Effects of Different Dietary Protein Levels on the Growth Performance, Physicochemical Indexes, Quality, and Molecular Expression of Yellow River Carp (Cyprinus carpio haematopterus)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Feed Formulation and Preparation
2.2. Fish Management and Feeding
2.3. Sample Collection
2.4. The Growth Performance
2.5. The Analysis of the Plasma Hematological Parameters and Enzyme Activities
2.6. Proximate Composition
2.7. Fatty Acid Profile and Evaluation
2.8. Amino Acid Analysis and Evaluation
2.9. Molecular Expression Analysis
2.10. Statistical Analysis
3. Results
3.1. The Growth Performance
3.2. The Plasma Hematological Parameters and Enzyme Activities
3.3. Proximate Composition
3.4. Fatty Acids Profiles
3.5. Amino Acids Analysis
3.6. Molecular Expression
3.6.1. Relative GH Expression
3.6.2. Relative TOR and 4EBP1 Expression of Protein Synthesis
3.6.3. Relative Rhesus Glycoprotein Expression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2022; pp. 1–5. [Google Scholar]
- Yadav, A.K.; Mandal, S.C.; Patel, A.B.; Maurya, P.K. Evaluation of dietary protein requirement for the growth performance of minor carp, Cirrhinus reba (Hamilton, 1822) fingerlings. Aquac. Res. 2019, 50, 3343–3349. [Google Scholar] [CrossRef]
- Jin, Y.; Tian, L.X.; Xie, S.W.; Guo, D.Q.; Yang, H.J.; Liang, G.Y.; Liu, Y.J. Interactions between dietary protein levels, growth performance, feed utilization, gene expression and metabolic products in juvenile grass carp (Ctenopharyngodon idella). Aquaculture 2015, 437, 75–83. [Google Scholar] [CrossRef]
- Alam, M.S.; Watanabe, W.O.; Carroll, P.M. Dietary protein requirements of juvenile Black Sea Bass Centropristis striata. J. World Aquac. Soc. 2008, 39, 656–663. [Google Scholar] [CrossRef]
- Ye, W.; Han, D.; Zhu, X.; Yang, Y.; Jin, J.; Xie, S. Comparative study on dietary protein requirements for juvenile and pre-adult gible carp (Carassius auratus gibelio var. CASIII). Aquac. Nutr. 2016, 23, 755–765. [Google Scholar] [CrossRef]
- Wilson, R.P. Amino acids and proteins. In Fish Nutrition, 3rd ed.; Halver, J.E., Hardy, R.W., Eds.; Academic Press: Cambridge, MA, USA, 2002; pp. 143–179. [Google Scholar]
- Guo, L.; Jing, R.Z.; Cheng, Z.Y.; Sun, J.H.; Bai, D.Q.; Qiao, X.T. A preliminary study on decreasing feed protein of carp. Feed Ind. 2013, 34, 41–45. [Google Scholar]
- Bureau of Fisheries and Fishery Management, Ministry of Agriculture and Rural Affairs of China. 2021. China Fisheries Statistical Yearbook; Chinese Agricultural Press: Beijing, China, 2022; p. 25. [Google Scholar]
- Song, D.Y.; Yun, Y.H.; He, Z.J.; Mi, J.L.; Wang, L.M.; Jin, M.; Zhou, Q.C.; Nie, G.X. Fillet texture, physicochemical indexes, muscle cellularity and molecular expression in muscle of Yellow River carp (Cyprinus carpio haematopterus) in response to dietary hydroxyproline supplementation. Aquaculture 2022, 549, 737783. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Fish; National Academy Press: Washington, DC, USA, 1993; pp. 12–17. [Google Scholar]
- Tacon, A.G.J.; Metian, M. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture 2008, 285, 146–158. [Google Scholar] [CrossRef]
- Yun, Y.H.; Song, D.Y.; He, Z.J.; Mi, J.L.; Wang, L.M.; Nie, X.G. Effects of methionine supplementation in plant protein based diet on growth performance and fillet quality of juveniles Yellow River carp (Cyprinus carpio haematopterus). Aquaculture 2022, 549, 737810. [Google Scholar] [CrossRef]
- National Health Commission of the People’s Republic of China; State Administration for Market Regulation. GB/T 36782-2018. Formula Feed for Common Carp (Cyprinus carp), Standards Press of China: Beijing, China, 2018; pp. 1–6.
- Fan, Z.; Wu, D.; Li, J.N.; Zhang, Y.Y.; Xu, Q.Y.; Wang, L.S. Dietary protein requirement for large-size Songpu mirror carp (Cyprinus carpio Songpu). Aquac. Nutr. 2020, 26, 1748–1759. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of Association of Official Analytical Chemists, 16th ed.; Method: Arlington, VA, USA, 1995; p. 13. [Google Scholar]
- National Health Commission of the People’s Republic of China; State Administration for Market Regulation. GB 5009.6-2016. National Food Safety Standard-Determination of Fat in Food, Standards Press of China: Beijing, China, 2016; pp. 1–2.
