The Effect of Neem Leaf Supplementation on Growth Performance, Rumen Fermentation, and Ruminal Microbial Population in Goats
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Nutrition Management
2.2. Feed Analyses
2.3. Feces Sampling and Analyses
2.4. Urine Sampling Procedures
2.5. Apparent Digestibility
2.6. Rumen Fluid Sampling
2.7. Blood Sampling
2.8. Rumen Microbial Procedures
2.9. Statistical Analysis
3. Results
3.1. Feed Intake
3.2. Digestibility
3.3. Nitrogen Utilization
3.4. Performance
3.5. Rumen Fermentation
3.6. Microbial Population in Rumen
4. Discussion
4.1. Feed and Nutrient Intake
4.2. Digestibility
4.3. Performance
4.4. Rumen Fermentation Parameters
4.5. Microbial Population in Rumen
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kobayashi, Y.; Oh, S.; Myint, H.; Koike, S. Use of Asian selected agricultural byproducts to modulate rumen microbes and fermentation. J. Anim. Sci. Biotechnol. 2016, 7, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parsons, D.; Nicholson, C.F. Assessing policy options for agricultural livestock development: A case study of Mexico’s sheep sector. Cogent Food Agric. 2017, 3, 1313360. [Google Scholar] [CrossRef]
- Wanapat, M.; Pilajun, R.; Kongmun, P. Ruminal ecology of swamp buffalo as influenced by dietary sources. Anim. Feed. Sci. Technol. 2009, 151, 205–214. [Google Scholar] [CrossRef]
- Jones, G.; McAllister, T.; Muir, A.; Cheng, K.-J. Effects of sainfoin (Onobrychis viciifolia Scop.) condensed tannins on growth and proteolysis by four strains of ruminal bacteria. Appl. Environ. Microbiol. 1994, 60, 1374–1378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo, K.; March, A.; Liao, P. Determination of optimal feed strength for the thermophylic production of methane from dairy manure filtrate. Energy Agric. 1985, 4, 217–226. [Google Scholar] [CrossRef]
- Nudda, A.; Cannas, A.; Correddu, F.; Atzori, A.S.; Lunesu, M.F.; Battacone, G.; Pulina, G. Sheep and Goats Respond Differently to Feeding Strategies Directed to Improve the Fatty Acid Profile of Milk Fat. Animals 2020, 10, 8. [Google Scholar] [CrossRef]
- Purba, R.A.P.; Paengkoum, S.; Yuangklang, C.; Paengkoum, P.; Salem, A.Z.M.; Juan Boo, L. Mammary gene expressions and oxidative indicators in ruminal fluid, blood, milk, and mammary tissue of dairy goats fed a total mixed ration containing piper meal (Piper betle L.). Ital. J. Anim. Sci. 2022, 21, 129–141. [Google Scholar] [CrossRef]
- Kuppusamy, P.; Lee, K.D.; Song, C.E.; Ilavenil, S.; Srigopalram, S.; Arasu, M.V.; Choi, K.C. Quantification of major phenolic and flavonoid markers in forage crop Lolium multiflorum using HPLC-DAD. Rev. Bras. De Farmacogn. 2018, 28, 282–288. [Google Scholar] [CrossRef]
- Sullivan, D.M.; Carpenter, D.E. Methods of Analysis for Nutrition Labeling; AOAC International: Rockville, MA, USA, 1993; p. 624. [Google Scholar]
