The Impact of Different Relative Humidity Levels on the Production Performance, Slaughter Performance, and Meat Quality of White Pekin Ducks Aged 4 to 42 Days
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Methods
2.2. Experimental Management
2.3. Duck and Slaughter Performance
2.4. Meat Quality and Myofiber
2.5. Statistical Analysis
3. Results
3.1. Environmental Parameter Monitoring
3.2. Growth Performance
3.3. Slaughter Performance
3.4. Meat Quality and Muscle Microscopic Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hou, S.; Liu, L. Current status, future development trends and suggestions of waterfowl industry in 2021. Chin. J. Anim. Husb. 2022, 58, 227–231. [Google Scholar]
- FAO Statistics on Crop and Livestock Products. Available online: https://www.fao.org/faostat/zh/#data/QCL (accessed on 24 April 2023).
- Zeng, T.; Chen, L.; Du, X.; Lai, S.J.; Huang, S.P.; Liu, Y.L.; Lu, L.Z. Association analysis between feed efficiency studies and expression of hypothalamic neuropeptide genes in laying ducks. Anim. Genet. 2016, 47, 606–609. [Google Scholar] [CrossRef] [PubMed]
- Wołoszyn, J.; Książkiewicz, J.; Skrabka-Błotnicka, T.; Haraf, G.; Biernat, J.; Kisiel, T. Comparison of amino acid and fatty acid composition of duck breast muscles from five flocks. Arch. Anim. Breed. 2006, 49, 194–204. [Google Scholar] [CrossRef]
- Taboosha, M.F. Effect of Stocking Density and Slaughter age on Growth Performance and Carcass Traits of Female Mule Ducks (Crossbred of Muscovy Drake and Pekin Ducks) during Summer Season in Egypt. Middle East. J. Appl. Sci. 2014, 4, 1023–1033. [Google Scholar]
- Ali, M.S.; Kang, G.; Yang, H.; Jeong, J.; Hwang, Y.; Park, G.B.; Joo, S. A Comparison of Meat Characteristics between Duck and Chicken Breast. Asian Austral. J. Anim. 2007, 20, 1002–1006. [Google Scholar] [CrossRef]
- Colton, S.; Fraley, G.S. The effects of environmental enrichment devices on feather picking in commercially housed Pekin ducks. Poult. Sci. 2014, 93, 2143–2150. [Google Scholar] [CrossRef]
- Erisir, Z.; Poyraz, O.; Onbasilar, E.E.; Erdem, E.; Kandemir, O. Effect of Different Housing Systems on Growth and Welfare of Pekin Ducks. J. Anim. Vet. Adv. 2009, 8, 235–239. [Google Scholar]
- Makagon, M.M.; Riber, A.B. Setting research driven duck-welfare standards: A systematic review of Pekin duck welfare research. Poult. Sci. 2022, 101, 101614. [Google Scholar] [CrossRef]
- Bogosavljevic-Boskovic, S.; Kurćubić, V.; Petrovic, M.; Dosković, V. The effects of season and rearing systems on meat quality traits. Czech J. Anim. Sci. 2006, 51, 369–374. [Google Scholar] [CrossRef]
- Yin, H.; Zhong, Y.; Wang, H.; Hu, J.; Xia, S.; Xiao, Y.; Nie, S.; Xie, M. Short-term exposure to high relative humidity increases blood urea and influences colonic urea-nitrogen metabolism by altering the gut microbiota. J. Adv. Res. 2022, 35, 153–168. [Google Scholar] [CrossRef]
- Jones, T.A.; Dawkins, M.S. Effect of environment on Pekin duck behaviour and its correlation with body condition on commercial farms in the UK. Brit Poult. Sci. 2010, 51, 319–325. [Google Scholar] [CrossRef]
- Kim, D.H.; Lee, Y.K.; Lee, S.D.; Lee, K.W. Impact of relative humidity on the laying performance, egg quality, and physiological stress responses of laying hens exposed to high ambient temperature. J. Therm. Biol. 2022, 103, 103167. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, K.; Hu, X. Research progress of environmental factors affecting broiler growth. J. Domest. Anim. Ecol. 2007, 6, 135–138. [Google Scholar]
