Effects of Different Levels of Yucca Supplementation on Growth Rates, Metabolic Profiles, Fecal Odor Emissions, and Carcass Traits of Growing Lambs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Diets
2.2. Growth Preformance and Feed Intake
2.3. Blood Sample Processing and Analysis
2.4. Rumen Fermentation Profiles
2.5. Fecal and Urinary Odor Evaluation
2.6. Carcass Traits and Meat Quality
2.7. Statistical Analyses
3. Results
3.1. Dry-Matter Intake (DMI), Average Daily Gain (ADG), and Feed Efficiency
3.2. Serum Biochemical Variables
3.3. Rumen Fermentation Profile
3.4. Fecal and Urinary Odor Emissions
3.5. Carcass Characteristics and Meat Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chharang, D. Non Conventional Animal Feed Resources; Blue Rose Publishers: Delhi, India, 2022. [Google Scholar]
- Trabi, E.B.; Seddik, H.-E.; Xie, F.; Lin, L.; Mao, S. Comparison of the rumen bacterial community, rumen fermentation and growth performance of fattening lambs fed low-grain, pelleted or non-pelleted high grain total mixed ration. Anim. Feed. Sci. Technol. 2019, 253, 1–12. [Google Scholar] [CrossRef]
- Konka, R.; Kumar, D.S.; Ramana, J.; Ravi, A.; Rao, E.R. Fermentation pattern in Murrah buffalo bulls fed crop residue based complete rations vis-a-vis conventional feeding system. Anim. Nutr. Feed. Technol. 2016, 16, 171–179. [Google Scholar] [CrossRef]
- Rodríguez, A.B.; Bodas, R.; Fernández, B.; López-Campos, O.; Mantecon, A.; Giráldez, F.J. Feed intake and performance of growing lambs raised on concentrate-based diets under cafeteria feeding systems. Animal 2007, 1, 459–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lailer, P.; Dahiya, S.; Lal, D.; Chauhan, T. Complete feed for livestock concept, present status and future trend: A review. Indian J. Anim. Sci. 2005, 75, 84–91. [Google Scholar]
- Waje, S.; Singh, S.; Mudgal, V. Effect of using forest grass based complete rations on growth and nutrient utilization in growing crossbred calves. Anim. Nutr. Feed. Technol. 2010, 10, 229–234. [Google Scholar]
- Sharma, V.; Purohit, G.; Arya, R.; Harsh, M. Evaluation of some complete rations in sheep incorporating unconventional feed resources of arid zone of India. Anim. Nutr. Feed. Technol. 2006, 6, 135–141. [Google Scholar]
- Owens, F.N.; Basalan, M. Ruminal fermentation. In Rumenology; Springer: Berlin/Heidelberg, Germany, 2016; pp. 63–102. [Google Scholar]
- Gunun, N.; Ouppamong, T.; Khejornsart, P.; Cherdthong, A.; Wanapat, M.; Polyorach, S.; Kaewpila, C.; Kang, S.; Gunun, P. Effects of rubber seed kernel fermented with yeast on feed utilization, rumen fermentation and microbial protein synthesis in dairy heifers. Fermentation 2022, 8, 288. [Google Scholar] [CrossRef]
- Sari, N.F.; Ray, P.; Rymer, C.; Kliem, K.E.; Stergiadis, S. Garlic and its bioactive compounds: Implications for methane emissions and ruminant nutrition. Animals 2022, 12, 2998. [Google Scholar] [CrossRef]
- Pimentel, P.R.S.; dos Santos Brant, L.M.; de Oliveira Lima, A.G.V.; Cotrim, D.C.; Nascimento, T.; Oliveira, R.L. How can nutritional additives modify ruminant nutrition? Rev. Fac. Cienc. Agrar. UNCuyo 2022, 54, 175–189. [Google Scholar] [CrossRef]
