Effects of Trehalose Supplementation on Lipid Composition of Rooster Spermatozoa Membranes in a Freeze/Thaw Protocol
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Collection, Semen Evaluation, Freezing and Thawing of Rooster Semen
2.3. Viability Assessment of Native and Frozen/Thawed Spermatozoa
2.4. Preparation of Semen Samples to Assess the Lipid Composition of Spermatozoa Membranes
2.5. Determination of the Lipid Composition of Native and Frozen/Thawed Spermatozoa
2.6. Analysis of the Fatty Acid Composition of Membrane Lipids
2.7. Statistical Analysis
3. Results
3.1. Results of Chromatographic Analysis of the Composition of Membrane Lipids and the Degree of Unsaturation of Fatty Acids in Phospholipids of Rooster Spermatozoa
3.2. Determination of Fatty Acid Composition of Membranes of Native and Frozen/Thawed Spermatozoa
3.3. Results of Evaluation of Sperm Motility and Membrane Integrity in Native and Frozen/Thawed Semen
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CL | cardiolipins |
GL | glycolipids |
PC | phosphatidylcholines |
PE | phosphatidylethanolamines |
PS | phosphatidylserines |
SGM | sulfoglycolipids |
SM | sphingomyelins |
ST | sterols |
References
- Gautier, C.; Aurich, C. “Fine feathers make fine birds”—The mammalian sperm plasma membrane lipid composition and effects on assisted reproduction. Anim. Reprod. Sci. 2021, 246, 106884. [Google Scholar] [CrossRef] [PubMed]
- Najafi, A.; Kia, H.D.; Mehdipour, M.; Hamishehkar, H.; Álvarez-Rodríguez, M. Effect of quercetin loaded liposomes or nanostructured lipid carrier (NLC) on post-thawed sperm quality and fertility of rooster sperm. Theriogenology 2020, 152, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Takamori, S.; Holt, M.; Stenius, K.; Lemke, E.A.; Grønborg, M.; Riedel, D.; Urlaub, H.; Schenck, S.; Brügger, B.; Ringler, P.; et al. Molecular anatomy of a trafficking organelle. Cell 2006, 127, 831–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ingolfsson, H.I.; Melo, M.N.; van Eerden, F.J.; Arnarez, C.; Lopez, C.A.; Wassenaar, T.A.; Periole, X.; de Vries, A.H.; Tieleman, D.P.; Marrink, S.J. Lipid Organization of the Plasma Membrane. J. Am. Chem. Soc. 2014, 136, 14554−14559. [Google Scholar] [CrossRef]
- Meyers, A.; Weiskittel, T.M.; Dalhaimer, P. Lipid droplets: Formation to breakdown. Lipids 2017, 52, 465–475. [Google Scholar] [CrossRef]
- Jarc, E.; Petan, T. A twist of FATe: Lipid droplets and inflammatory lipid mediators. Biochimie 2020, 169, 69–87. [Google Scholar] [CrossRef]
- González-Becerra, K.; Ramos-Lopez, O.; Barrón-Cabrera, E.; Riezu-Boj, J.I.; Milagro, F.I.; Martínez-López, E.; Martínez, J.A. Fatty acids, epigenetic mechanisms, and chronic diseases: A systematic review. Lipids. Health Dis. 2019, 18, 178. [Google Scholar] [CrossRef] [Green Version]
- D’Anneo, A.; Bavisotto, C.C.; Gammazza, A.M.; Paladino, L.; Carlisi, D.; Cappello, F.; de Macario, E.C.; Macario, A.J.L.; Lauricella, M. Lipid chaperones and associated diseases: A group of chaperonopathies defining a new nosological entity with implications for medical research and practice. Cell Stress Chaperones 2020, 25, 805–820. [Google Scholar] [CrossRef]
- Leventis, P.A.; Grinstein, S. The Distribution and Function of Phosphatidylserine in Cellular Membranes. Anu. Rev. Biophys. 2010, 39, 407–427. [Google Scholar] [CrossRef]
- Cho, G.; Lee, E.; Kim, J. Structural insights into phosphatidylethanolamine formation in bacterial membrane biogenesis. Sci. Rep. 2021, 11, 5785. [Google Scholar] [CrossRef]
- Van der Veen, J.N.; Kennelly, J.P.; Wan, S.; Vance, J.E.; Vance, D.E.; Jacobs, R.L. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim. Biophys. Acta Biomembr. 2017, 1859, 1558–1572. [Google Scholar] [CrossRef]
