Influence of Dietary Phytase Inclusion Rates on Yolk Inositol Concentration, Hatchability, Chick Quality, and Early Growth Performance
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Broiler Breeder Trial
2.2. Progeny Trial
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, A.; Halley, J.; Silva, M. Can feeding the broiler breeder improve chick quality and offspring performance? Anim. Prod. Sci. 2016, 56, 1254–1262. [Google Scholar] [CrossRef]
- Nusairat, B.; Qudsieh, R.; Brake, J. Use of phytase to enhance nutritional value of broiler breeder diets. Int. J. Poult. Sci. 2018, 17, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Araújo, C.S.S.; Hermes, R.G.; Bittencourt, L.C.; Silva, C.C.; Araújo, L.F.; Granghelli, C.A.; Pelissari, P.H.; Roque, F.A.; Leite, B.G.S. Different dietary trace mineral sources for broiler breeders and their progenies. Poult. Sci. 2019, 98, 4716–4721. [Google Scholar] [CrossRef]
- Kenny, M.; Kemp, C. Breeder nutrition and chick quality. Int. Hatch. Pract. 2005, 19, 7–11. [Google Scholar]
- Selle, P.H.; Ravindran, V. Microbial phytase in poultry nutrition. Anim. Feed Sci. Technol. 2007, 135, 1–41. [Google Scholar] [CrossRef]
- Walk, C.L.; Rama Rao, S.V. Increasing dietary phytate has a significant anti-nutrient effect on apparent ileal amino acid digestibility and digestible amino acid intake requiring increasing doses of phytase as evidenced by prediction equations in broilers. Poult. Sci. 2020, 99, 290–300. [Google Scholar] [CrossRef] [PubMed]
- Gautier, A.E.; Walk, C.L.; Dilger, R.N. Effects of a high level of phytase on broiler performance, bone ash, phosphorus utilization, and phytate dephosphorylation to inositol. Poult. Sci. 2018, 97, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Babatunde, O.O.; Cowieson, A.J.; Wilson, J.W.; Adeola, O. Influence of age and duration of feeding low-phosphorus diet on phytase efficacy in broiler chickens during the starter phase. Poult. Sci. 2019, 98, 2588–2597. [Google Scholar] [CrossRef]
- Viveros, A.; Brenes, A.; Arija, I.; Centeno, C. Effects of microbial phytase supplementation on mineral utilization and serum enzyme activities in broiler chicks fed different levels of phosphorus. Poult. Sci. 2002, 81, 1172–1183. [Google Scholar] [CrossRef]
- Selle, P.H.; Cowieson, A.J.; Ravindran, V. Consequences of calcium interactions with phytate and phytase for poultry and pigs. Livest. Sci. 2009, 124, 126–141. [Google Scholar] [CrossRef]
- Kriseldi, R.; Walk, C.L.; Bedford, M.R.; Dozier, W.A. Inositol and gradient phytase supplementation in broiler diets during a 6-week production period: 1. effects on growth performance and meat yield. Poult. Sci. 2021, 100, 964–972. [Google Scholar] [CrossRef] [PubMed]
- Beeson, L.A.; Walk, C.L.; Bedford, M.R.; Olukosi, O.A. Hydrolysis of phytate to its lower esters can influence the growth performance and nutrient utilization of broilers with regular or super doses of phytase. Poult. Sci. 2017, 96, 2243–2253. [Google Scholar] [CrossRef] [PubMed]
- Huber, K. Cellular myo-inositol metabolism. In Phytate Destruction—Consequences for Precision Animal Nutrition; Walk, C.L., Kühn, I., Stein, H.H., Kidd, M.T., Rodehutscord, M., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2016; pp. 53–60. [Google Scholar]
- Walk, C.L.; Santos, T.T.; Bedford, M.R. Influence of superdoses of a novel microbial phytase on growth performance, tibia ash, and gizzard phytate and inositol in young broilers. Poult. Sci. 2014, 93, 1172–1177. [Google Scholar] [CrossRef]
- Cowieson, A.J.; Ptak, A.; Maćkowiak, P.; Sassek, M.; Pruszyńska-Oszmałek, E.; Żyła, K.; Świątkiewicz, S.; Kaczmarek, S.; Józefiak, D. The effect of microbial phytase and myo-inositol on performance and blood biochemistry of broiler chickens fed wheat/corn-based diets. Poult. Sci. 2013, 92, 2124–2134. [Google Scholar] [CrossRef]