- Zhou, Y.; Zhang, M.; Feng, J.; Diao, H. Effect of relative humidity at chronic temperature on growth performance, glucose consumption, and mitochondrial ATP production of broilers. J. Integr. Agr. 2019, 18, 1321–1328. [Google Scholar] [CrossRef]
- He, X.; Lu, Z.; Ma, B.; Zhang, L.; Li, J.; Jiang, Y.; Zhou, G.; Gao, F. Chronic Heat Stress Damages Small Intestinal Epithelium Cells Associated with the Adenosine 5’-Monophosphate-Activated Protein Kinase Pathway in Broilers. J. Agr. Food Chem. 2018, 66, 7301–7309. [Google Scholar] [CrossRef]
- Sun, P. Effects of Ambient Temperature and Humidity on Growth Performance and Antioxidant Function of Peking Ducks in Fattening Stage and Their Regulatory Mechanisms. Master’s Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2020. [Google Scholar]
- Wang, C.; Bing, A.; Liu, H.; Wang, X.; Zhao, J.; Lin, H.; Jiao, H. High ambient humidity aggravates ammonia-induced respiratory mucosal inflammation by eliciting Th1/Th2 imbalance and NF-kappaB pathway activation in laying hens. Poult. Sci. 2022, 101, 102028. [Google Scholar] [CrossRef]
- Naseem, S.; King, A.J. Ammonia production in poultry houses can affect health of humans, birds, and the environment-techniques for its reduction during poultry production. Environ. Sci. Pollut. R 2018, 25, 15269–15293. [Google Scholar] [CrossRef] [PubMed]
- Groot, K.P.; Bleijenberg, R. Effect of type of aviary, manure and litter handling on the emission kinetics of ammonia from layer houses. Brit. Poult. Sci. 1998, 39, 379–392. [Google Scholar] [CrossRef]
- Louis, P.; Hold, G.L.; Flint, H.J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 2014, 12, 661–672. [Google Scholar] [CrossRef]
- Zhao, J.; Gao, Z.; Tian, Z.; Xie, Y.; Xin, F.; Jiang, R.; Kan, H.; Song, W. The biological effects of individual-level PM(2.5) exposure on systemic immunity and inflammatory response in traffic policemen. Occup. Environ. Med. 2013, 70, 426–431. [Google Scholar] [CrossRef]
- Liu, Q.X.; Zhou, Y.; Li, X.M.; Ma, D.D.; Xing, S.; Feng, J.H.; Zhang, M.H. Ammonia induce lung tissue injury in broilers by activating NLRP3 inflammasome via Escherichia/Shigella. Poult. Sci. 2020, 99, 3402–3410. [Google Scholar] [CrossRef]
- Proud, D.; Leigh, R. Epithelial cells and airway diseases. Immunol. Rev. 2011, 242, 186–204. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Wang, W.; Chen, M.; Zhang, H.; Xu, S. Ammonia induces Treg/Th1 imbalance with triggered NF-kappaB pathway leading to chicken respiratory inflammation response. Sci. Total Environ. 2019, 659, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.X.; Hu, X.F.; Xu, B.; Zhang, M.H.; Li, S.Y.; Sun, Q.Y.; Lin, P. Ammonia concentration and relative humidity in poultry houses affect the immune response of broilers. Genet. Mol. Res. 2015, 14, 3160–3169. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.X.; Hu, X.F.; Sa, R.N.; Liu, F.Z.; Li, S.Y.; Sun, Q.Y. Antioxidant capacity and meat quality of broilers exposed to different ambient humidity and ammonia concentrations. Genet. Mol. Res. 2014, 13, 3117–3127. [Google Scholar] [CrossRef] [PubMed]
- GB 13078-2017; Hygienical Standard for Feeds. State Administration for Market Regulation: Beijing, China, 2017.