- National Health Commission of the People’s Republic of China; State Administration for Market Regulation. GB 5009.168-2016. National Food Safety Standard-Determination of Fatty Acids in Food, Standards Press of China: Beijing, China, 2016; pp. 10–11.
- Śmietana, N.; Panicz, R.; Sobczak, M.; Śmietana, P.; Nędzarek, A. Spiny-Cheek Crayfish, Faxonius limosus (Rafinesque, 1817), as an alternative food source. Animals 2021, 11, 59. [Google Scholar] [CrossRef]
- National Health Commission of the People’s Republic of China; State Administration for Market Regulation. GB 5009.124-2016. National Food Safety Standard-Determination of Amino Acids in Food, Standards Press of China: Beijing, China, 2016; pp. 1–6.
- FAO/WHO/UNU. Protein and Amino Acid Requirements in Human Nutrition; WHO Technical Report Series; WHO: Geneva, Switzerland, 2020; Available online: https://www.who.int/nutrition/publications/nutrientrequirements/WHO_TRS_935/en/ (accessed on 8 August 2020).
- Shahidi, F.; Synowiecki, J. Nutrient composition of mechanically separated and surimi like seal meat. Food Chem. 1993, 47, 41–46. [Google Scholar] [CrossRef]
- Page, J.W. Interaction of dietary levels of protein and energy on channel catfish (Ictalurus punctatus). J. Nutr. 1973, 2, 1339–1346. [Google Scholar] [CrossRef]
- Khan, S.; Ang, K.J.; Ambak, M.A. The effect of varying dietary protein level on the growth, food conversion, protein utilization and body composition of tropical catfish Mystus nemurus (C. & V.) cultured in static pond water system. Aquac. Res. 1996, 27, 823–829. [Google Scholar]
- Islam, S.M.; Tanaka, M. Optimization of dietary protein requirement for pondreared masheer Tor putitora Hamilton (Cypriniformes: Cyprinidae). Aquac. Res. 2004, 35, 1270–1276. [Google Scholar] [CrossRef]
- Kim, K.; Wang, X.; Bai, S.C. Reevaluation of the dietary protein requirement of Japanese flounder Paralichthys olivaceus. J. World Aquac. Soc. 2003, 34, 133–139. [Google Scholar] [CrossRef]
- Mohanta, K.N.; Mohanty, S.N.; Jena, J.K.; Sahu, N.P. Protein requirement of silver barb, Puntius gonionotus fingerlings. Aquac. Nutr. 2008, 13, 143–152. [Google Scholar] [CrossRef]
- Schuchardt, D.; Vergara, J.M.; Fernández-Palacios, H.; Kalinowski, C.T.; Hernández-Cruz, C.M.; Izquierdo, M.S.; Robaina, L. Effects of different dietary protein and lipid levels on growth, feed utilization and body composition of red porgy (Pagrus pagrus) fingerlings. Aquac. Nutr. 2008, 14, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.Q.; Zhu, X.M.; Liu, J.S.; Han, D.; Yang, Y.X.; Lan, Z.Q.; Xie, S.Q. Effects of dietary protein level on growth performance, nitrogen and energy budget of juvenile hybrid sturgeon, Acipenser baerii♀ × A. gueldenstaedtii♂. Aquaculture 2012, 338, 89–95. [Google Scholar] [CrossRef]