- Żyła, K.; Duliński, R.; Pierzchalska, M.; Grabacka, M.; Józefiak, D.; Świątkiewicz, S. Phytases and myo-inositol modulate performance, bone mineralization and alter lipid fractions in the serum of broilers. J. Anim. Feed Sci. 2013, 22, 56–62. [Google Scholar] [CrossRef]
- Soto-Salanova, M.; Santos, T.T. High phytase levels increase mineral deposition in egg yolks. In Proceedings of the XV European Symposium on the Quality of Eggs and Egg Products, Bergamo, Italy, 15–19 September 2013. [Google Scholar]
- Peatman, E.; Beck, B.H. From floor sweepings to fish flesh phytase superdosing in the US catfish industry. In Phytate Destruction—Consequences for Precision Animal Nutrition; Walk, C.L., Kühn, I., Stein, H.H., Kidd, M.T., Rodehutscord, M., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2016; pp. 237–250. [Google Scholar]
- Denbow, D.M.; Ravindran, V.; Kornegay, E.T.; Yi, Z.; Hulet, R.M. Improving phosphorus availability in soybean meal for broilers by supplemental phytase. Poult. Sci. 1995, 74, 1831–1842. [Google Scholar] [CrossRef] [PubMed]
- Costa, F.G.P.; Jácome, I.M.T.D.; da Silva, J.H.V.; de Araújo, M.J.; de Campos, K.M.F.; Barbosa, J.G.; Peixoto, J.P.N.; da Silva, J.C.A.; do Nascimento, G.A.J.; Clementino, R.H. Níveis de fósforo disponível e de fitase na dieta de poedeiras de ovos de casca marrom. Ciênc. Anim. Bras. 2004, 5, 73–81. [Google Scholar]
- Manangi, M.K.; Coon, C.N. Phytate phosphorus hydrolysis in broilers in response to dietary phytase, calcium, and phosphorus concentrations. Poult. Sci. 2008, 87, 1577–1586. [Google Scholar] [CrossRef]
- Walk, C.L.; Olukosi, O.A. Influence of graded concentrations of phytase in high-phytate diets on growth performance, apparent ileal amino acid digestibility, and phytate concentration in broilers from hatch to 28 D post-hatch. Poult. Sci. 2019, 98, 3884–3893. [Google Scholar] [CrossRef]
- Aviagen. Manual de Objetivos de Desempenho Ross (308) AP (AP95). Available online: https://pt.aviagen.com/assets/Tech_Center/BB_Foreign_Language_Docs/portuguese/Ross308AP-PS-PO-PT-2017.pdf (accessed on 8 November 2022).
- Aviagen. Manual de Especificações Nutricionais Ross (308) AP (AP95). Available online: https://pt.aviagen.com/assets/Tech_Center/BB_Foreign_Language_Docs/Portuguese/Ross308AP-PS-NS-2016-PT.pdf (accessed on 21 January 2023).
- Engelen, A.J.; van der Heeft, F.C.; Randsdorp, P.H.; Somers, W.A.; Schaefer, J.; van der Vat, B.J. Determination of phytase activity in feed by a colorimetric enzymatic method: Collaborative interlaboratory study. J. AOAC Int. 2001, 84, 629–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Official Methods of Analysis of AOAC International, 18th ed.; Horwitz, W.; Latimer, G.W., Jr. (Eds.) AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Lee, S.A.; Dunne, J.; Febery, E.; Brearley, C.A.; Mottram, T.; Bedford, M.R. Exogenous phytase and xylanase exhibit opposing effects on real-time gizzard pH in broiler chickens. Br. Poult. Sci. 2018, 59, 568–578. [Google Scholar] [CrossRef] [Green Version]
- Aviagen. Manual de Manejo de Frangos de Corte Ross (308) AP (AP95). Available online: https://pt.aviagen.com/assets/Tech_Center/BB_Foreign_Language_Docs/Portuguese/Ross-BroilerHandbook2018-PT.pdf (accessed on 19 January 2023).
- Aviagen. Manual de Especificações Nutricionais de frangos de corte Ross (308) AP (AP95). Available online: https://pt.aviagen.com/assets/Tech_Center/BB_Foreign_Language_Docs/Portuguese/Ross-BroilerNutritionSpecifications2022-PT.pdf (accessed on 21 January 2023).