- McCartney, D.; Tingley, J. Development of a rapid moisture content method for compost materials. Compost. Sci. Util. 1998, 6, 14–25. [Google Scholar] [CrossRef]
- Bremner, J.M.; Keeney, D.R. Steam distillation methods for determination of ammonium, nitrate and nitrite. Anal. Chim. Acta 1965, 32, 485–495. [Google Scholar] [CrossRef]
- Costa, H.H.A.; Rogério, M.C.P.; Muir, J.P.; Alves, A.A.; Galvani, D.B.; Pompeu, R.C.F.F.; Landim, A.V.; de Souza Carneiro, M.S.; Campos, W.É. Nutritional evaluation of lamb diets in a tropical setting formulated according to NRC (1985) and NRC (2007) specifications. Small Rumin. Res. 2013, 113, 20–29. [Google Scholar] [CrossRef]
- Petlum, A.; Paengkoum, P.; Liang, J.; Vasupen, K.; Paengkoum, S. Molecular weight of condensed tannins of some tropical feed-leaves and their effect on in vitro gas and methane production. Anim. Prod. Sci. 2019, 59, 2154–2160. [Google Scholar] [CrossRef]
- Paengkoum, P.; Liang, J.B.; Jelan, Z.A.; Basery, M. Utilization of Steam-treated Oil Palm Fronds in Growing Goats: 1. Supplementation with Dietary Urea. Asian-Australas. J. Anim. Sci. 2006, 19, 1305–1313. [Google Scholar] [CrossRef]
- Paengkoum, S.; Anan, P.; Purba, R.; Paengkoum, P. Protein-binding affinity of various condensed tannin molecular weights from tropical leaf peel. J. Appl. Pharm. Sci. 2021, 11, 114–120. [Google Scholar] [CrossRef]
- Paengkoum, P.; Paengkoum, S. Effects of supplementing rice straw with Leucaena (Leucaena leucocephala) and Madras thorn (Pithecellobium dulce) foliages on digestibility, microbial N supply and nitrogen balance of growing goats. J. Anim. Physiol. Anim. Nutr. 2010, 94, e59–e65. [Google Scholar] [CrossRef]
- Tian, X.Z.; Lu, Q.; Paengkoum, P.; Paengkoum, S. Short communication: Effect of purple corn pigment on change of anthocyanin composition and unsaturated fatty acids during milk storage. J. Dairy Sci. 2020, 103, 7808–7812. [Google Scholar] [CrossRef]
- Seo, S.; Lanzas, C.; Tedeschi, L.; Pell, A.; Fox, D. Development of a mechanistic model to represent the dynamics of particle flow out of the rumen and to predict rate of passage of forage particles in dairy cattle. J. Dairy Sci. 2009, 92, 3981–4000. [Google Scholar] [CrossRef] [Green Version]
- Broucek, J. Production of methane emissions from ruminant husbandry: A review. J. Environ. Prot. 2014, 5, 1482. [Google Scholar] [CrossRef]
- Kumar, R. Chemical and biochemical nature of fodder tree leaf tannins. J. Agric. Food Chem. 1983, 31, 1364–1366. [Google Scholar] [CrossRef]
- Smith, T.; Mlambo, V.; Sikosana, J.; Maphosa, V.; Mueller-Harvey, I.; Owen, E. Dichrostachys cinerea and Acacia nilotica fruits as dry season feed supplements for goats in a semi-arid environment: Summary of a DFID funded project in Zimbabwe. Anim. Feed. Sci. Technol. 2005, 122, 149–157. [Google Scholar] [CrossRef]