- Sahebi Ala, M.; Pirmohammadi, R.; Khalilvandi-Behroozyar, H.; Anassori, E. Changes in vitro rumen fermentation, methane production and microbial populations in response to green tea extract. Ital. J. Anim. Sci. 2021, 20, 1114–1125. [Google Scholar] [CrossRef]
- Goel, G.; Makkar, H.; Becker, K. Changes in microbial community structure, methanogenesis and rumen fermentation in response to saponin-rich fractions from different plant materials. J. Appl. Microbiol. 2008, 105, 770–777. [Google Scholar] [CrossRef]
- Louderback, L.A.; Pavlik, B.M.; Spurling, A.M. Ethnographic and archaeological evidence corroborating Yucca as a food source, Mojave Desert, USA. J. Ethnobiol. 2013, 33, 281–297. [Google Scholar] [CrossRef]
- Sajad, M.; Thakur, S.C. Traditional Uses and Anti-Inflammatory Activities of Different Medicinal Plants: A Systematic Review. Int. J. Ayurvedic Herb. Med. 2018, 9, 3410–3432. [Google Scholar]
- Zúñiga-Serrano, A.; Barrios-García, H.B.; Anderson, R.C.; Hume, M.E.; Ruiz-Albarrán, M.; Bautista-Martínez, Y.; Sánchez-Guerra, N.A.; Vázquez-Villanueva, J.; Infante-Rodríguez, F.; Salinas-Chavira, J. Antimicrobial and Digestive Effects of Yucca schidigera Extracts Related to Production and Environment Implications of Ruminant and Non-Ruminant Animals: A Review. Agriculture 2022, 12, 1198. [Google Scholar] [CrossRef]
- Oleszek, M.; Oleszek, W. Saponins in Food; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Jiménez, G.G.; Durán, A.G.; Macías, F.A.; Simonet, A.M. Structure, Bioactivity and Analytical Methods for the Determination of Yucca Saponins. Molecules 2021, 26, 5251. [Google Scholar] [CrossRef]
- Kaya, S.; Keskin, M.; Gül, S. Effects of Yucca schidigera extract (Dk 35 Powder) on Awassi lambs performance. J. Anim. Vet. Adv. 2006, 5, 57–59. [Google Scholar]
- Pecio, Ł.; Kozachok, S.; Brinza, I.; Boiangiu, R.S.; Hritcu, L.; Mircea, C.; Burlec, A.F.; Cioanca, O.; Hancianu, M.; Wronikowska-Denysiuk, O. Neuroprotective Effect of Yucca schidigera Roezl ex Ortgies Bark Phenolic Fractions, Yuccaol B and Gloriosaol A on Scopolamine-Induced Memory Deficits in Zebrafish. Molecules 2022, 27, 3692. [Google Scholar] [CrossRef]
- Cheeke, P.; Piacente, S.; Oleszek, W. Anti-inflammatory and anti-arthritic effects of Yucca schidigera: A review. J. Inflamm. 2006, 3, 6. [Google Scholar] [CrossRef] [Green Version]
- Windisch, W.; Schedle, K.; Plitzner, C.; Kroismayr, A. Use of phytogenic products as feed additives for swine and poultry. J. Anim. Sci. 2008, 86, E140–E148. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; La, A.L.T.Z.; Evans, A.; Gao, S.; Yu, Z.; Ma, L.; Bu, D. Supplementation with Yucca schidigera improves antioxidant capability and immune function and decreases fecal score of dairy calves before weaning. J. Dairy Sci. 2021, 104, 4317–4325. [Google Scholar] [CrossRef]