- Herdeiro, R.S.; Pereira, M.D.; Panek, A.D.; Eleutherio, E.C. Trehalose protects Saccharomyces cerevisiae from lipid peroxidation during oxidative stress. Biochim. Biophys. Acta 2006, 1760, 340–346. [Google Scholar] [CrossRef]
- Kikawada, T.; Saito, A.; Kanamori, Y.; Nakahara, Y.; Iwata, K.; Tanaka, D.; Watanabe, M.; Okuda, T. Trehalose transporter 1, a facilitated and high-capacity trehalose transporter, allows exogenous trehalose uptake into cells. Proc. Natl. Acad. Sci. USA 2007, 104, 11585–11590. [Google Scholar] [CrossRef] [Green Version]
- Tselutin, K.V.; Tur, B.K. Artificial Insemination and Cryopreservation of Poultry’s Sperm (Roosters, Indica, Gander, Drake); The Russian Academy of Agricultural Sciences: Saint-Petersburg, Russia, 2013; p. 88. [Google Scholar]
- Nichols, B.W. Separation of the lipids of photosynthetic tissues: Improvements in analysis by thin-layer chromatography. Biochim. Biophys. Acta 1963, 70, 417–422. [Google Scholar] [CrossRef]
- Vaskovsky, V.E.; Terekhova, T.A. HPTLC of phospholipid mixtures containing phosphatidylglycerol. J. High Resolut. Chromatogr. 1979, 2, 671–672. [Google Scholar] [CrossRef]
- Benning, C.; Huang, Z.H.; Gage, D.A. Accumulation of a Novel Glycolipid and a Betaine Lipid in Cells of Rhodobacter sphaeroides Grown under Phosphate Limitation. Arch. Biochem. Biophys. 1995, 317, 103–111. [Google Scholar] [CrossRef]
- Kates, M. Techniques of Lipidology: Isolation, analysis and identification of lipids. In Laboratory Techniques in Biochemistry and Molecular Biology; Work, T.S., Work, E., Eds.; North-Holland Publishing Company: Amsterdam, The Netherland, 1972; pp. 267–610. [Google Scholar] [CrossRef]
- Vaskovsky, V.E.; Kostetsky, E.Y.; Vasendin, I.M. A universal reagent for phospholipid analysis. J. Chromatogr. 1975, 114, 129–141. [Google Scholar] [CrossRef]
- Iida, N.; Toida, T.; Kushi, Y.; Handa, S.; Fredman, P.; Svennerholm, L.; Ishizuka, I. A sulfated glucosylceramide from rat kidney. J. Biol. Chem. 1989, 264, 5974–5980. [Google Scholar] [CrossRef]
- Stahl, E. Thin-Layer Chromatography, 2nd ed.; A Laboratory Handbook; Springer: Berlin/Heidelberg, Germany, 1969. [Google Scholar] [CrossRef] [Green Version]
- Weete, J.D. Introduction to Fungal Lipids. In Fungal Lipid Biochemistry; Kritchevsky, D., Ed.; Springer: Berlin/Heidelberg, Germany, 1974; pp. 3–36. [Google Scholar] [CrossRef]
- Srisook, K. Effect of cryopreservation on lipid composition and antioxidant enzyme activity of seabass (Lates calcarifer) sperm. Iran J. Fish Sci. 2015, 15, 157–169. [Google Scholar]
- Ushiyama, A.; Tajima, A.; Ishikawa, N.; Asano, A. Modification of membrane cholesterol and desmosterol in chicken spermatozoa improves post-thaw survival and prevents impairment of sperm function after cryopreservation. Reprod. Fertil. Dev. 2018, 30, 591–599. [Google Scholar] [CrossRef] [Green Version]
- Partyka, A.; Strojecki, M.; Niżański, W. Cyclodextrins or cholesterol-loaded-cyclodextrins? A better choice for improved cryosurvival of chicken spermatozoa. Anim. Reprod. Sci. 2018, 193, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Blesbois, E.; Grasseau, I.; Seigneurin, F. Membrane fluidity and the ability of domestic bird spermatozoa to survive cryopreservation. Reproduction 2005, 129, 371–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pleshanov, N.; Stanishevskaya, O.; Plemyashov, K.V. A method of evaluation and selection of cocks for cryotolerance of their sperm with aim of gene pool preservation. Reprod. Dom Anim. 2016, 51, 131. [Google Scholar]
- Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular Biology of the Cell, 4th ed.; The Lipid Bilayer; Garland Science: New York, NY, USA, 2002. Available online: https://www.ncbi.nlm.nih.gov/books/NBK26871/) (accessed on 22 February 2023).