- Barry, T.; Manley, T.; Duncan, S. The role of condensed tannins in the nutritional value of Lotus pedunculatus for sheep:* 4. Sites of carbohydrate and protein digestion as influenced by dietary reactive tannin concentration. Br. J. Nutr. 1986, 55, 123–137. [Google Scholar] [CrossRef] [Green Version]
- Vorlaphim, T.; Paengkoum, P.; Purba, R.A.P.; Yuangklang, C.; Paengkoum, S.; Schonewille, J.T. Treatment of Rice Stubble with Pleurotus ostreatus and Urea Improves the Growth Performance in Slow-Growing Goats. Animals 2021, 11, 1053. [Google Scholar] [CrossRef] [PubMed]
- Montossi, F.; Liu, F.; Hodgson, J.; Morris, S.; Barry, T.; Risso, D. Influence of low-level condensed tannins concentrations in temperate forages on sheep performance. In Proceedings of the XVIIIth International Grassland Congress, Winnipeg, MB, Canada; Saskatoon, SK, Canada, 8–17 June 1997; Volume 1, pp. 8.1–8.2. [Google Scholar]
- Min, B.R.; Pomroy, W.E.; Hart, S.P.; Sahlu, T. The effect of short-term consumption of a forage containing condensed tannins on gastro-intestinal nematode parasite infections in grazing wether goats. Small Rumin. Res. 2004, 51, 279–283. [Google Scholar] [CrossRef]
- Wanapat, M.; Chumpawadee; Paengkoum, P. Utilization of Urea-Treated Rice Straw and Whole Sugar Cane Crop as Roughage Sources for Dairy Cattle during the Dry Season. Asian Australas. J. Anim. Sci. 2000, 13, 474–477. [Google Scholar] [CrossRef]
- Kumar, R.; Vaithiyanathan, S. Occurrence, nutritional significance and effect on animal productivity of tannins in tree leaves. Anim. Feed. Sci. Technol. 1990, 30, 21–38. [Google Scholar] [CrossRef]
- Motubatse, M.R.; Ng’ambi, J.; Norris, D.; Malatje, M. Effect of polyethylene glycol 4000 supplementation on the performance of indigenous Pedi goats fed different levels of Acacia nilotica leaf meal and ad libitum Buffalo grass hay. Trop. Anim. Health Prod. 2008, 40, 229–238. [Google Scholar] [CrossRef]
- Makkar, H.P.S. Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Rumin. Res. 2003, 49, 241–256. [Google Scholar] [CrossRef]
- Woodward, S.; Auldist, M.; Laboyrie, P.; Jansen, E. Effect &Lotus corniculatus and condensed tannins on milk yield and milk composition of dairy cows. Proc. N. Z. Soc. Anim. Prod. 1999, 59, 152–155. [Google Scholar]
- Purba, R.A.P.; Paengkoum, P.; Paengkoum, S. The links between supplementary tannin levels and conjugated linoleic acid (CLA) formation in ruminants: A systematic review and meta-analysis. PLoS ONE 2020, 15, e0216187. [Google Scholar] [CrossRef] [Green Version]
- Bach, A.; Calsamiglia, S.; Stern, M. Nitrogen metabolism in the rumen. J. Dairy Sci. 2005, 88, E9–E21. [Google Scholar] [CrossRef] [Green Version]