- Abdel-Raheem, S.M.; Farghaly, M.M.; Hassan, E.H. Effect of dietary supplementation with Yucca schidigera powder on nutrient digestibility, rumen fermentation, ruminal enzyme activities and growth performance of buffalo calves. Biol. Rhythm. Res. 2022, 53, 854–866. [Google Scholar] [CrossRef]
- Eryavuz, A.; Dehority, B. Effect of Yucca schidigera extract on the concentration of rumen microorganisms in sheep. Anim. Feed. Sci. Technol. 2004, 117, 215–222. [Google Scholar] [CrossRef]
- Hristov, A.N.; McAllister, T.A.; Van Herk, F.H.; Cheng, K.-J.; Newbold, C.J.; Cheeke, P.R. Effect of Yucca schidigera on ruminal fermentation and nutrient digestion in heifers. J. Anim. Sci. 1999, 77, 2554–2563. [Google Scholar] [CrossRef] [PubMed]
- Lila, Z.; Mohammed, N.; Kanda, S.; Kamada, T.; Itabashi, H. Effect of sarsaponin on ruminal fermentation with particular reference to methane production in vitro. J. Dairy Sci. 2003, 86, 3330–3336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piacente, S.; Montoro, P.; Oleszek, W.; Pizza, C. Yucca s chidigera Bark: Phenolic Constituents and Antioxidant Activity. J. Nat. Prod. 2004, 67, 882–885. [Google Scholar] [CrossRef] [PubMed]
- Duffy, C.; Brooks, P.; Lyons, T.; Jacques, K. Using Yucca schidigera in pig diets: Effects on nitrogen metabolism. In Biotechnology in the Feed Industry; Alltach: Nicholasville, KY, USA, 1998; p. 61. [Google Scholar]
- Santoso, B.; Mwenya, B.; Sar, C.; Gamo, Y.; Kobayashi, T.; Morikawa, R.; Kimura, K.; Mizukoshi, H.; Takahashi, J. Effects of supplementing galacto-oligosaccharides, Yucca schidigera or nisin on rumen methanogenesis, nitrogen and energy metabolism in sheep. Livest. Prod. Sci. 2004, 91, 209–217. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Small Ruminants; National Academy Press: Washington, DC, USA, 2007. [Google Scholar]
- Jenkins, T. Effect of fats and fatty acid combinations on ruminal fermentation in semi-continuous in vitro cultures. J. Anim. Sci. 1987, 64, 1526–1532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hales, K.E.; Parker, D.B.; Cole, N.A. Potential odorous volatile organic compound emissions from feces and urine from cattle fed corn-based diets with wet distillers grains and solubles. Atmos. Environ. 2012, 60, 292–297. [Google Scholar] [CrossRef]
- Culler, R.; Smith, G.; Cross, H. Relationship of myofibril fragmentation index to certain chemical, physical and sensory characteristics of bovine longissimus muscle. J. Food Sci. 1978, 43, 1177–1180. [Google Scholar] [CrossRef]
- Wilhelm, A.E.; Maganhini, M.B.; Hernández-Blazquez, F.J.; Ida, E.I.; Shimokomaki, M. Protease activity and the ultrastructure of broiler chicken PSE (pale, soft, exudative) meat. Food Chem. 2010, 119, 1201–1204. [Google Scholar] [CrossRef]
- Al-Owaimer, A.; Suliman, G.; Sami, A.; Picard, B.; Hocquette, J.-F. Chemical composition and structural characteristics of Arabian camel (Camelus dromedarius) m. longissimus thoracis. Meat Sci. 2014, 96, 1233–1241. [Google Scholar] [CrossRef] [PubMed]
- GASTAT (General Authority for Statistics). Detailed Results of the Agriculture Census. 2015. Available online: https://www.stats.gov.sa/ (accessed on 23 October 2022).