- Shan, S.; Xu, F.; Hirschfeld, M.; Brenig, B. Sperm Lipid Markers of Male Fertility in Mammals. Int. J. Mol. Sci. 2021, 22, 8767. [Google Scholar] [CrossRef] [PubMed]
- Lucio, C.F.; Brito, M.M.; Angrimani, D.; Belaz, K.; Morais, D.; Zampieri, D.; Losano, J.; Assumpção, M.; Nichi, M.; Eberlin, M.N.; et al. Lipid composition of the canine sperm plasma membrane as markers of sperm motility. Reprod. Domest. Anim. 2017, 52, 208–213. [Google Scholar] [CrossRef] [Green Version]
- Rana, A.P.; Misra, S.; Majumder, G.C.; Ghosh, A. Phospholipid asymmetry of goat sperm plasma membrane during epididymal maturation. Biochim. Biophys. Acta. 1993, 1210, 1–7. [Google Scholar] [CrossRef]
- Parks, J.E.; Lynch, D.V. Lipid composition and thermotropic phase behavior of boar, bull, stallion, and rooster sperm membranes. Cryobiology 1992, 29, 255–266. [Google Scholar] [CrossRef]
- Costa Morato Neri, D.; da Silva, S.G.; da Mariani, D.; Fernandez, P.N.; Pereira, M.D.; Panek, A.D.; Eleutherio, E.C.A. The role of trehalose and its transporter in protection against reactive oxygen species. Biochim. Biophys. Acta. 2008, 12, 1408–1411. [Google Scholar] [CrossRef]
- Yatsyshyn, V.Y.; Kvasko, A.Y.; Emets, A.I. Genetic approaches in studying the role of trehalose in plants. Tsitol. Genetika. 2017, 51, 371–383. [Google Scholar]
- Hu, J.H.; Zan, L.S.; Zhao, X.L.; Li, Q.W.; Jiang, Z.L.; Li, Y.K.; Li, X. Effects of trehalose supplementation on semen quality and oxidative stress variables in frozen-thawed bovine semen. J. Anim. Sci. 2010, 88, 1657–1662. [Google Scholar] [CrossRef]
- Vitkova, V.; Yordanova, V.; Staneva, G.; Petkov, O.; Stoyanova-Ivanova, A.; Antonova, K.; Popkirov, G. Dielectric Properties of Phosphatidylcholine Membranes and the Effect of Sugars. Membranes 2021, 11, 847. [Google Scholar] [CrossRef]
- Mansilla, M.C.; Cybulski, L.E.; Albanesi, D.; de Mendoza, D. Control of membrane lipid fluidity by molecular thermosensors. J. Bacteriol. 2004, 186, 6681–6688. [Google Scholar] [CrossRef] [Green Version]
- Ianutsevich, E.A.; Danilova, O.A.; Groza, N.V.; Tereshina, V.M. Membrane lipids and cytosol carbohydrates in Aspergillus niger under osmotic, oxidative, and cold impact. Microbiology 2016, 85, 302–310. [Google Scholar] [CrossRef]
Medium Composition | Medium | ||
---|---|---|---|