- Gan, L.; Liu, Y.J.; Tian, L.X.; Yang, H.J.; Yue, Y.R.; Chen, Y.J.; Liang, J.J.; Liang, G.Y. Effect of dietary protein reduction with lysine and methionine supplementation on growth performance, body composition and total ammonia nitrogen excretion of juvenile grass carp, Ctenopharyngodon idella. Aquac. Nutr. 2012, 18, 589–598. [Google Scholar] [CrossRef]
- Tu, Y.Q.; Xie, S.Q.; Han, D.; Yang, Y.X.; Jin, J.Y.; Liu, H.K.; Zhu, X.M. Growth performance, digestive enzyme, transaminase and GH-IGF-I axis gene responsiveness to different dietary protein levels in broodstock allogenogynetic gibel carp (Carassius auratus gibelio) CAS III. Aquaculture 2015, 446, 290–297. [Google Scholar] [CrossRef]
- Gao, Y.J.; Lu, S.D.; Wu, M.J.; Yao, W.; Jin, Z.B.; Wu, X.Y. Effects of dietary protein levels on growth, feed utilization and expression of growth related genes of juvenile giant grouper (Epinephelus lanceolatus). Aquaculture 2019, 504, 369–374. [Google Scholar] [CrossRef]
- Yang, S.; Liou, C.; Liu, F. Effects of dietary protein level on growth performance, carcass composition and ammonia excretion in juvenile silver perch (Bidyanus bidyanus). Aquaculture 2002, 213, 363–372. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, Y.; Mai, K.; Tian, L.; Liu, D.; Tan, X. Optimal dietary protein requirement of grouper Epinephelus coioides juveniles fed isoenergetic diets in floating net cages. Aquac. Nutr. 2004, 10, 247–252. [Google Scholar] [CrossRef]
- Ye, W.; Tan, X.; Chen, Y.; Luo, Z. Effects of dietary protein to carbohydrate ratios on growth and body composition of juvenile yellow catfish, Pelteobagrus fulvidraco (Siluriformes, Bagridae, Pelteobagrus). Aquac. Res. 2009, 40, 1410–1418. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, F.; Wang, L.L.; Shao, Q.; Xu, Z.; Xu, J. Dietary protein requirement of juvenile black sea bream, Sparus macrocephalus. J. World Aquac. Soc. 2010, 41, 151–164. [Google Scholar] [CrossRef]
- Nakada, T.; Westhoff, C.M.; Kato, A.; Hirose, S. Research communication ammonia secretion from fish gill depends on a set of Rh glycoproteins. FASEB J. 2007, 21, 1067–1074. [Google Scholar] [CrossRef] [Green Version]
- Weihrauch, D.; Wilkie, M.P.; Walsh, P.J. Ammonia and urea transporters in gills of fish and aquatic crustaceans. J. Exp. Biol. 2009, 212, 1716–1730. [Google Scholar] [CrossRef] [Green Version]
- Tu, H.Q.; Zhao, J.L.; Huang, S.Y.; Hao, Y.Y.; Cheng, Y.; Cao, X.Y. Ammonia transporter expression of Rh protein gen in gills of Nile Tilapia Oreochromis niloticus under stress of alkali. Fish. Sci. 2019, 38, 194–200. [Google Scholar]
- De Souza, R.R.; de Oliveira Paiva, P.D.; de Souza, A.R.; da Silva, R.R.; da Silva, D.P.C.; dos Reis, M.V.; Paiva, R. Morpho-anatomical changes and antioxidant enzyme activity during the acclimatization of Genipa americana. Acta Physiol. Plant. 2021, 43, 1–10. [Google Scholar] [CrossRef]