- Abdelrahman, M.M.; Alhidary, I.A.; Suliman, G.M.; Alyemni, A.H.; Al-Saiady, M.Y.; Alshamiry, F.A.; Alobre, M.M.; Aljumaah, R.S. Impact of Feeding Different Levels of Neutral Detergent Fiber as Total Mixed Rations on Sensory Attributes, Carcass Characteristics and Meat Quality of Growing Lambs. Pak. J. Zool. 2018, 50, 2129–2134. [Google Scholar] [CrossRef]
- Abdelrahman, M.M.; Alhidary, I.; Alyemni, A.H.; Khan, R.U.; Bello, A.R.S.; Al-Saiady, M.Y.; Amran, R.A. Effect of alfalfa hay on rumen fermentation patterns and serum biochemical profile of growing Naemi lambs with ad libitum access to total mixed rations. Pak. J. Zool. 2017, 49, 1519–1522. [Google Scholar] [CrossRef]
- Alhidary, I.; Abdelrahman, M.M.; Alyemni, A.H.; Khan, R.U.; Al-Mubarak, A.H.; Albaadani, H.H. Characteristics of rumen in Naemi lamb: Morphological changes in response to altered feeding regimen. Acta Histochem. 2016, 118, 331–337. [Google Scholar] [CrossRef]
- Patra, A.; Saxena, J. The effect and mode of action of saponins on the microbial populations and fermentation in the rumen and ruminant production. Nutr. Res. Rev. 2009, 22, 204–219. [Google Scholar] [CrossRef]
- Jaques, K. Yucca sarsaponin mode of action: Effects independent of air quality problems. In Animal Feed, Biological Additives: Proceeding; Veterinary Science University of Sydney: Sydney, Australia, 1989; pp. 39–46. [Google Scholar]
- Wina, E.; Muetzel, S.; Becker, K. The impact of saponins or saponin-containing plant materials on ruminant production A Review. J. Agric. Food Chem. 2005, 53, 8093–8105. [Google Scholar] [CrossRef]
- Lepherd, M.; Canfield, P.; Hunt, G.B.; Bosward, K. Haematological, biochemical and selected acute phase protein reference intervals for weaned female Merino lambs. Aust. Vet. J. 2009, 87, 5–11. [Google Scholar] [CrossRef]
- Cheeke, P. Actual and potential applications of Yucca schidigera and Quillaja saponaria saponins in human and animal nutrition. In Saponins in Food, Feedstuffs and Medicinal Plants; Springer: Berlin/Heidelberg, Germany, 2000; pp. 241–254. [Google Scholar]
- Cline, J. Effect of feeding MICRO-AID on stillbirths, preweaning mortality, blood oxygen values of piglets and blood urea nitrogen in sows. J. Anim. Sci. 1996, 74, 189. [Google Scholar]
- Kaya, S.; Erdogan, Z.; Erdogan, S. Effect of different dietary levels of Yucca schidigera powder on the performance, blood parameters and egg yolk cholesterol of laying quails. J. Vet. Med. Ser. A 2003, 50, 14–17. [Google Scholar] [CrossRef]
- Aiello, S.E. The Merck Veterinary Manual, 8th ed.; Merck & Co., Inc.: Whitehouse Station, NJ, USA, 1998. [Google Scholar]
- Pen, B.; Takaura, K.; Yamaguchi, S.; Asa, R.; Takahashi, J. Effects of Yucca schidigera and Quillaja saponaria with or without β 1–4 galacto-oligosaccharides on ruminal fermentation, methane production and nitrogen utilization in sheep. Anim. Feed. Sci. Technol. 2007, 138, 75–88. [Google Scholar] [CrossRef]