- NY/T2122—2012; Nutrient Requirements of Meat-Type Duck. Ministry of Agriculture and Rural Affairs of the People’s Republic of China: Beijing, China, 2012.
- Wattanachant, S.; Benjakul, S.; Ledward, D.A. Composition, color, and texture of Thai indigenous and broiler chicken muscles. Poult. Sci. 2004, 83, 123–128. [Google Scholar] [CrossRef]
- GB 5009.5—2016; National Standard for Food Safety—Determination of Protein in Food. National Medical Products Administration: Beijing, China, 2016.
- GB 5009.4—2010; National Food Safety Standard Determination of Ash in Foods. National Health Commission of the Peopl’s Republic of China: Beijing, China, 2016.
- GB 5009.6-2003; Determination of Fat in Foods. National Health Commission of the People’s Republic of China & Standardization Administration: Beijing, China, 2003.
- Chalon, J. Low humidity and damage to tracheal mucosa. Bull. N. Y Acad. Med. 1980, 56, 314–322. [Google Scholar]
- Garces, A.P.; Afonso, S.M.; Chilundo, A.; Jairoce, C.T. Evaluation of different litter materials for broiler production in a hot and humid environment: 2. Productive performance and carcass characteristics. Trop. Anim. Health Pro 2017, 49, 369–374. [Google Scholar] [CrossRef]
- Line, J.E. Influence of relative humidity on transmission of Campylobacter jejuni in broiler chickens. Poult. Sci. 2006, 85, 1145–1150. [Google Scholar] [CrossRef]
- Sun, P.; Tang, J.; Shen, Z.; Wei, H.; Hou, S.; Xie, M. Effects of ambient temperature on growth performance and blood indexes of Peking ducks aged 14 to 35 days. Chin. J. Anim. Nutr. 2019, 31, 5046–5052. [Google Scholar]
- Sun, Y.; Luan, S.; Wang, Y.; Sa, R.; Hongfu, Z. Effects of relative humidity on growth, slaughter performance and meat quality of broilers. J. Northwest A F Univ. Nat. Sci. Ed. 2017, 45, 8–14. [Google Scholar]
- Zhang, M. To study the influence of indoor environment on broiler diseases and the countermeasures. Agric. Technol. 2017, 37, 148. [Google Scholar]
- Wei, F. Effects of Chronic Stress Induced by Humidity and Ammonia Exposure on Growth Performance, Meat Quality and Physiological Function of Broilers and Its Regulatory Mechanism. Ph.D. Thesis, Northwest Agriculture and Forestry University, Xianyang, China, 2012. [Google Scholar]
- Yahav, S.; Plavnik, I.; Rusal, M.; Hurwitz, S. Response of turkeys to relative humidity at high ambient temperature. Brit Poult. Sci. 1998, 39, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Casanova, R.; Sarmiento-Franco, L.; Phillips, C. The effects of outdoor access and stocking density on the performance of broilers reared under tropical conditions. Brit. Poult. Sci. 2021, 62, 632–637. [Google Scholar] [CrossRef]
- Bai, H.; Bao, Q.; Zhang, Y.; Song, Q.; Liu, B.; Zhong, L.; Zhang, X.; Wang, Z.; Jiang, Y.; Xu, Q.; et al. Research Note: Effects of the rearing method and stocking density on carcass traits and proximate composition of meat in small-sized meat ducks. Poult. Sci. 2020, 99, 2011–2016. [Google Scholar] [CrossRef] [PubMed]