- Espinosa-Ruíz, C.; Esteban, M.Á. Wound-Induced Changes in Antioxidant Enzyme Activities in Skin Mucus and in Gene Expression in the Skin of Gilthead Seabream (Sparus aurata L.). Fishes 2021, 6, 15. [Google Scholar] [CrossRef]
- Heng, N.; Gao, S.; Chen, Y.; Wang, L.; Li, Z.; Guo, Y.; Sheng, X.H.; Wang, X.G.; Xing, K.; Xiao, L.F.; et al. Dietary supplementation with natural astaxanthin from Haematococcus pluvialis improves antioxidant enzyme activity, free radical scavenging ability, and gene expression of antioxidant enzymes in laying hens. Poultry Sci. 2021, 100, 101045. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Wahab, M.M.; Taha, N.M.; Lebda, M.A.; Elfeky, M.S.; Abdel-Latif, H.M. Effects of bovine lactoferrin and chitosan nanoparticles on serum biochemical indices, antioxidative enzymes, transcriptomic responses, and resistance of Nile tilapia against Aeromonas hydrophila. Fish Shellfish Immun. 2021, 111, 160–169. [Google Scholar] [CrossRef]
- Mu, Y.Y.; Shim, K.F.; Guo, J.Y. Effects of protein level in isocaloric diets on growth performance of the juvenile Chinese hairy crab, Eriocheir sinensis. Aquaculture 1998, 165, 139–148. [Google Scholar] [CrossRef]
- Sun, J.H.; Fan, Z.; Zhang, M.J.; Cheng, Z.Y.; Bai, D.Q.; Qiao, X.T. Effect of dietary protein level on hepatic function and antioxidant capacity of juvenile common carps (Cyprinus carpio). South China Fish. Sci. 2017, 13, 113–119. [Google Scholar]
- Ebrahimi, A.; Akrami, R.; Najdegerami, E.H.; Ghiasvand, Z.; Koohsari, H. Effects of different protein levels and carbon sources on water quality, antioxidant status and performance of common carp (Cyprinus carpio) juveniles raised in biofloc based system. Aquaculture 2020, 516, 734639. [Google Scholar] [CrossRef]
- Yu, H.; Ge, X.P.; Sun, S.M.; Zhu, J.; Ren, M.C.; Zhang, W.X.; Su, Y.L.; Mi, H.F. The effect of dietary protein level on the growth, digestive enzymes activities and antioxidant ability of the bighead carp (Aristichthys nobilis). J. Nanjing Agric. Univ. 2019, 42, 1158–1166. [Google Scholar]
- Ma, B.; Wang, L.; Lou, B.; Tan, P.; Xu, D.; Chen, R. Dietary protein and lipid levels affect the growth performance, intestinal digestive enzyme activities and related genes expression of juvenile small yellow croaker (Larimichthys polyactis). Aquac. Rep. 2020, 17, 100403. [Google Scholar] [CrossRef]
- Yue, H.; Huang, X.; Ruan, R.; Ye, H.; Li, Z.; Li, C. Effects of dietary protein levels on the growth, body composition, serum biochemistry and digestive enzyme activity in Chinese rice field eel (Monopterus albus) fingerlings. Aquac. Res. 2020, 51, 400–409. [Google Scholar] [CrossRef]