- Lu, C.D.; Jorgensen, N.A. Alfalfa saponins affect site and extent of nutrient digestion in ruminants. J. Nutr. 1987, 117, 919–927. [Google Scholar] [CrossRef] [PubMed]
- Lovett, D.; Stack, L.; Lovell, S.; Callan, J.; Flynn, B.; Hawkins, M.; O’Mara, F. Effect of feeding Yucca schidigera extract on performance of lactating dairy cows and ruminal fermentation parameters in steers. Livest. Sci. 2006, 102, 23–32. [Google Scholar] [CrossRef]
- Wang, Y.; McAllister, T.A.; Yanke, L.J.; Xu, Z.J.; Cheeke, P.R.; Cheng, K.J. In vitro effects of steroidal saponins from Yucca schidigera extract on rumen microbial protein synthesis and ruminal fermentation. J. Sci. Food Agric. 2000, 80, 2114–2122. [Google Scholar] [CrossRef]
- Wallace, R.; Arthaud, L.; Newbold, C. Influence of Yucca shidigera extract on ruminal ammonia concentrations and ruminal microorganisms. Appl. Environ. Microbiol. 1994, 60, 1762–1767. [Google Scholar] [CrossRef] [Green Version]
- Makkar, H.P.; Sen, S.; Blümmel, M.; Becker, K. Effects of fractions containing saponins from Yucca schidigera, Quillaja saponaria, and Acacia auriculoformis on rumen fermentation. J. Agric. Food Chem. 1998, 46, 4324–4328. [Google Scholar] [CrossRef]
- Holtshausen, L.; Chaves, A.; Beauchemin, K.; McGinn, S.; McAllister, T.; Odongo, N.; Cheeke, P.; Benchaar, C. Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows. J. Dairy Sci. 2009, 92, 2809–2821. [Google Scholar] [CrossRef]
- Hu, W.; Liu, J.; Wu, Y.; Guo, Y.; Ye, J. Effects of tea saponins on in vitro ruminal fermentation and growth performance in growing Boer goat. Arch. Anim. Nutr. 2006, 60, 89–97. [Google Scholar] [CrossRef]
- Giesy, R.; Harris, B., Jr.; Giesy, J.; Van Horn, H., Jr. Effectiveness of De-odorase in reducing ammonia levels in dairy barns during summer months. In Biotechnology in the Feed Industry; Alltech, Inc.: Nicholasville, KY, USA, 1992; pp. 16–18. [Google Scholar]
- Girard, I.; Newman, K.; Chandler, V. Fermentations in rumen-simulating cultures receiving yucca extract supple-mentation. In Biotechnology in the Feed Industry; Alltech, Inc.: Nicholasville, KY, USA, 1991; pp. 361–364. [Google Scholar]
- Selcuk, Z.; Tuncer, S.D. The effects of different levels of Yucca schidigera added to the lamb’s diets containing urea on growth performance, carcass characteristics, some rumen and blood parameters. J. Anim. Vet. Adv. 2010, 9, 654–660. [Google Scholar] [CrossRef] [Green Version]
- Alghirani, M.M.; Chung, E.L.T.; Sabri, D.S.M.; Tahir, M.N.J.M.; Kassim, N.A.; Kamalludin, M.H.; Nayan, N.; Jesse, F.F.A.; Sazili, A.Q.; Loh, T.C. Can Yucca schidigera Be Used to Enhance the Growth Performance, Nutrient Digestibility, Gut Histomorphology, Cecal Microflora, Carcass Characteristic, and Meat Quality of Commercial Broilers Raised under Tropical Conditions? Animals 2021, 11, 2276. [Google Scholar] [CrossRef]