- Gunun, P.; Wanapat, M.; Anantasook, N. Effects of physical form and urea treatment of rice straw on rumen fermentation, microbial protein synthesis and nutrient digestibility in dairy steers. Asian Australas. J. Anim. Sci. 2013, 26, 1689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naumann, H.D.; Tedeschi, L.O.; Zeller, W.E.; Huntley, N.F. The role of condensed tannins in ruminant animal production: Advances, limitations and future directions. Rev. Bras. De Zootec. 2017, 46, 929–949. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.; Brooker, J.D.; Phillips, A.; Blackall, L.L. Streptococcus caprinus is ineffective as a rumen inoculum to improve digestion of mulga (Acacia aneura) by sheep. Aust. J. Agric. Res. 1996, 47, 1323–1331. [Google Scholar] [CrossRef]
- Purba, R.A.P.; Yuangklang, C.; Paengkoum, P. Enhanced conjugated linoleic acid and biogas production after ruminal fermentation with Piper betle L. supplementation. Cienc. Rural. 2020, 50, 16. [Google Scholar] [CrossRef]
- Purba, R.A.P.; Yuangklang, C.; Paengkoum, S.; Paengkoum, P. Piper oil decreases in vitro methane production with shifting ruminal fermentation in a variety of diets. Int. J. Agric. Biol. 2021, 25, 231–240. [Google Scholar]
- Wanapat, M. The role of cassava hay as animal feed. Dep. Agric. (DOA) Cent. Int. De Agric. Trop. (CIAT) 2002, 7, 504–517. [Google Scholar]
- Barry, T.; Manley, T. The role of condensed tannins in the nutritional value of Lotus pedunculatus for sheep: 2. Quantitative digestion of carbohydrates and proteins. Br. J. Nutr. 1984, 51, 493–504. [Google Scholar] [CrossRef] [Green Version]
Ingredient | Neem Leaf |
---|---|
Chemical Composition (% DM) | |
Dry matter | 36.00 |
Crude protein | 18.83 |
Ash | 7.78 |
Ether extract | 1.52 |
Non-fibrous carbohydrate | 30.15 |
Neutral detergent fiber | 41.72 |
Acid detergent fiber | 31.52 |
% Condensed tannin | 10.66 |
Diet | ||||||
---|---|---|---|---|---|---|
Items | 0% NL + 0% PEG | 0% NL + 15% PEG | 6% NL + 0% PEG | 6% NL + 15% PEG | SEM | p-Value |
Soybean meal | 17.10 | 15.57 | 15.00 | 12.20 | ||
Rice bran | 30.00 | 24.33 | 25.00 | 22.01 | ||
Cassava chip | 22.00 | 25.00 | 25.40 | 22.61 | ||
Corn | 29.80 | 19.00 | 27.50 | 21.08 | ||
Sodium chloride | 0.40 | 0.40 | 0.40 | 0.40 | ||
Pure sulfur | 0.20 | 0.20 | 0.20 | 0.20 | ||
Minerals and vitamins | 0.50 | 0.50 | 0.50 | 0.50 | ||
Condensed tannin | 0.00 | 0.00 | 6.00 | 6.00 | ||
Polyethylene glycol | 0.00 | 15.00 | 0.00 | 15.00 | ||
Chemical composition (% DM) | ||||||
Dry matter | 74.05 | 74.43 | 74.07 | 74.05 | 0.05 | 0.01 |
Ash | 6.16 | 5.99 | 6.77 | 6.43 | 0.09 | 0.01 |
Crude protein | 16.30 | 16.45 | 16.55 | 16.65 | 0.04 | 0.01 |
Ether extract | 1.34 | 2.01 | 2.13 | 2.25 | 0.11 | 0.01 |
Non-fibrous carbohydrate | 23.73 | 24.7 | 16.56 | 19.51 | 0.99 | 0.01 |
Neutral detergent fiber | 52.47 | 50.85 | 57.99 | 55.16 | 0.82 | 0.01 |
Acid detergent fiber | 24.23 | 23.65 | 32.21 | 31.40 | 1.19 | 0.01 |
TDN, % | 88.70 | 88.64 | 87.20 | 87.15 | 0.23 | 0.01 |
Metabolizable energy, Mcal/kg DM | 3.21 | 3.20 | 3.15 | 3.15 | 0.01 | <0.01 |
Items | Forward/ Reverse | Temperature (°C) | Product Size (bp) | Primer Sequence (5′-3′) |
---|---|---|---|---|
Total bacteria | F | 55 | 130 | CGGCAACGAGCGCAACCC |
R | CCATTGTAGCACGTGTGTAGCC | |||