- Das, K.M.; Tripathi, S.D. Studies on the digestive enzymes of grass carp, Ctenopharyngodon idella (Val.). Aquaculture 1991, 92, 21–32. [Google Scholar] [CrossRef]
Item | Dietary Protein Level (g/kg) | ||||
---|---|---|---|---|---|
220 | 250 | 280 | 310 | 340 | |
IBM(g) | 150.44 ± 15.45 | 138.38 ± 9.28 | 175.36 ± 12.26 | 153.25 ± 8.76 | 168.32 ± 13.07 |
FBW(g) | 269.38 ± 49.51 c | 309.22 ± 30.35 b | 364.66 ± 20.36 a | 305.93 ± 17.97 c | 297.54 ± 38.61 c |
WG(%) | 73.30 ± 0.07 e | 123.46 ± 0.05 a | 107.94 ± 0.16 b | 99.63 ± 0.02 c | 76.77 ± 0.17 d |
SGR(%/d) | 0.61 ± 0.02 e | 0.89 ± 0.01 a | 0.81 ± 0.01 b | 0.77 ± 0.08 c | 0.63 ± 0.05 d |
SR(%) | 100 | 100 | 100 | 100 | 100 |
Item | Dietary Protein Level (g/kg) | ||||
---|---|---|---|---|---|
220 | 250 | 280 | 310 | 340 | |
ALT (U/L) | 2.37 ± 0.35 | 2.76 ± 0.34 | 5.60 ± 0.36 | 3.00 ± 0.30 | 5.36 ± 0.33 |
AST (U/L) | 21.38 ± 3.08 | 21.42 ± 2.34 | 22.98 ± 3.26 | 22.14 ± 3.89 | 31.22 ± 3.21 |
GLO (g/L) | 18.40 ± 0.42 | 16.78 ± 2.86 | 19.32 ± 3.16 | 18.52 ± 0.56 | 17.30 ± 1.23 |
ALP (U/L) | 281.58 ± 6.59 a | 236.44 ± 6.51 ab | 194.02 ± 7.13 ab | 134.46 ± 7.76 ab | 115.12 ± 6.70 b |
TP (g/L) | 30.96 ± 0.89 | 28.06 ± 1.54 | 32.72 ± 1.97 | 31.94 ± 1.31 | 30.92 ± 1.70 |
ALB (g/L) | 12.56 ± 0.56 | 11.28 ± 1.72 | 13.66 ± 1.47 | 13.62 ± 0.90 | 13.42 ± 0.69 |
BUN (mmol/L) | 4.73 ± 0.58 | 5.56 ± 0.81 | 6.47 ± 1.08 | 5.66 ± 1.20 | 5.44 ± 1.34 |
TC (mmol/L) | 2.84 ± 0.14 | 2.69 ± 0.42 | 2.89 ± 0.29 | 2.65 ± 0.11 | 2.47 ± 0.19 |
TG (mmol/L) | 1.96 ± 0.26 | 1.51 ± 0.40 | 1.28 ± 0.18 | 1.38 ± 0.16 | 1.34 ± 0.26 |
HDL-C (mmol/L) | 1.78 ± 0.08 | 1.68 ± 0.22 | 1.67 ± 0.14 | 1.67 ± 0.10 | 1.60 ± 0.09 |
LDL-C (mmol/L) | 3.57 ± 0.14 | 3.35 ± 0.43 | 3.35 ± 0.28 | 3.35 ± 0.22 | 3.17 ± 0.18 |
UA (μmol/L) | 7.72 ± 2.51 c | 23.90 ± 2.60 ab | 15.12 ± 3.16 bc | 13.40 ± 2.36 bc | 28.89 ± 2.38 a |
TBA (μmol/L) | 1.52 ± 0.18 | 0.94 ± 0.21 | 1.02 ± 0.29 | 2.06 ± 0.76 | 1.72 ± 0.33 |
Item | Dietary Protein Level (g/kg) | ||||
---|---|---|---|---|---|
220 | 250 | 280 | 310 | 340 | |
α-AMS(U/mgprot) | 27.02 ± 4.54 b | 50.26 ± 6.01 a | 60.33 ± 4.82 a | 27.71 ± 6.56 b | 24.16 ± 2.21 b |
LPS (U/gprot) | 8.81 ± 0.75 bc | 14.95 ± 2.12 a | 17.41 ± 0.49 a | 10.04 ± 0.71 b | 6.61 ± 0.47 c |
TPS (U/gprot) | 5288.99 ± 135.87 b | 7231.77 ± 920.57 a | 7632.99 ± 280.69 a | 6295.11 ± 652.67 ab | 5216.29 ± 322.42 b |
CAT (U/mgprot) | 25.84 ± 2.64 c | 34.50 ± 1.95 ab | 36.78 ± 0.92 a | 29.48 ± 1.39 bc | 29.29 ± 2.60 bc |
SOD (U/mgprot) | 18.86 ± 0.96 b | 26.27 ± 1.82 a | 26.25 ± 1.98 a | 20.64 ± 2.23 b | 18.67 ± 0.96 b |
MDA (nmol/mL) | 2.45 ± 0.18 a | 1.91 ± 0.43 b | 1.52 ± 0.55 b | 1.71 ± 0.60 b | 2.04 ± 0.71 ab |
Item | Dietary Protein Level (g/kg) | ||||
---|---|---|---|---|---|
220 | 250 | 280 | 310 | 340 | |
Moisture | 77.18 ± 0.41 b | 79.15 ± 0.55 a | 78.00 ± 0.12 ab | 78.53 ± 1.82 a | 78.44 ± 0.44 a |