- SAS Institute. User’s Guide, Statistics Version JMP Pro v. 14.0; SAS Inst, Inc.: Cary, NC, USA, 2014. [Google Scholar]
- Peñuela, S.A.; Hernandez, V.A. Caracterización de mortalidad embrionaria en pollos de engorde. Rev. MVZ Córdoba 2018, 23, 6500–6513. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Ru, Y.J.; Cowieson, A.J.; Li, F.D.; Cheng, X.C. Effects of phytate and phytase on the performance and immune function of broilers fed nutritionally marginal diets. Poult. Sci. 2008, 87, 1105–1111. [Google Scholar] [CrossRef]
- Brunelli, S.R.; Pinheiro, J.W.; Bridi, A.M.; Fonseca, N.A.N.; Silva, C.A.; Oba, A. Efeitos da Fitase no desempenho e na qualidade da carne de frangos de corte. Semina Ciênc. Agrár. 2012, 33, 3279–3286. [Google Scholar] [CrossRef] [Green Version]
- Lilja, C. A comparative study of postnatal growth and organ development in some species of birds. Growth 1983, 47, 317–339. [Google Scholar]
- Wijtten, P.J.A.; Hangoor, E.; Sparla, J.K.W.M.; Verstegen, M.W.A. Dietary amino acid levels and feed restriction affect small intestinal development, mortality, and weight gain of male broilers. Poult. Sci. 2010, 89, 1424–1439. [Google Scholar] [CrossRef]
- Persia, M.E.; Saylor, W.W. Effects of broiler strain, dietary nonphytate phosphorus, and phytase supplementation on chick performance and tibia ash. J. Appl. Poult. Res. 2006, 15, 72–81. [Google Scholar] [CrossRef]
- Karadas, F.; Pirgozliev, V.; Pappas, A.C.; Acamovic, T.; Bedford, M.R. Effects of different dietary phytase activities on the concentration of antioxidants in the liver of growing broilers. J. Anim. Physiol. Anim. Nutr. 2010, 94, 519–526. [Google Scholar] [CrossRef]
- Martinez Rojas, I.Y.; Ávila González, E.; Arce Menocal, J.; Dos Santos, T.T.; Rubio Arguello, J.; López Coello, C. Assessment of a phytase included with lactic acid on productive parameters and on deposition of phosphorus, calcium, and zinc in laying hens fed with sorghum–soybean-meal-based diets. J. Appl. Anim. Res. 2018, 46, 314–321. [Google Scholar] [CrossRef]
- Arguelles-Ramos, M.; Nusairat, B.; Qudsieh, R.; Brake, J. Effects of phytase inclusion in broiler breeder diets during early lay on their fecal and egg characteristics. Braz. J. Poult. Sci. 2020, 22, 1–6. [Google Scholar] [CrossRef]
- Berry, W.D.; Hess, J.B.; Lien, R.J.; Roland, D.A. Egg production, fertility, and hatchability of breeder hens receiving dietary phytase. J. Appl. Poult. Res. 2003, 12, 264–270. [Google Scholar] [CrossRef]
Feed Intake/Pen (g) | ||||||
---|---|---|---|---|---|---|
Week 27–30 | Week 31–34 | Week 35–38 | Week 39–42 | Week 43–46 | Week 47–50 | Week 27–50 |
676.0 | 676.0 | 670.0 | 662.0 | 654.0 | 646.0 | 664.0 |
Ingredients (%) | Basal Diet |
---|---|
Corn | 63.70 |
Soybean meal | 22.92 |
Wheat middlings | 3.12 |
Soybean oil | 1.44 |
Dicalcium phosphate | 1.06 |
Vitamin premix 1 | 0.10 |
Mineral premix 2 | 0.10 |
Salt | 0.41 |
DL-Methionine (99%) | 0.11 |
L-Lysine HCL (78.4%) | 0.06 |
Limestone | 6.98 |