- Eratalar, S.A.; Okur, N.; Yaman, A. The effects of stocking density on slaughter performance and some meat quality parameters of Pekin ducks. Arch. Anim. Breed. 2022, 65, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Yong-bo, S.; Su-jun, L.; Ya, W.; Ren-na, S.A.; Hong-fu, Z.; Du, X. Effect of Relative Humidity in Poultry House on Thermoregulation and Blood Parameters of Broilers. Acta Vet. Zootech. Sin. 2017, 48, 669–677. [Google Scholar] [CrossRef]
- Gonzalez-Alvarado, J.M.; Jimenez-Moreno, E.; Lazaro, R.; Mateos, G.G. Effect of type of cereal, heat processing of the cereal, and inclusion of fiber in the diet on productive performance and digestive traits of broilers. Poult. Sci. 2007, 86, 1705–1715. [Google Scholar] [CrossRef]
- Shanmugasundaram, R.; Wick, M.; Lilburn, M.S. Effect of embryonic thermal manipulation on heat shock protein 70 expression and immune system development in Pekin duck embryos. Poult. Sci. 2018, 97, 4200–4210. [Google Scholar] [CrossRef]
- He, L.W.; Meng, Q.X.; Li, D.Y.; Zhang, Y.W.; Ren, L.P. Effect of different fibre sources on performance, carcass characteristics and gastrointestinal tract development of growing Greylag geese. Brit. Poult. Sci. 2015, 56, 88–93. [Google Scholar] [CrossRef]
- Li, Y.P.; Wang, Z.Y.; Yang, H.M.; Xu, L.; Xie, Y.J.; Jin, S.L.; Sheng, D.F. Effects of dietary fiber on growth performance, slaughter performance, serum biochemical parameters, and nutrient utilization in geese. Poult. Sci. 2017, 96, 1250–1256. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Li, W.; Yang, S.; Sun, X.; Tarique, I.; Yang, P.; Chen, Q. Morphological characterization of postembryonic development of blood-spleen barrier in duck. Poult. Sci. 2020, 99, 3823–3830. [Google Scholar] [CrossRef] [PubMed]
- Havenstein, G.B.; Ferket, P.R.; Qureshi, M.A. Growth, livability, and feed conversion of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poult. Sci 2003, 82, 1500–1508. [Google Scholar] [CrossRef] [PubMed]
- Baeza, E.; Guillier, L.; Petracci, M. Review: Production factors affecting poultry carcass and meat quality attributes. Animal 2022, 16 (Suppl. S1), 100331. [Google Scholar] [CrossRef]
- Scheffler, T.L.; Park, S.; Gerrard, D.E. Lessons to learn about postmortem metabolism using the AMPKgamma3(R200Q) mutation in the pig. Meat Sci. 2011, 89, 244–250. [Google Scholar] [CrossRef]
- Huda, N.; Putra, A.A.; Ahmad, R. Proximate and physicochemical properties of Peking and Muscovy duck breasts and thighs for further processing. J. Food Agric. Environ. 2011, 9, 82–88. [Google Scholar]
- Chen, G.; Sui, Y. Production, performance, slaughter characteristics, and meat quality of Ziwuling wild crossbred pigs. Trop. Anim. Health Prod. 2018, 50, 365–372. [Google Scholar] [CrossRef]
- Huo, W.; Weng, K.; Gu, T.; Zhang, Y.; Zhang, Y.; Chen, G.; Xu, Q. Effect of muscle fiber characteristics on meat quality in fast- and slow-growing ducks. Poult. Sci. 2021, 100, 101264. [Google Scholar] [CrossRef]
