Agriculture 2023, 13, 91. [Google Scholar] [CrossRef]
- Umstatter, C. The evolution of virtual fences: A review. Comput. Electron. Agric. 2011, 75, 10–22. [Google Scholar] [CrossRef]
- Bretas, I.L.; Dubeux, J.C.B.; Cruz, P.J.R.; Queiroz, L.M.D.; Ruiz-Moreno, M.; Knight, C.; Flynn, S.; Ingram, S.; Pereira Neto, J.D.; Oduor, K.T.; et al. Monitoring the Effect of Weed Encroachment on Cattle Behavior in Grazing Systems Using GPS Tracking Collars. Animals 2023, 13, 3353. [Google Scholar] [CrossRef]
- Ungar, E.D.; Henkin, Z.; Gutman, M.; Dolev, A.; Genizi, A.; Ganskopp, D. Inference of Animal Activity From GPS Collar Data on Free-Ranging Cattle. Rangel. Ecol. Manag. 2005, 58, 256–266. [Google Scholar] [CrossRef]
- Lovarelli, D.; Bacenetti, J.; Guarino, M. A review on dairy cattle farming: Is precision livestock farming the compromise for an environmental, economic and social sustainable production? J. Clean. Prod. 2020, 262, 121409. [Google Scholar] [CrossRef]
- Vaintrub, M.O.; Levit, H.; Chincarini, M.; Fusaro, I.; Giammarco, M.; Vignola, G. Review: Precision livestock farming, automats and new technologies: Possible applications in extensive dairy sheep farming. Animal 2021, 15, 100143. [Google Scholar] [CrossRef]
- Tzanidakis, C.; Tzamaloukas, O.; Simitzis, P.; Panagakis, P. Precision Livestock Farming Applications (PLF) for Grazing Animals. Agriculture 2023, 13, 288. [Google Scholar] [CrossRef]
- Campbell, D.L.M.; Lea, J.M.; Keshavarzi, H.; Lee, C. Virtual Fencing Is Comparable to Electric Tape Fencing for Cattle Behavior and Welfare. Front. Vet. Sci. 2019, 6, 445. [Google Scholar] [CrossRef]
- Rivero, M.J.; Grau-Campanario, P.; Mullan, S.; Held, S.D.E.; Stokes, J.E.; Lee, M.R.F.; Cardenas, L.M. Factors Affecting Site Use Preference of Grazing Cattle Studied from 2000 to 2020 through GPS Tracking: A Review. Sensors 2021, 21, 2696. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, J.; Bork, E.W.; Blenis, P.V.; Alexander, M.J. Cattle habitat selection and associated habitat characteristics under free-range grazing within heterogeneous Montane rangelands of Alberta. Appl. Anim. Behav. Sci. 2013, 146, 1–10. [Google Scholar] [CrossRef]
- Zengeya, F.M.; Murwira, A.; De Garine-Wichatitsky, M. Seasonal habitat selection and space use by a semi-free range herbivore in a heterogeneous savanna landscape: Habitat selection and space use. Austral Ecol. 2014, 39, 722–731. [Google Scholar] [CrossRef]
- Roever, C.; DelCurto, T.; Rowland, M.; Vavra, M.; Wisdom, M. Cattle grazing in semiarid forestlands: Habitat selection during periods of drought. J. Anim. Sci. 2015, 93, 3212–3225. [Google Scholar] [CrossRef]
- Tofastrud, M.; Devineau, O.; Zimmermann, B. Habitat selection of free-ranging cattle in productive coniferous forests of south-eastern Norway. For. Ecol. Manag. 2019, 437, 1–9. [Google Scholar] [CrossRef]
- Fraser, M.; Vallin, H.; Roberts, B. Animal board invited review: Grassland-based livestock farming and biodiversity. Animal 2022, 16, 100671. [Google Scholar] [CrossRef]