- Ashour, E.; Alagawany, M.; Reda, F.; Abd El-Hack, M. Effect of Supplementation of Yucca schidigera Extract to Grovving Rabbit Diets on Grovvth Performance, Carcass Characteristics, Serum Biochemistry and Liver Oxidative Status. Asian J. Anim. Vet. Adv. 2014, 9, 732–742. [Google Scholar] [CrossRef] [Green Version]
- Miah, M.; Rahman, M.; Islam, M.; Monir, M. Effects of saponin and L-carnitine on the performance and reproductive fitness of male broiler. Int. J. Poult. Sci. 2004, 3, 530–533. [Google Scholar]
Item | Content |
---|---|
Ingredients, % of dietary dry matter | |
Corn, grain | 29.92 |
Feed wheat, grain | 18.40 |
Alfalfa hay | 9.10 |
Palm kernel meal | 11.40 |
Soybean hulls | 12.03 |
Wheat bran | 12.10 |
Salt | 0.47 |
Limestone | 2.58 |
Molasses | 3.85 |
Mineral and vitamin premix 2 | 0.15 |
Nutrient composition, dry-matter basis | |
Dry matter, (%) | 92.43 |
Ash, % | 7.79 |
Crude protein, % | 14.51 |
Ether extract, % | 3.98 |
Neutral detergent fiber, % | 33.23 |
Acid detergent fiber, % | 20.12 |
Metabolizable energy, MJ/kg | 11.6 |
Item | Dietary Treatments 1 | SE | p-Value | ||
---|---|---|---|---|---|
CON | YS300 | YS600 | |||
Initial BW, kg | 26.26 | 26.83 | 26.97 | 1.462 | 0.56 |
Final BW, kg | 45.78 a,b | 46.25 a | 44.68 b | 1.828 | 0.04 |
BW change, kg | 18.56 a | 18.58 a | 17.30 b | 0.674 | 0.03 |
ADG, g/d | 240 a | 241 a | 225 b | 18.213 | 0.03 |
DMI, kg/d | 1.48 | 1.49 | 1.48 | 0.276 | 0.43 |
G:F ratio | 162 a | 162 a | 152 b | 7.208 | 0.02 |
Item | Dietary Treatments 1 | SE | p-Value | ||
---|---|---|---|---|---|
CON | YS300 | YS600 | |||
Glucose, mM | 2.11 a | 1.78 b | 1.72 b | 0.283 | 0.02 |
Total protein, g/L | 53.17 | 60.66 | 58.89 | 6.667 | 0.23 |
Albumin, g/L | 29.00 | 28.79 | 29.30 | 1.522 | 0.34 |
Urea, mM | 5.99 c | 7.11 a | 6.60 b | 0.459 | 0.01 |
Creatinine, µM | 104.3 | 106.7 | 105.3 | 2.207 | 0.09 |
Item | Dietary Treatments 1 | SE | p-Value | ||
---|---|---|---|---|---|
CON | YS300 | YS600 | |||
pH value | 6.08 | 5.98 | 6.12 | 0.342 | 0.67 |
Total VFAs, mM | 53.95 | 48.9 | 49.13 | 4.568 | 0.16 |
Acetate, % mol | 32.80 | 32.93 | 32.84 | 2.343 | 0.56 |
Propionate, % mol | 41.74 | 41.03 | 39.72 | 2.519 | 0.25 |
Butyrate, % mol | 18.49 | 18.57 | 19.30 | 1.457 | 0.12 |
Isobutyrate, % mol | 1.37 b | 2.16 a | 1.29 b | 0.872 | 0.05 |
Valerate, % mol | 2.71 | 2.93 | 3.68 | 0.461 | 0.53 |
Isovalerate, % mol | 2.89 a,b | 2.38 b | 3.16 a | 0.563 | 0.04 |
Acetate: propionate ratio | 0.79 | 0.80 | 0.83 | 0.121 | 0.44 |
Ammonia, µM | 6.32 a | 6.02 b | 5.33 c | 0.276 | 0.01 |
Item | Dietary Treatments 1 | SE | p-Value | ||
---|---|---|---|---|---|
CON | YS300 | YS600 | |||
Carcass profile | |||||
Slaughter BW, kg | 45.10 a | 46.70 a | 44.60 b | 1.123 | 0.04 |
Hot carcass, kg | 21.93 | 21.79 | 21.41 | 1.162 | 0.16 |
Cold carcass, kg | 21.51 | 21.28 | 20.80 | 1.148 | 0.34 |
Dressing, % | 48.68 a | 46.65 b | 48.06 a | 0.819 | 0.03 |
Chilling losses, % | 1.95 b | 2.33 ab | 2.85 a | 0.362 | 0.02 |