LCM-Control | Treh20 | Treh30 | |
Monosodium glutamate | 1.92 g (114 mM) | 1.92 g (114 mM) | 1.92 g (114 mM) |
Fructose | 0.8 g (44 mM) | 0.64 g (36 mM) | 0.56 g (31 mM) |
Potassium acetate | 0.5 g (51 mM) | 0.5 g (5 mM) | 0.5 g (5 mM) |
Polyvinylpyrrolidone | 0.3 g (8.3 mM) | 0.3 g (8.3 mM) | 0.3 g (8.3 mM) |
Protamine sulfate | 0.032 g (3.27 mM) | 0.032 g (3.27 mM) | 0.032 g (3.27 mM) |
Trehalose | - | 0.326 g (9.5 mM) | 0.459 g (13.4 mM) |
Distilled water | 100 mL | ||
Osmolarity | 339 mOsm | 344 mOsm | 334 mOsm |
Lipids, % of Dry Lipids Biomass | Native | TS Freeze/Thawed | Native | RW Freeze/Thawed | ||||
---|---|---|---|---|---|---|---|---|
LCM- Control | Treh20 | Treh30 | LCM- Control | Treh20 | Treh30 | |||
phosphatidylethanolamines | 3.4 | 3.4 | 4.2 | 3.0 | 3.8 | 3.0 | 4.0 | 2.8 |
phosphatidylserines | 2.8 | 2.5 | 3.3 | 2.6 | 2.8 | 2.6 | 4.0 | 3.0 |
phosphatidylcholines | 4.7 | 5.0 | 5.0 | 4.1 | 5.9 | 6.8 | 7.3 | 5.7 |
sphingomyelins | 1.9 | 2.0 | 2.2 | 1.9 | 1.7 | 2.3 | 2.8 | 2.1 |
glycolipids | 0.2 | 0.1 | 0.1 | 0.2 | 0.1 | 0.2 | 0.1 | 0.2 |
cardiolipins | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.3 |
sulfoglycolipids | 0.4 | 0.4 | 0.4 | 0.5 | 0.5 | 0.7 | 0.6 | 0.5 |
sterols | 1.4 | 1.9 | 1.6 | 1.5 | 1.1 | 1.2 | 1.5 | 1.2 |
Fatty Acids | Tsarskoselskaya | Russian White | |||||||
---|---|---|---|---|---|---|---|---|---|
Native | LCM- Control | Treh20 | Treh30 | Native | LCM- Control | Treh20 | Treh30 | ||
C 16:0 | Palmitic | 20.4 | 20.4 | 17.1 | 21.3 | 16.4 | 19.3 | 16.7 | 18.8 |
C 18:0 | Stearic | 21.4 | 22.2 | 21.1 | 22.7 | 20.1 | 21.3 | 20.2 | 21.2 |
C 18:1n9c | Oleic | 12.6 | 13.2 | 11.7 | 12.9 | 11.0 | 12.1 | 11.3 | 11.9 |
C 18:2n6c | γ-Linoleic | 2.6 | 2.9 | 2.6 | 2.0 | 2.7 | 3.1 | 3.0 | 3.0 |
C 20:0 | Arachidic | 1.0 | 0.7 | 0.9 | 1.0 | 0.7 | 0.7 | 0.7 | 0.8 |
C 20:1 | Arachinoic | 3.1 | 3.2 | 3.3 | 3.3 | 3.5 | 3.5 | 3.5 | 3.5 |
C 20:2 | Eicosadiene | 0.6 | 0.7 | 0.5 | 0.4 | 0.6 | 0.7 | 0.6 | 0.7 |
C 20:3n6 | Eicosatrienoic | 1.3 | 0.9 | 1.0 | 0.9 | 1.0 | 1.3 | 1.0 | 1.1 |
C 20:4n6 | Arachidonic | 9.2 | 10.1 | 9.6 | 9.2 | 10.2 | 10.1 | 10.4 | 9.9 |
C 22:0 | Behenic | 0.7 | 0.3 | 0.8 | 0.7 | 0.2 | 0.4 | 0.0 | 0.4 |
C 22:1n9 | Erucic | 0.5 | 0.3 | 0.6 | 0.5 | 0.4 | 0.2 | 0.4 | 0.4 |
C 22:2 | Docosadiene | 2.9 | 2.8 | 3.8 | 3.1 | 4.4 | 3.7 | 4.3 | 3.9 |