- Nielsen, L. Biomasseproduktion på Danske Naturarealer; Technical Report; Natur og Landbrug: Copenhagen, Denmark, 2012. [Google Scholar]
- Kaufmann, J.; Bork, E.W.; Alexander, M.J.; Blenis, P.V. Habitat selection by cattle in Foothill landscapes following variable harvest of aspen forest. For. Ecol. Manag. 2013, 306, 15–22. [Google Scholar] [CrossRef]
- Versluijs, E.; Niccolai, L.J.; Spedener, M.; Zimmermann, B.; Hessle, A.; Tofastrud, M.; Devineau, O.; Evans, A.L. Classification of behaviors of free-ranging cattle using accelerometry signatures collected by virtual fence collars. Front. Anim. Sci. 2023, 4, 1083272. [Google Scholar] [CrossRef]
- Nunes Marsiglio Sarout, B.; Waterhouse, A.; Duthie, C.A.; Candal Poli, C.H.E.; Haskell, M.J.; Berger, A.; Umstatter, C. Assessment of circadian rhythm of activity combined with random regression model as a novel approach to monitoring sheep in an extensive system. Appl. Anim. Behav. Sci. 2018, 207, 26–38. [Google Scholar] [CrossRef]
- Watanabe, R.N.; Bernardes, P.A.; Romanzini, E.P.; Teobaldo, R.W.; Reis, R.A.; Munari, D.P.; Braga, L.G.; Brito, T.R. Strategy to predict high and low frequency behaviors using triaxial accelerometers in grazing of beef cattle. Animals 2021, 11, 3438. [Google Scholar] [CrossRef]
- Nogoy, K.M.C.; Chon, S.I.; Park, J.H.; Sivamani, S.; Lee, D.H.; Choi, S.H. High Precision Classification of Resting and Eating Behaviors of Cattle by Using a Collar-Fitted Triaxial Accelerometer Sensor. Sensors 2022, 22, 5961. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, M.M.; Cibils, A.F.; Estell, R.E.; Gong, Q.; Cao, H.; Gonzalez, A.L.; Nyamuryekung’e, S.; Spiegal, S.A. Can cattle geolocation data yield behavior-based criteria to inform precision grazing systems on rangeland? Livest. Sci. 2022, 255, 104801. [Google Scholar] [CrossRef]
- Augustine, D.J.; Derner, J.D. Assessing Herbivore Foraging Behavior with GPS Collars in a Semiarid Grassland. Sensors 2013, 13, 3711–3723. [Google Scholar] [CrossRef] [PubMed]
- Matthiopoulos, J.; Fieberg, J.R.; Aarts, G. Species-Habitat Associations: Spatial Data, predictive Models, and Ecological Insights, 2nd ed.; University of Minnesota Libraries Publishing: Minneapolis, MN, USA, 2023. [Google Scholar] [CrossRef]
- The Danish Agency for Data Supply and Infrastructure. Forårsbilleder Ortofoto—GeoDanmark. 2023. Available online: https://datafordeler.dk/vejledning/brugervilkaar/sdfi-geografiske-data/ (accessed on 2 October 2023).
- The Danish Environmental Portal. Kortlægning af Naturtyper—Flader. 2023. Available online: https://arealdata.miljoeportal.dk/terms (accessed on 2 October 2023).
- Aaser, M.F.; Staahltoft, S.K.; Korsgaard, A.H.; Trige-Esbensen, A.; Alstrup, A.K.O.; Sonne, C.; Pertoldi, C.; Bruhn, D.; Frikke, J.; Linder, A.C. Is Virtual Fencing an Effective Way of Enclosing Cattle? Personality, Herd Behaviour and Welfare. Animals 2022, 12, 842. [Google Scholar] [CrossRef] [PubMed]
- Projekt Virtuelt Hegn, Fanø. Available online: https://www.virtuelthegn.dk/ (accessed on 2 October 2023).