Total | 100.00 |
Calculated Composition | |
Metabolizable energy (kcal/kg) | 2.82 |
Crude protein (%) | 16.50 |
Calcium 3 (%) | 3.04 |
Available phosphorus 3 (%) | 0.30 |
Digestible lysine (%) | 0.77 |
Digestible methionine + cysteine (%) | 0.59 |
Digestible methionine (%) | 0.58 |
Digestible threonine (%) | 0.54 |
Digestible valine (%) | 0.67 |
Linoleic acid (%) | 2.20 |
Treatment | Breeder Diets | Progeny Diets |
---|---|---|
1 | Basal diet + 500 FTU/kg | Basal progeny diet (BP) |
2 | Basal diet + 500 FTU/kg | BP + 500 FTU/kg |
3 | Basal diet + 500 FTU/kg | BP + 1500 FTU/kg |
4 | Basal diet + 1500 FTU/kg | BP |
5 | Basal diet + 1500 FTU/kg | BP + 500 FTU/kg |
6 | Basal diet + 1500 FTU/kg | BP + 1500 FTU/kg |
7 | Basal diet + 4500 FTU/kg | BP |
8 | Basal diet + 4500 FTU/kg | BP + 500 FTU/kg |
9 | Basal diet + 4500 FTU/kg | BP + 1500 FTU/kg |
Ingredients (%) | Initial | Grower/Final |
---|---|---|
Corn | 61.20 | 64.73 |
Soybean meal | 34.53 | 29.53 |
Dicalcium phosphate | 1.00 | 1.64 |
Soybean oil | 1.20 | 2.19 |
Limestone | 0.94 | 0.79 |
Salt | 0.42 | 0.42 |
L-Lysine HCl (78.4%) | 0.20 | 0.25 |
DL-Methionine (99%) | 0.08 | 0.24 |
Vitamin premix 1 | 0.05 | 0.05 |
Mineral premix 2 | 0.10 | 0.10 |
Threonine | 0.09 | 0.06 |
Total | 100.00 | 100.00 |
Composition Calculated | ||
Metabolizable energy (kcal/kg) | 2983 | 3100 |
Crude protein (%) | 21.27 | 19.41 |
Calcium 3 (%) | 0.74 | 0.82 |
Available phosphorus 3 (%) | 0.30 | 0.41 |
Digestible methionine + cysteine (%) | 0.87 | 0.77 |
Digestible lysine (%) | 1.21 | 1.07 |
Digestible methionine (%) | 0.47 | 0.77 |
Digestible threonine (%) | 0.79 | 0.70 |
Breeder Diet (FTU/kg) | Contrasts 1 | ||||||
---|---|---|---|---|---|---|---|
Variable | 500 | 1500 | 4500 | SEM 3 | p | L | Q |
Fertility (%) | 97.0 | 95.9 | 96.5 | 1.3 | 0.92 | - | - |
Hatchability (%) | 81.5 | 88.0 | 84.6 | 3.1 | 0.40 | - | - |
Early death 2 (%) | 3.44 | 6.01 | 10.8 | 1.7 | 0.02 4 | 0.006 4 | 0.61 |
Intermediate death 2 (%) | 0.00 | 1.12 | 0.64 | 0.5 | 0.23 | - | - |
Late death 2 (%) | 6.37 | 1.62 | 1.46 | 1.4 | 0.03 4 | 0.02 4 | 0.19 |
Pip (%) | 7.46 | 2.32 | 1.91 | 1.9 | 0.08 | 0.04 4 | 0.31 |
Inositol (µmol/g) | 1.36 | 1.22 | 1.52 | 0.07 | 0.02 4 | 0.13 | 0.02 4 |
Glycerol (µmol/g) | 1.58 | 1.48 | 1.50 | 8.17 | 0.66 | - | - |
Phytase (FTU/kg) | BW (g/bird) | FI (g/bird) | FCR (g/g) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
1 d | 7 d | 21 d | 42 d | 7 d | 21 d | 42 d | 7 d | 21 d | 42 d | |
Breeder Diet | ||||||||||
500 | 47.7 | 168 | 901 | 2858 | 126 | 1138 | 4713 | 1.05 | 1.33 | 1.70 |
1500 | 47.9 | 173 | 926 | 2872 | 131 | 1154 | 4753 | 1.04 | 1.31 | 1.68 |
4500 | 48.6 | 181 | 929 | 2862 | 146 | 1200 | 4830 | 1.08 | 1.37 | 1.71 |
SEM 1 | 0.29 | 2.07 | 12.3 | 39.3 | 1.96 | 16.9 | 48.3 | 0.01 | 0.01 | 0.01 |
Progeny Diet | ||||||||||
0 | 47.9 | 175 | 908 | 2848 | 133 | 1140 | 4693 | 1.04 | 1.32 | 1.68 |
500 | 48.3 | 172 | 910 | 2893 | 134 | 1169 | 4781 | 1.07 | 1.37 | 1.70 |