Organ weight, kg | |||||
Non-carcass components 2 | 6.92 | 6.58 | 6.93 | 0.232 | 0.23 |
Liver | 0.75 | 0.82 | 0.77 | 0.082 | 0.56 |
Heart | 0.13 | 0.13 | 0.14 | 0.014 | 0.34 |
Kidneys | 0.12 | 0.13 | 0.11 | 0.019 | 0.67 |
Stomach | 1.44 | 1.20 | 1.64 | 0.412 | 0.11 |
Tail | 2.74 | 2.56 | 2.67 | 0.557 | 0.09 |
Wholesale cut weight, kg | |||||
Shoulder | 2.60 a | 2.70 a | 2.49 b | 0.117 | 0.02 |
Rack | 0.96 | 0.98 | 0.94 | 0.048 | 0.57 |
Loin | 1.25 | 1.29 | 1.20 | 0.113 | 0.18 |
Leg | 2.95 | 2.94 | 2.97 | 0.138 | 0.56 |
Foreshank and breast | 1.20 | 1.16 | 1.15 | 0.059 | 0.22 |
Item, Unit 2 | Dietary Treatments 1 | SE | p-Value | ||
---|---|---|---|---|---|
CON | YS300 | YS600 | |||
Rack ribs | |||||
Rib eye area, cm2 | 11.22 | 9.24 | 9.54 | 2.321 | 0.14 |
Body wall fat, mm | 5.89 | 6.33 | 5.20 | 0.317 | 0.21 |
Back fat, mm | 4.70 | 4.69 | 4.42 | 0.209 | 0.12 |
Color components | |||||
L * | 26.61 | 28.93 | 27.91 | 1.118 | 0.37 |
a * | 15.53 | 14.95 | 14.28 | 1.433 | 0.56 |
b * | 3.40 | 3.52 | 3.64 | 0.262 | 0.67 |
Visceral fat deposits, kg | |||||
Total | 1.15 | 0.97 | 0.85 | 0.271 | 0.09 |
Omental | 0.53 | 0.51 | 0.45 | 0.054 | 0.67 |
Mesentery | 0.31 | 0.15 | 0.13 | 0.106 | 0.23 |
Pericardial | 0.03 | 0.05 | 0.03 | 0.138 | 0.56 |
KKCF | 0.28 | 0.26 | 0.24 | 0.058 | 0.16 |
Texture profile analysis | |||||
MFI | 82.86 a | 70.06 b | 82.82 a | 2.557 | 0.02 |
Cooking loss, % | 40.99 | 42.69 | 40.81 | 0.832 | 0.24 |
Shear force, kg | 3.51 b | 4.53 a | 4.05 ab | 0.538 | 0.03 |
WHC | 0.31 | 0.28 | 0.29 | 0.069 | 0.54 |
Hardness | 0.43 b | 0.83 a | 0.76 a | 0.272 | 0.01 |
Springiness | 0.51 b | 0.59 a | 0.55 ab | 0.048 | 0.02 |
Cohesiveness | 0.48 | 0.48 | 0.50 | 0.051 | 0.19 |
Chewiness | 1.07 b | 2.09 a | 2.27 a | 0.954 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsubait, I.S.; Alhidary, I.A.; Al-Haidary, A.A. Effects of Different Levels of Yucca Supplementation on Growth Rates, Metabolic Profiles, Fecal Odor Emissions, and Carcass Traits of Growing Lambs. Animals 2023, 13, 755. https://doi.org/10.3390/ani13040755
Alsubait IS, Alhidary IA, Al-Haidary AA. Effects of Different Levels of Yucca Supplementation on Growth Rates, Metabolic Profiles, Fecal Odor Emissions, and Carcass Traits of Growing Lambs. Animals. 2023; 13(4):755. https://doi.org/10.3390/ani13040755
Chicago/Turabian StyleAlsubait, Ibrahim S., Ibrahim A. Alhidary, and Ahmed A. Al-Haidary. 2023. "Effects of Different Levels of Yucca Supplementation on Growth Rates, Metabolic Profiles, Fecal Odor Emissions, and Carcass Traits of Growing Lambs" Animals 13, no. 4: 755. https://doi.org/10.3390/ani13040755
APA StyleAlsubait, I. S., Alhidary, I. A., & Al-Haidary, A. A. (2023). Effects of Different Levels of Yucca Supplementation on Growth Rates, Metabolic Profiles, Fecal Odor Emissions, and Carcass Traits of Growing Lambs. Animals, 13(4), 755. https://doi.org/10.3390/ani13040755