- Arnold, G. Comparison of the time budgets and circadian patterns of maintenance activities in sheep, cattle and horses grouped together. Appl. Anim. Behav. Sci. 1984, 13, 19–30. [Google Scholar] [CrossRef]
- Schoenbaum, I.; Kigel, J.; Ungar, E.D.; Dolev, A.; Henkin, Z. Spatial and temporal activity of cattle grazing in Mediterranean oak woodland. Appl. Anim. Behav. Sci. 2017, 187, 45–53. [Google Scholar] [CrossRef]
- Tofastrud, M.; Hegnes, H.; Devineau, O.; Zimmermann, B. Activity patterns of free-ranging beef cattle in Norway. Acta Agric. Scand. Sect. A Anim. Sci. 2018, 68, 39–47. [Google Scholar] [CrossRef]
- Manly, B.; Mcdonald, L.; Thomas, D.; Mcdonald, T.; Erickson, W. Resource Selection by Animals: Statistical Design and Analysis for Field Studies; Kluwer Academic Publishers: Dordrecht, The Netherlands. 2002; Volume 63. [Google Scholar] [CrossRef]
- Northrup, J.M.; Vander Wal, E.; Bonar, M.; Fieberg, J.; Laforge, M.P.; Leclerc, M.; Prokopenko, C.M.; Gerber, B.D. Conceptual and methodological advances in habitat-selection modeling: Guidelines for ecology and evolution. Ecol. Appl. 2022, 32, e02470. [Google Scholar] [CrossRef]
- White, G.C.; Garrott, R.A. Analysis of Wildlife Radio-Tracking Data; Acedemic Press Limited: San Diego, CA, USA, 1990. [Google Scholar] [CrossRef]
- Calenge, C.; Dufour, A.B. Eigenanalysis of selection ratios from animal radio-tracking data. Ecology 2006, 87, 2349–2355. [Google Scholar] [CrossRef]
- QGIS. QGIS Desktop 3.26. 2023. Available online: http://www.qgis.org/ (accessed on 2 October 2023).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 2 October 2023).
- Sickel, H.; Ihse, M.; Norderhaug, A.; Sickel, M.A. How to monitor semi-natural key habitats in relation to grazing preferences of cattle in mountain summer farming areas: An aerial photo and GPS method study. Landsc. Urban Plan. 2004, 67, 67–77. [Google Scholar] [CrossRef]
- Hessle, A.; Rutter, M.; Wallin, K. Effect of breed, season and pasture moisture gradient on foraging behaviour in cattle on semi-natural grasslands. Appl. Anim. Behav. Sci. 2008, 111, 108–119. [Google Scholar] [CrossRef]
- Putfarken, D.; Dengler, J.; Lehmann, S.; Härdtle, W. Site use of grazing cattle and sheep in a large-scale pasture landscape: A GPS/GIS assessment. Appl. Anim. Behav. Sci. 2008, 111, 54–67. [Google Scholar] [CrossRef]
- Gou, X.; Tsunekawa, A.; Tsubo, M.; Peng, F.; Sun, J.; Li, Y.; Zhao, X.; Lian, J. Seasonal dynamics of cattle grazing behaviors on contrasting landforms of a fenced ranch in northern China. Sci. Total Environ. 2020, 749, 141613. [Google Scholar] [CrossRef] [PubMed]
- Pauler, C.M.; Isselstein, J.; Suter, M.; Berard, J.; Braunbeck, T.; Schneider, M.K.; Stevens, C. Choosy grazers: Influence of plant traits on forage selection by three cattle breeds. Funct. Ecol. 2020, 34, 980–992. [Google Scholar] [CrossRef]
- Koch, B.; Homburger, H.; Edwards, P.J.; Schneider, M.K. Phosphorus redistribution by dairy cattle on a heterogeneous subalpine pasture, quantified using GPS tracking. Agric. Ecosyst. Environ. 2018, 257, 183–192. [Google Scholar] [CrossRef]
- Nygaard, B.; Ejrnæs, R.; Fredshavn, J. Kortlægning af Habitatnaturtyper 2019; Scientific Report nr. 419, NOVANA; Aarhus University, DCE—Danish Centre For Environment And Energy: Roskilde, Denmark, 2021. [Google Scholar]
- Buttenschøn, R. Græsning og Høslæt i Naturplejen; Technical Report; Forest & Landscape Denmark/University of Copenhagen: Copenhagen, Denmark, 2007. [Google Scholar]