Crude protein | 17.45 ± 0.28 a | 16.86 ± 0.16 a | 17.06 ± 0.43 a | 16.95 ± 0.43 a | 15.86 ± 0.38 b |
Crude lipid | 3.14 ± 0.15 a | 2.24 ± 0.07 b | 2.97 ± 0.34 a | 1.46 ± 0.21 c | 1.96 ± 0.09 bc |
Ash | 1.46 ± 0.07 | 1.29 ± 0.12 | 1.82 ± 0.19 | 1.82 ± 0.33 | 1.28 ± 0.04 |
Fatty Acids | Dietary Protein Level (g/kg) | ||||
---|---|---|---|---|---|
220 | 250 | 280 | 310 | 340 | |
C14:0 | 0.05 ± 0 ab | 0.03 ± 0.01 b | 0.05 ± 0.01 ab | 0.06 ± 0.01 a | 0.05 ± 0 ab |
C15:0 | 0.02 ± 0 | 0.01 ± 0 | 0.02 ± 0 | 0.02 ± 0 | 0.01 ± 0 |
C16:0 | 1.55 ± 0.06 a | 1.09 ± 0.14 ab | 1.36 ± 0.15 ab | 1.21 ± 0.22 ab | 0.99 ± 0.06 b |
C17:0 | 0.02 ± 0 a | 0.01 ± 0 b | 0.02 ± 0 a | 0.02 ± 0 a | 0.02 ± 0 a |
C18:0 | 0.50 ± 0.03 a | 0.38 ± 0.04 ab | 0.44 ± 0.04 ab | 0.41 ± 0.05 ab | 0.35 ± 0.01 b |
C20:0 | 0.03 ± 0 a | 0.02 ± 0 b | 0.03 ± 0 a | 0.02 ± 0 b | 0.02 ± 0 b |
C22:0 | 0.01 ± 0 | 0.01 ± 0 | 0.01 ± 0 | —— | —— |
C24:0 | 0.01 ± 0 | 0.01 ± 0 | 0.01 ± 0 | 0.01 ± 0 | 0.01 ± 0 |
∑SFA | 2.19 ± 0.09 a | 1.56 ± 0.19 ab | 1.94 ± 0.21 ab | 1.74 ± 0.29 ab | 1.45 ± 0.07 b |
C16:1 | 0.13 ± 0.01 | 0.08 ± 0.02 | 0.10 ± 0.01 | 0.15 ± 0.04 | 0.11 ± 0.01 |
C18:1n9c | 2.73 ± 0.13 a | 1.82 ± 0.26 b | 2.23 ± 0.33 ab | 1.97 ± 0.38 ab | 1.41 ± 0.06 b |
C20:1 | 0.15 ± 0 a | 0.09 ± 0.01 b | 0.13 ± 0.01 ab | 0.14 ± 0.02 ab | 0.11 ± 0.01 ab |
C22:1n9 | 0.21 ± 0.01 a | 0.14 ± 0.01 b | 0.14 ± 0.03 b | 0.13 ± 0.02 b | 0.13 ± 0.01 b |
C24:1 | 0.02 ± 0 a | 0.01 ± 0 b | 0.02 ± 0 a | 0.02 ± 0 a | 0.02 ± 0 a |
∑MUFA | 3.23 ± 0.15 a | 2.15 ± 0.30 b | 2.62 ± 0.37 ab | 2.41 ± 0.43 ab | 1.78 ± 0.05 b |
C18:2n6c (LA) | 3.11 ± 0.03 a | 2.13 ± 0.30 ab | 2.57 ± 0.63 a | 1.42 ± 0.28 b | 1.06 ± 0.08 b |
C18:3n6 (GLA) | 0.04 ± 0 a | 0.02 ± 0 b | 0.02 ± 0 b | 0.01 ± 0 b | 0.01 ± 0 b |
C18:3n3 (ALA) | 0.21 ± 0 a | 0.13 ± 0.02 ab | 0.17 ± 0.05 a | 0.07 ± 0.02 b | 0.06 ± 0.01 b |
C20:2 | 0.09 ± 0 a | 0.06 ± 0.01 ab | 0.08 ± 0.02 a | 0.05 ± 0.01 b | 0.05 ± 0 b |
C20:3n6 | 0.11 ± 0.01 a | 0.07 ± 0.01 b | 0.08 ± 0.02 b | 0.07 ± 0 b | 0.06 ± 0 b |
C20:3n3 | 0.01 ± 0 b | 0.01 ± 0 b | 0.02 ± 0 a | 0.01 ± 0 b | 0.01 ± 0 b |
C20:4n6 (ARA) | 0.02 ± 0 | 0.03 ± 0.01 | 0.02 ± 0.01 | 0.01 ± 0 | 0.01 ± 0 |
C20:5n3 (EPA) | 0.02 ± 0 b | 0.02 ± 0 b | 0.04 ± 0.01 a | 0.04 ± 0 a | 0.04 ± 0 a |
C22:6n3 (DHA) | 0.16 ± 0.01 | 0.15 ± 0.02 | 0.18 ± 0.04 | 0.17 ± 0.03 | 0.19 ± 0.01 |
∑PUFA | 3.77 ± 0.04 a | 2.63 ± 0.35 ab | 3.17 ± 0.76 a | 1.85 ± 0.28 b | 1.49 ± 0.12 b |
∑FA | 9.19 ± 0.23 a | 6.34 ± 0.75 bc | 7.73 ± 1.11 ab | 5.99 ± 0.86 bc | 4.72 ± 0.21 c |
∑LC-PUFA | 0.41 ± 0.01 | 0.34 ± 0.04 | 0.42 ± 0.07 | 0.34 ± 0.02 | 0.36 ± 0.02 |
∑HUFA | 0.57 ± 0.02 | 0.43 ± 0.06 | 0.52 ± 0.12 | 0.38 ± 0.01 | 0.38 ± 0.03 |
∑n-3 PUFA | 0.40 ± 0.01 | 0.32 ± 0.03 | 0.40 ± 0.10 | 0.28 ± 0.01 | 0.30 ± 0.02 |