1500 | 48.0 | 175 | 938 | 2852 | 135 | 1182 | 4821 | 1.06 | 1.33 | 1.72 |
SEM 1 | 0.29 | 2.08 | 12.2 | 39.3 | 1.96 | 16.9 | 48.4 | 0.01 | 0.01 | 0.01 |
Probability | ||||||||||
Breeder diet | 0.08 | <0.01 2 | 0.22 | 0.97 | <0.01 2 | 0.03 2 | 0.24 | 0.02 2 | <0.01 2 | 0.09 |
Linear | 0.03 2 | <0.01 2 | - | - | <0.01 2 | 0.01 2 | - | 0.02 2 | 0.06 | 0.21 |
Quadratic | 0.53 | 0.70 | - | - | 0.03 2 | 0.47 | - | 0.06 | <0.01 2 | 0.07 |
Progeny diet | 0.70 | 0.39 | 0.17 | 0.66 | 0.70 | 0.22 | 0.18 | 0.31 | 0.03 2 | 0.07 |
Linear | - | - | - | - | - | - | - | - | 0.66 | 0.02 2 |
Quadratic | - | - | - | - | - | - | - | - | 0.012 | 0.79 |
Interaction | 0.39 | 0.60 | 0.68 | 0.62 | 0.84 | 0.91 | 0.51 | 0.39 | 0.80 | 0.85 |
Phytase (FTU/kg) | Ca (%) | Na (%) | Mg (%) | K (%) | P (%) | Cu (ppm) | Fe (ppm) | Mn (ppm) | Zn (ppm) |
---|---|---|---|---|---|---|---|---|---|
500 | 0.975 | 0.116 | 0.036 | 0.101 | 0.534 | 7.39 | 51.7 | 3.28 | 38.4 |
1500 | 1.040 | 0.129 | 0.046 | 0.139 | 0.539 | 11.70 | 46.9 | 4.45 | 44.5 |
4500 | 1.105 | 0.136 | 0.036 | 0.118 | 0.507 | 18.83 | 46.4 | 2.98 | 48.9 |
SEM 1 | 0.078 | 0.006 | 0.002 | 0.006 | 0.015 | 5.24 | 3.1 | 0.37 | 3.2 |
Probability | |||||||||
Breeder diet | 0.49 | 0.05 | <0.01 | <0.01 | 0.28 | 0.29 | 0.40 | 0.02 | 0.06 |
Linear | - | 0.01 | 0.83 | 0.05 | - | - | - | 0.58 | 0.02 |
Quadratic | - | 0.66 | <0.01 | <0.01 | - | - | - | <0.01 | 0.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Granghelli, C.A.; Walk, C.L.; Gomes, G.A.; Santos, T.T.d.; Pelissari, P.H.; Leite, B.G.d.S.; Roque, F.A.; Lopes, M.H.S.; Araujo, L.F.; Araujo, C.S.d.S. Influence of Dietary Phytase Inclusion Rates on Yolk Inositol Concentration, Hatchability, Chick Quality, and Early Growth Performance. Animals 2023, 13, 1000. https://doi.org/10.3390/ani13061000
Granghelli CA, Walk CL, Gomes GA, Santos TTd, Pelissari PH, Leite BGdS, Roque FA, Lopes MHS, Araujo LF, Araujo CSdS. Influence of Dietary Phytase Inclusion Rates on Yolk Inositol Concentration, Hatchability, Chick Quality, and Early Growth Performance. Animals. 2023; 13(6):1000. https://doi.org/10.3390/ani13061000
Chicago/Turabian StyleGranghelli, Carlos Alexandre, Carrie Louise Walk, Gilson Alexandre Gomes, Tiago Tedeschi dos Santos, Paulo Henrique Pelissari, Brunna Garcia de Souza Leite, Fabricia Arruda Roque, Mário Henrique Scapin Lopes, Lúcio Francelino Araujo, and Cristiane Soares da Silva Araujo. 2023. "Influence of Dietary Phytase Inclusion Rates on Yolk Inositol Concentration, Hatchability, Chick Quality, and Early Growth Performance" Animals 13, no. 6: 1000. https://doi.org/10.3390/ani13061000
APA StyleGranghelli, C. A., Walk, C. L., Gomes, G. A., Santos, T. T. d., Pelissari, P. H., Leite, B. G. d. S., Roque, F. A., Lopes, M. H. S., Araujo, L. F., & Araujo, C. S. d. S. (2023). Influence of Dietary Phytase Inclusion Rates on Yolk Inositol Concentration, Hatchability, Chick Quality, and Early Growth Performance. Animals, 13(6), 1000. https://doi.org/10.3390/ani13061000