Methanogen | F | 58 | 140 | TTCGGTGGATCDCARAGRGC |
R | GBARGTCGWAWCCGTAGAATC | |||
Protozoa | F | 55 | 223 | CTTGCCCCTCYAATCGTWCT |
R | GCTTTCGWTGGTAGTGTATT | |||
Butyrivibrio fibrisolvens | F | 58 | 64 | ACACACCGCCCGTCACA |
R | TCCTTACGGTTGGGTCACAGA | |||
Streptococcus gallolyticus | F | 58 | 419 | GAAAAGTACTCAACCAAATA |
R | AGTAACGGTACTTAAATTGTTTA |
0% NL | 6% NL | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
TRT | 0% PEG | 15% PEG | 0% PEG | 15% PEG | SEM | NL | PEG | NL × PEG |
Feed intake | ||||||||
gDM/d | 456.84 d | 469.91 c | 476.96 b | 495.87 a | 0.57 | 0.44 | 0.44 | <0.01 |
% BW | 2.11 c | 2.11 c | 3.95 b | 4.07 a | 0.20 | 0.44 | 0.46 | 0.01 |
g/kgBW0.75 | 41.94 d | 44.46 c | 66.53 b | 75.41 a | 2.95 | 0.44 | 0.45 | 0.02 |
Nutrient intake g DM/d | ||||||||
OMI | 429.43 d | 441.72 c | 443.57 b | 466.12 a | 0.39 | 0.0015 | 0.02 | <0.01 |
CPI | 73.09 d | 75.19 c | 81.08 b | 84.30 a | 0.25 | 0.01 | 0.01 | 0.04 |
EEI | 4.56 d | 9.40 c | 9.54 b | 9.92 a | 0.16 | 0.01 | 0.01 | 0.01 |
NDFI | 237.56 d | 239.65 c | 276.64 a | 272.23 b | 0.93 | 0.01 | 0.01 | 0.01 |
ADFI | 109.64 d | 112.78 c | 152.63 b | 153.72 a | 0.58 | 0.01 | 0.01 | 0.01 |
0% NL | 6% NL | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
TRT | 0% PEG | 15% PEG | 0% PEG | 15% PEG | SEM | NL | PEG | NL × PEG |
Apparent Digestibility, % of intake | ||||||||
DDM | 72.80 d | 76.83 c | 79.85 b | 82.03 a | 0.76 | 0.44 | 0.46 | 0.08 |
DOM | 75.97 b | 76.68 b | 81.45 a | 82.39 a | 0.63 | 0.44 | 0.09 | 0.81 |
DCP | 40.81 | 33.03 | 45.49 | 60.70 | 0.32 | 0.47 | 0.66 | 0.42 |
DEE | 79.99 c | 82.18 b | 85.95 a | 85.55 a | 0.58 | 0.45 | 0.12 | 0.03 |
DNDF | 31.89 a | 33.32 c | 35.04 b | 32.58 d | 0.51 | 0.0076 | 0.46 | 0.08 |
DADF | 21.78 c | 23.16 b | 26.34 a | 21.04 c | 0.47 | 0.0224 | 0.0006 | 0.01 |
0% NL | 6% NL | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
TRT | 0% PEG | 15% PEG | 0% PEG | 15% PEG | SEM | NL | PEG | NL × PEG |
N intake (g/d) | 36.39 c | 26.64 d | 37.59 b | 45.72 a | 1.43 | 0.44 | 0.23 | <0.01 |
N feces (g/d) | 21.54 | 17.84 | 20.49 | 17.97 | 0.37 | 0.30 | 0.45 | 0.17 |
N urine (g/d) | 5.47 | 5.38 | 5.78 | 5.38 | 0.06 | 0.20 | 0.04 | 0.17 |
N absorption (g/d) | 14.85 c | 8.80 d | 17.1 b | 27.75 a | 0.85 | 0.66 | 0.0014 | 0.28 |
N absorption (%) | 40.81 c | 33.03 d | 45.49 b | 60.70 a | 1.02 | 0.66 | 0.001 | 0.28 |
N retention (g/d) | 9.38 c | 3.42 d | 11.32 b | 22.37 a | 0.63 | 0.44 | 0.04 | 0.02 |
N retention (%) | 25.78c | 12.84 d | 30.11 b | 48.93 a | 0.48 | 0.0004 | 0.02 | 0.07 |
0% NL | 6% NL | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
TRT | 0% PEG | 15% PEG | 0% PEG | 15% PEG | SEM | NL | PEG | NL × PEG |
Initial weight, kg | 20.33 | 20.67 | 20.83 | 21.00 | 0.15 | 0.19 | 0.43 | 0.79 |
Final weight, kg | 24.00 | 24.18 | 26.00 | 26.54 | 0.27 | 0.03 | 0.68 | 0.20 |
Weigh change, kg | 3.67 c | 3.51 d | 5.17 b | 5.54 a | 0.19 | 0.06 | 0.44 | 0.31 |