- Sawalhah, M.N.; Cibils, A.F.; Maladi, A.; Cao, H.; Vanleeuwen, D.M.; Holechek, J.L.; Black Rubio, C.M.; Wesley, R.L.; Endecott, R.L.; Mulliniks, T.J.; et al. Forage and Weather Influence Day versus Nighttime Cow Behavior and Calf Weaning Weights on Rangeland. Rangel. Ecol. Manag. 2016, 69, 134–143. [Google Scholar] [CrossRef]
- Sant’Anna, A.C.; da Costa, M.J.R.P.; Páscoa, A.G.; Silva, L.C.M.; Jung, J. Assessing land use by cattle in heterogeneous environments. Ciência Rural 2015, 45, 470–473. [Google Scholar] [CrossRef]
- Kilgour, R.J. In pursuit of “normal”: A review of the behaviour of cattle at pasture. Appl. Anim. Behav. Sci. 2012, 138, 1–11. [Google Scholar] [CrossRef]
- Turner, L.; Udal, M.; Larson, B.T.; Shearer, S. Monitoring cattle behavior and pasture use with GPS and GIS. Can. J. Anim. Sci. 2000, 80, 405–413. [Google Scholar] [CrossRef]
- Homburger, H.; Lüscher, A.; Scherer-Lorenzen, M.; Schneider, M.K. Patterns of livestock activity on heterogeneous subalpine pastures reveal distinct responses to spatial autocorrelation, environment and management. Mov. Ecol. 2015, 3, 1–15. [Google Scholar] [CrossRef]
- Ganskopp, D. Manipulating cattle distribution with salt and water in large arid-land pastures: A GPS/GIS assessment. Appl. Anim. Behav. Sci. 2001, 73, 251–262. [Google Scholar] [CrossRef]
Habitat | Characteristic Species | Area (ha) | % of Total Area |
---|---|---|---|
Salt meadow | Phragmites australis, Carex extensa, Carex distans, Plantago maritima, Triglochin maritima, Agrostis stolonifera | 2.9 | 1.8% |
Wooded dunes | Pinus mugo, Pinus sylvestris, Pinus contorta, Picea sitchensis, Carex arenaria, Calluna vulgaris | 9.7 | 5.9% |
Decalcified dunes | Calluna vulgaris, Empetrum nigrum, Carex arenaria, Avenella flexuosa, Polypodium vulgare | 16.6 | 10.2% |
Humid dune slacks | Salix repens var. argentea, Equisetum fluviatile, Eriophorum angustifolium, Drosera intermedia, Gentiana pneumonanthe | 62.8 | 38.4% |
Grey dunes | Ammophila arenaria, Corynephorus canescens, Carex arenaria, Calluna vulgaris, Festuca ovina, Jasione montana, Potentilla erecta, Cladina sp. | 71.5 | 43.7% |
Habitat | Median Selection Ratio | MAD |
---|---|---|
Salt meadow | 6.78 | 0.36 |
Grey dunes | 1.32 | 0.04 |
Decalficied dunes | 0.75 | 0.05 |
Humid dune slacks | 0.52 | 0.03 |
Wooded dunes | 0.47 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aaser, M.F.; Staahltoft, S.K.; Andersen, M.; Alstrup, A.K.O.; Sonne, C.; Bruhn, D.; Frikke, J.; Pertoldi, C. Using Activity Measures and GNSS Data from a Virtual Fencing System to Assess Habitat Preference and Habitat Utilisation Patterns in Cattle. Animals 2024, 14, 1506. https://doi.org/10.3390/ani14101506
Aaser MF, Staahltoft SK, Andersen M, Alstrup AKO, Sonne C, Bruhn D, Frikke J, Pertoldi C. Using Activity Measures and GNSS Data from a Virtual Fencing System to Assess Habitat Preference and Habitat Utilisation Patterns in Cattle. Animals. 2024; 14(10):1506. https://doi.org/10.3390/ani14101506
Chicago/Turabian StyleAaser, Magnus Fjord, Søren Krabbe Staahltoft, Martin Andersen, Aage Kristian Olsen Alstrup, Christian Sonne, Dan Bruhn, John Frikke, and Cino Pertoldi. 2024. "Using Activity Measures and GNSS Data from a Virtual Fencing System to Assess Habitat Preference and Habitat Utilisation Patterns in Cattle" Animals 14, no. 10: 1506. https://doi.org/10.3390/ani14101506
APA StyleAaser, M. F., Staahltoft, S. K., Andersen, M., Alstrup, A. K. O., Sonne, C., Bruhn, D., Frikke, J., & Pertoldi, C. (2024). Using Activity Measures and GNSS Data from a Virtual Fencing System to Assess Habitat Preference and Habitat Utilisation Patterns in Cattle. Animals, 14(10), 1506. https://doi.org/10.3390/ani14101506