∑n-6 PUFA | 3.28 ± 0.04 a | 2.25 ± 0.31 ab | 2.69 ± 0.64 a | 1.51 ± 0.29 b | 1.15 ± 0.09 b |
N-3/n-6 PUFA | 0.12 ± 0 c | 0.14 ± 0.01 bc | 0.15 ± 0.02 bc | 0.20 ± 0.04 ab | 0.26 ± 0 a |
DHA+EPA | 0.18 ± 0.01 | 0.17 ± 0.02 | 0.22 ± 0.04 | 0.20 ± 0.03 | 0.23 ± 0.01 |
DHA/EPA | 6.93 ± 0.13 a | 6.42 ± 0.52 ab | 4.79 ± 0.45 c | 4.57 ± 0.59 c | 4.96 ± 0.25 bc |
h/H | 2.38 ± 0.06 a | 2.35 ± 0.03 a | 2.23 ± 0.34 a | 1.58 ± 0.2 b | 1.48 ± 0.04 b |
AI | 0.25 ± 0 c | 0.26 ± 0 c | 0.28 ± 0.03 bc | 0.34 ± 0.03 ab | 0.37 ± 0.01 a |
TI | 0.46 ± 0.01 | 0.45 ± 0 | 0.49 ± 0.07 | 0.55 ± 0.06 | 0.54 ± 0.01 |
Amino Acids | Dietary Protein Level (g/kg) | ||||
---|---|---|---|---|---|
220 | 250 | 280 | 310 | 340 | |
Valine # | 3.63 ± 0.44 | 4.21 ± 0.17 | 3.71 ± 0.23 | 4.07 ± 0.07 | 4.21 ± 0.06 |
Lysine # | 7.58 ± 0.08 | 7.68 ± 0.12 | 7.59 ± 0.07 | 7.66 ± 0.10 | 7.64 ± 0.14 |
Leucine | 8.00 ± 0.36 | 7.50 ± 0.22 | 7.20 ± 0.13 | 7.73 ± 0.14 | 7.65 ± 0.27 |
Threonine # | 3.35 ± 0.32 | 3.90 ± 0.24 | 3.39 ± 0.08 | 3.72 ± 0.12 | 3.72 ± 0.28 |
Isoleucine # | 3.59 ± 0.14 | 3.83 ± 0.30 | 3.36 ± 0.03 | 3.70 ± 0.19 | 3.72 ± 0.30 |
Methionine # | 2.20 ± 0.26 | 2.39 ± 0.27 | 2.06 ± 0.16 | 2.09 ± 0.22 | 2.47 ± 0.05 |
Phenylalanine # | 3.09 ± 0.09 | 3.09 ± 0.09 | 3.10 ± 0.10 | 3.11 ± 0.11 | 3.10 ± 0.10 |
∑EAA | 31.44 ± 0.38 ab | 32.60 ± 0.88 a | 30.41 ± 0.34 b | 32.07 ± 0.36 ab | 32.51 ± 0.85 a |
Alanine * | 4.07 ± 0.24 | 4.36 ± 0.14 | 4.71 ± 0.23 | 4.48 ± 0.29 | 4.30 ± 0.11 |
Glycine * | 3.20 ± 0.03 | 3.22 ± 0.01 | 3.20 ± 0.04 | 3.23 ± 0.03 | 3.20 ± 0.01 |
Aspartic acid * | 8.77 ± 0.07 | 8.62 ± 0.23 | 8.79 ± 0.01 | 8.87 ± 0.03 | 8.84 ± 0.09 |
Glutamic acid * | 12.22 ± 0.01 a | 12.21 ± 0 ab | 12.16 ± 0.02 b | 12.18 ± 0.03 ab | 12.22 ± 0 ab |
∑UAA | 28.26 ± 0.19 | 28.41 ± 0.34 | 28.87 ± 0.19 | 28.76 ± 0.31 | 28.56 ± 0.13 |
Arginine | 4.24 ± 0.39 | 4.26 ± 0.35 | 4.40 ± 0.09 | 4.99 ± 0.17 | 5.07 ± 0.23 |
Cysteine | 0.82 ± 0.06 | 0.84 ± 0.02 | 1.03 ± 0.11 | 0.81 ± 0.07 | 0.81 ± 0.04 |
Histidine | 2.10 ± 0.06 | 2.13 ± 0.07 | 2.10 ± 0.06 | 2.11 ± 0.06 | 2.13 ± 0.08 |
Proline | 2.79 ± 0.32 | 2.46 ± 0.26 | 2.66 ± 0.21 | 2.46 ± 0.26 | 2.11 ± 0.06 |
Serine | 3.29 ± 0.31 | 3.85 ± 0.34 | 3.43 ± 0.03 | 3.78 ± 0.21 | 3.73 ± 0.32 |
Tyrosine | 1.72 ± 0.19 | 1.80 ± 0.08 | 1.40 ± 0.20 | 1.67 ± 0.31 | 1.45 ± 0.24 |
∑NEAA | 43.22 ± 1.27 | 43.75 ± 0.89 | 43.89 ± 0.83 | 44.58 ± 1.22 | 43.86 ± 0.75 |
∑TAA | 74.66 ± 1.65 | 76.35 ± 1.27 | 74.31 ± 0.71 | 76.65 ± 1.51 | 76.37 ± 1.58 |
EAA/TAA (%) | 42.13 ± 0.41 | 42.69 ± 0.81 | 40.94 ± 0.65 | 41.86 ± 0.50 | 42.56 ± 0.26 |
UAA/TAA (%) | 37.88 ± 0.72 | 37.23 ± 0.77 | 38.86 ± 0.30 | 37.53 ± 0.40 | 37.42 ± 0.68 |
EAA/NEAA (%) | 212.32 ± 13.44 | 213.16 ± 8.83 | 203.34 ± 10.6 | 203.92 ± 10.59 | 212.76 ± 3.74 |
Essential Amino Acids | FAO/ WHO | Egg Protein | AAS | CS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