ADG, g/d | 40.78 c | 39.00 d | 57.44 b | 61.56 a | 3.42 | 0.44 | 0.12 | 0.46 |
0% NL | 6% NL | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
TRT | 0% PEG | 15% PEG | 0% PEG | 15% PEG | SEM | NL | PEG | NL × PEG |
BUN Mg% | ||||||||
0 h | 23.03 | 21.23 | 17.66 | 20.09 | 0.56 | 0.0022 | 0.73 | 0.03 |
2 h | 17.82 a | 14.81 b | 14.89 b | 12.97 c | 0.45 | 0.0002 | 0.47 | 0.29 |
4 h | 18.20 a | 17.82 b | 15.88 c | 14.44 d | 0.40 | 0.46 | 0.06 | 0.25 |
Mean | 19.79 a | 17.90 b | 16.11 c | 15.82 c | 0.26 | 0.01 | 0.007 | 0.04 |
Ruminal pH | ||||||||
0 h | 6.76 | 6.67 | 6.74 | 6.90 | 0.04 | 0.27 | 0.66 | 0.17 |
2 h | 6.58 | 6.53 | 6.69 | 6.68 | 0.03 | 0.06 | 0.59 | 0.71 |
4 h | 6.43 b | 6.24 d | 6.32 c | 6.52 a | 0.02 | 0.44 | 0.58 | <0.01 |
Mean | 6.59 ab | 6.48 c | 6.58 cb | 6.70 a | 0.03 | 0.01 | 0.94 | <0.01 |
Ruminal NH3-N mg/dL | ||||||||
0 h | 16.92 | 14.24 | 14.79 | 14.6 | 0.43 | 0.23 | 0.09 | 0.13 |
2 h | 15.08 a | 13.49 c | 14.23 b | 11.33 d | 0.31 | 0.0003 | 0.45 | 0.06 |
4 h | 12.10 | 13.91 | 12.29 | 10.09 | 0.41 | 0.01 | 0.77 | <0.01 |
Mean | 14.59 a | 13.80 a | 13.77 a | 12.00 b | 0.33 | 0.01 | 0.01 | 0.30 |
0% NL | 6% NL | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
TRT | 0% PEG | 15% PEG | 0% PEG | 15% PEG | SEM | NL | PEG | NL × PEG |
Acetic acid (% Molar) | ||||||||
0 h | 62.22 | 61.39 | 60.49 | 60.80 | 5.40 | 0.44 | 0.65 | 0.67 |
2 h | 53.14 c | 56.66 a | 54.06 b | 53.48 c | 0.65 | 0.45 | 0.45 | <0.01 |
4 h | 53.69 | 50.56 | 52.51 | 51.14 | 0.32 | 0.04 | 0.47 | 0.71 |
Mean | 50.20 | 45.85 | 46.19 | 45.12 | 1.30 | 0.22 | 0.16 | 0.37 |
Propionic acid (% Molar) | ||||||||
0 h | 22.21 | 26.41 | 26.19 | 28.07 | 1.48 | 0.59 | 0.31 | 0.85 |
2 h | 25.08 d | 26.06 c | 29.99 b | 32.13 a | 0.47 | 0.45 | 0.06 | <0.01 |
4 h | 22.96 d | 27.51 b | 26.51 c | 28.51 a | 0.48 | 0.46 | 0.46 | <0.01 |
Mean | 21.45 c | 22.38 bc | 23.56 ab | 24.70 a | 0.34 | 0.0003 | 0.05 | 0.82 |
Butyric acid (% Molar) | ||||||||
0 h | 15.57 | 12.20 | 13.33 | 11.13 | 3.41 | 0.56 | 0.43 | 0.78 |
2 h | 21.78 a | 12.28 d | 15.96 b | 14.39 c | 0.80 | 0.45 | 0.45 | <0.01 |
4 h | 23.36 a | 21.92 b | 20.92 c | 20.35 c | 0.25 | 0.01 | 0.06 | 0.95 |
Mean | 18.25 a | 14.22 b | 14.03 b | 12.82 b | 0.80 | 0.03 | 0.03 | 0.22 |
Ratio of acetic acid to propionic acid | ||||||||
0 h | 2.80 | 2.32 | 2.31 | 2.17 | 0.23 | 0.40 | 0.84 | 0.99 |
2 h | 2.12 a | 2.17 b | 1.80 a | 1.66 b | 0.01 | 0.62 | 0.44 | 0.12 |
4 h | 2.34 a | 2.84 b | 1.98 c | 1.79 d | 0.03 | 0.44 | 0.44 | 0.63 |
Mean | 2.27 a | 2.18 ab | 2.10 ab | 2.01 b | 0.05 | 0.05 | 0.25 | 0.99 |
Total VFA (mmol/L) | ||||||||
0 h | 83.57 | 76.98 | 75.04 | 74.32 | 3.96 | 0.94 | 0.22 | 0.66 |
2 h | 96.64 a | 79.98 c | 82.73 b | 82.82 b | 1.45 | 0.44 | 0.45 | <0.01 |
4 h | 87.56 c | 89.01 b | 91.71 a | 89.62 b | 0.45 | 0.01 | 0.04 | 0.72 |
Mean | 82.02 b | 80.62 b | 83.49 ab | 86.82 a | 1.01 | 0.02 | 0.51 | 0.11 |
0% NL | 6% NL | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|