C 22:4 | Docosatetraenoic | 20.3 | 21.1 | 24.6 | 20.2 | 26.4 | 22.6 | 25.9 | 23.1 |
C 24:0 | Lignoceric | 0.7 | 0.3 | 0.8 | 0.6 | 0.4 | 0.3 | 0.4 | 0.5 |
C 24:1 | Nervonic | 2.6 | 0.7 | 1.7 | 1.1 | 1.8 | 0.6 | 1.6 | 0.8 |
∑ PUFA | 46.5 | 48.5 | 50.1 | 45.7 | 51.7 | 49.4 | 52.0 | 49.4 |
Quality Indicators | Native | Frozen/Thawed Sperm | ||
---|---|---|---|---|
LCM-Control | Treh20 | Treh30 | ||
Tsarskoselskaya breed | ||||
Concentration spermatozoa, billion/mL | 3.15 ± 0.13 | |||
Total motility (TM), % | 86.3 ± 0.4 | 44,5 ± 2.5 | 52.4 ± 1.6 a | 32.5 ± 1.5 b |
Progressive motility (PM), % | 67.5 ± 2.0 | 28,3 ± 2.5 | 32.6 ± 1.1 a | 21.4 ± 0.4 b |
Viability, % | 72.6 ± 1.7 | 30.0 ± 2.0 | 35.1 ± 0.6 a | 26.9 ± 1.5 b |
Russian White breed | ||||
Concentration spermatozoa, billion/mL | 2.79 ± 0.19 | |||
Total motility (TM), % | 86.2 ± 0.0 | 42.4 ± 2.0 | 45.6 ± 1.2 a | 41.3 ± 0.4 b |
Progressive motility (PM), % | 66.5 ± 2.5 | 30.0 ± 1.9 a | 32.4 ± 0.5 a | 24.4 ± 0.4 b |
Viability, % | 72.9 ± 5.6 | 48.3 ± 4.4 | 52.2 ± 3.2 | 53.3 ± 2.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanishevskaya, O.I.; Silyukova, Y.; Fedorova, E.; Pleshanov, N.; Kurochkin, A.; Tereshina, V.M.; Ianutsevich, E. Effects of Trehalose Supplementation on Lipid Composition of Rooster Spermatozoa Membranes in a Freeze/Thaw Protocol. Animals 2023, 13, 1023. https://doi.org/10.3390/ani13061023
Stanishevskaya OI, Silyukova Y, Fedorova E, Pleshanov N, Kurochkin A, Tereshina VM, Ianutsevich E. Effects of Trehalose Supplementation on Lipid Composition of Rooster Spermatozoa Membranes in a Freeze/Thaw Protocol. Animals. 2023; 13(6):1023. https://doi.org/10.3390/ani13061023
Chicago/Turabian StyleStanishevskaya, Olga I., Yulia Silyukova, Elena Fedorova, Nikolai Pleshanov, Anton Kurochkin, Vera M. Tereshina, and Elena Ianutsevich. 2023. "Effects of Trehalose Supplementation on Lipid Composition of Rooster Spermatozoa Membranes in a Freeze/Thaw Protocol" Animals 13, no. 6: 1023. https://doi.org/10.3390/ani13061023
APA StyleStanishevskaya, O. I., Silyukova, Y., Fedorova, E., Pleshanov, N., Kurochkin, A., Tereshina, V. M., & Ianutsevich, E. (2023). Effects of Trehalose Supplementation on Lipid Composition of Rooster Spermatozoa Membranes in a Freeze/Thaw Protocol. Animals, 13(6), 1023. https://doi.org/10.3390/ani13061023