220 | 250 | 280 | 310 | 340 | 220 | 250 | 280 | 310 | 340 | |||
Isoleucine | 2.50 | 3.31 | 0.90 ± 0.04 | 0.96 ± 0.08 | 0.84 ± 0.01 | 0.92 ± 0.05 | 0.93 ± 0.07 | 0.72 ± 0.03 | 0.77 ± 0.06 | 0.68 ± 0.01 | 0.74 ± 0.04 | 0.75 ± 0.06 |
Leucine | 4.40 | 5.34 | 1.14 ± 0.05 | 1.07 ± 0.03 | 1.02 ± 0.02 | 1.10 ± 0.02 | 1.09 ± 0.04 | 0.94 ± 0.04 | 0.88 ± 0.03 | 0.84 ± 0.01 | 0.90 ± 0.02 | 0.90 ± 0.03 |
Lysine | 3.40 | 4.41 | 1.39 ± 0.02 | 1.41 ± 0.02 | 1.40 ± 0.01 | 1.41 ± 0.02 | 1.40 ± 0.03 | 1.07 ± 0.01 | 1.09 ± 0.02 | 1.08 ± 0.01 | 1.09 ± 0.01 | 1.08 ± 0.02 |
Threonine | 2.50 | 2.92 | 0.84 ± 0.08 | 0.97 ± 0.06 | 0.85 ± 0.02 | 0.93 ± 0.03 | 0.93 ± 0.07 | 0.72 ± 0.07 | 0.83 ± 0.05 | 0.73 ± 0.02 | 0.80 ± 0.03 | 0.80 ± 0.06 |
Valine | 3.10 | 4.10 | 0.73 ± 0.09 | 0.85 ± 0.04 | 0.75 ± 0.05 | 0.82 ± 0.01 | 0.85 ± 0.01 | 0.55 ± 0.07 | 0.64 ± 0.03 | 0.56 ± 0.03 | 0.62 ± 0.01 | 0.64 ± 0.01 |
Methionine + Cysteine | 2.20 | 3.86 | 0.86 ± 0.07 | 0.92 ± 0.08 | 0.88 ± 0.07 | 0.82 ± 0.07 | 0.93 ± 0.02 | 0.49 ± 0.04 | 0.52 ± 0.04 | 0.50 ± 0.04 | 0.47 ± 0.04 | 0.53 ± 0.01 |
Phenylalanine + Tyrosine | 3.80 | 5.65 | 0.79 ± 0.04 | 0.80 ± 0.02 | 0.74 ± 0.02 | 0.79 ± 0.03 | 0.75 ± 0.04 | 0.53 ± 0.03 | 0.54 ± 0.02 | 0.50 ± 0.01 | 0.53 ± 0.02 | 0.50 ± 0.03 |
EAAI | 68.76 ± 1.72 | 73.00 ± 2.34 | 67.23 ± 0.95 | 70.77 ± 2.02 | 71.78 ± 2.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Tian, J.; Jiang, X.; Li, C.; Ge, Y.; Hu, X.; Cheng, L.; Shi, X.; Shi, L.; Jia, Z. Effects of Different Dietary Protein Levels on the Growth Performance, Physicochemical Indexes, Quality, and Molecular Expression of Yellow River Carp (Cyprinus carpio haematopterus). Animals 2023, 13, 1237. https://doi.org/10.3390/ani13071237
Wang S, Tian J, Jiang X, Li C, Ge Y, Hu X, Cheng L, Shi X, Shi L, Jia Z. Effects of Different Dietary Protein Levels on the Growth Performance, Physicochemical Indexes, Quality, and Molecular Expression of Yellow River Carp (Cyprinus carpio haematopterus). Animals. 2023; 13(7):1237. https://doi.org/10.3390/ani13071237
Chicago/Turabian StyleWang, Shihui, Jingwen Tian, Xiaona Jiang, Chitao Li, Yanlong Ge, Xuesong Hu, Lei Cheng, Xiaodan Shi, Lianyu Shi, and Zhiying Jia. 2023. "Effects of Different Dietary Protein Levels on the Growth Performance, Physicochemical Indexes, Quality, and Molecular Expression of Yellow River Carp (Cyprinus carpio haematopterus)" Animals 13, no. 7: 1237. https://doi.org/10.3390/ani13071237
APA StyleWang, S., Tian, J., Jiang, X., Li, C., Ge, Y., Hu, X., Cheng, L., Shi, X., Shi, L., & Jia, Z. (2023). Effects of Different Dietary Protein Levels on the Growth Performance, Physicochemical Indexes, Quality, and Molecular Expression of Yellow River Carp (Cyprinus carpio haematopterus). Animals, 13(7), 1237. https://doi.org/10.3390/ani13071237