TRT | 0% PEG | 15% PEG | 0% PEG | 15% PEG | SEM | NL | PEG | NL × PEG | |
Total bacteria (lg10 copies/mL) | 0 h | 8.66 | 7.09 | 8.87 | 8.97 | 0.90 | 0.61 | 0.71 | 0.67 |
2 h | 10.57 | 10.64 | 10.53 | 10.70 | 0.03 | 0.83 | 0.03 | 0.34 | |
4 h | 10.35 d | 10.74 a | 10.53 c | 10.63 b | 0.04 | 0.67 | 0.01 | 0.04 | |
Mean | 9.86 | 9.49 | 9.98 | 10.10 | 0.46 | 0.59 | 0.85 | 0.70 | |
Methanogen (lg10 copies/mL) | 0 h | 7.71 | 7.45 | 7.64 | 7.36 | 0.06 | 0.51 | 0.03 | 0.90 |
2 h | 7.40 b | 7.50 a | 7.58 a | 7.34 c | 0.02 | 0.81 | 0.02 | <0.01 | |
4 h | 7.42 a | 7.30 b | 7.20 c | 7.16 d | 0.02 | 0.44 | 0.47 | 0.03 | |
Mean | 7.51 a | 7.42 a | 7.47 a | 7.29 b | 0.03 | 0.05 | 0.003 | 0.23 | |
Protozoa (lg10 copies/mL) | 0 h | 4.85 c | 6.30 a | 5.47 b | 3.11 d | 1.76 | 0.19 | 0.63 | 0.05 |
2 h | 6.58 a | 5.43 b | 6.65 a | 4.66 c | 0.17 | 0.46 | 0.44 | <0.01 | |
4 h | 7.35 a | 5.35 b | 4.39 c | 2.34 d | 4.90 | 0.44 | 0.44 | 0.80 | |
Mean | 9.32 a | 5.72 b | 5.40 b | 3.59 b | 0.84 | 0.02 | 0.03 | 0.45 | |
Butyrivibrio fibrisolvens (lg10 copies/mL) | 0 h | 8.17 | 8.45 | 8.37 | 8.74 | 0.26 | 0.37 | 0.21 | 0.87 |
2 h | 7.95 c | 8.13 b | 8.25 b | 9.27 a | 0.03 | 0.44 | 0.44 | <0.01 | |
4 h | 7.99 c | 8.07 b | 8.23 b | 9.25 a | 0.02 | 0.44 | 0.44 | <0.01 | |
Mean | 8.04 b | 8.22 ab | 8.30 ab | 8.41 a | 0.06 | 0.02 | 0.10 | 0.67 | |
Streptococcus gallolyticus (lg10 copies/mL) | 0 h | 8.66 | 7.09 | 8.87 | 8.97 | 0.90 | 0.61 | 0.71 | 0.67 |
2 h | 10.56 b | 10.56 b | 10.58 b | 11.64 a | 0.01 | 0.44 | 0.44 | <0.01 | |
4 h | 10.55 b | 10.36 b | 10.53 b | 11.61 a | 0.01 | 0.44 | 0.44 | <0.01 | |
Mean | 9.86 | 9.45 | 10.00 | 10.02 | 0.47 | 0.60 | 0.77 | 0.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taethaisong, N.; Paengkoum, S.; Kaewwongsa, W.; Onjai-uea, N.; Thongpea, S.; Paengkoum, P. The Effect of Neem Leaf Supplementation on Growth Performance, Rumen Fermentation, and Ruminal Microbial Population in Goats. Animals 2023, 13, 890. https://doi.org/10.3390/ani13050890
Taethaisong N, Paengkoum S, Kaewwongsa W, Onjai-uea N, Thongpea S, Paengkoum P. The Effect of Neem Leaf Supplementation on Growth Performance, Rumen Fermentation, and Ruminal Microbial Population in Goats. Animals. 2023; 13(5):890. https://doi.org/10.3390/ani13050890
Chicago/Turabian StyleTaethaisong, Nittaya, Siwaporn Paengkoum, Walailuck Kaewwongsa, Narawich Onjai-uea, Sorasak Thongpea, and Pramote Paengkoum. 2023. "The Effect of Neem Leaf Supplementation on Growth Performance, Rumen Fermentation, and Ruminal Microbial Population in Goats" Animals 13, no. 5: 890. https://doi.org/10.3390/ani13050890
APA StyleTaethaisong, N., Paengkoum, S., Kaewwongsa, W., Onjai-uea, N., Thongpea, S., & Paengkoum, P. (2023). The Effect of Neem Leaf Supplementation on Growth Performance, Rumen Fermentation, and Ruminal Microbial Population in Goats. Animals, 13(5), 890. https://doi.org/10.3390/ani13050890