- Gentry, J.G.; McGlone, J.J.; Blanton, J.R., Jr.; Miller, M.F. Impact of spontaneous exercise on performance, meat quality, and muscle fiber characteristics of growing/finishing pigs1. J. Anim. Sci. 2002, 80, 2833–2839. [Google Scholar] [CrossRef]
- Vestergaard, M.; Oksbjerg, N.; Henckel, P. Influence of feeding intensity, grazing and finishing feeding on muscle fibre characteristics and meat colour of semitendinosus, longissimus dorsi and supraspinatus muscles of young bulls. Meat Sci. 2000, 54, 177–185. [Google Scholar] [CrossRef]
- van Wessel, T.; de Haan, A.; van der Laarse, W.J.; Jaspers, R.T. The muscle fiber type-fiber size paradox: Hypertrophy or oxidative metabolism? Eur. J. Appl. Physiol. 2010, 110, 665–694. [Google Scholar] [CrossRef] [PubMed]
- Ismail, I.; Joo, S.T. Poultry Meat Quality in Relation to Muscle Growth and Muscle Fiber Characteristics. Korean J. Food Sci. Anim. Resour. 2017, 37, 873–883. [Google Scholar]
- Berri, C.; Le Bihan-Duval, E.; Debut, M.; Sante-Lhoutellier, V.; Baeza, E.; Gigaud, V.; Jego, Y.; Duclos, M.J. Consequence of muscle hypertrophy on characteristics of Pectoralis major muscle and breast meat quality of broiler chickens. J. Anim. Sci. 2007, 85, 2005–2011. [Google Scholar] [CrossRef] [PubMed]
- Guarnieri, G.; Olivieri, B.; Senna, G.; Vianello, A. Relative Humidity and Its Impact on the Immune System and Infections. Int. J. Mol. Sci. 2023, 24, 9456. [Google Scholar] [CrossRef] [PubMed]
Day | Temperature All Groups Are Identical | Relative Humidity | |||
---|---|---|---|---|---|
A | B | C | D | ||
1–3 | 35 °C | 60% | |||
4 | 35 °C | 60% | 67% | 74% | 81% |
5 | 34 °C | 60% | 67% | 74% | 81% |
6 | 34 °C | 60% | 67% | 74% | 81% |
7 | 34 °C | 60% | 67% | 74% | 81% |
8 | 33 °C | 60% | 67% | 74% | 81% |
9 | 32 °C | 60% | 67% | 74% | 81% |
10 | 31 °C | 60% | 67% | 74% | 81% |
11 | 30 °C | 60% | 67% | 74% | 81% |
12 | 29 °C | 60% | 67% | 74% | 81% |
13 | 28 °C | 60% | 67% | 74% | 81% |
14 | 27 °C | 60% | 67% | 74% | 81% |
15–42 | 26 °C | 60% | 67% | 74% | 81% |
Ingredient | Dietary Energy (1–14 Days) | Dietary Energy (15–42 Days) | Calculated Nutrition Levels | Dietary Energy (1–14 Days) | Dietary Energy (15–42 Days) |
---|---|---|---|---|---|
Corn | 62.10 | 68.5 | ME (Kcal/kg) | 2900 | 2950 |
Wheat | 5.22 | 3.02 | Crude protein (%) | 20.01 | 17.52 |
Soybean meal | 28.60 | 24.30 | Ca (%) | 0.90 | 0.85 |
Rapeseed meal | 0.00 | 0.60 | Available P (%) | 0.42 | 0.40 |
Limestone | 0.93 | 0.90 | Digestible lysine (%) | 0.98 | 0.82 |
CaHPO4 (2H2O) | 1.85 | 1.72 | Digestible methionine (%) | 0.47 | 0.37 |
NaCl | 0.34 | 0.33 | Digestible Met + Cys (%) | 0.75 | 0.64 |
Choline chloride | 0.15 | 0.15 | Digestible threonine (%) | 0.65 | 0.56 |
Premix * | 0.23 | 0.23 | Digestible tryptophan (%) | 0.28 | 0.19 |
DL-methionine | 0.24 | 0.12 | |||
L-lysine·HCl | 0.20 | 0.10 | |||
L-tryptophan | 0.08 | 0.02 | |||
L-threonine | 0.06 | 0.01 | |||
Total | 100 | 100 |
Item | Grouping | p | |||
---|---|---|---|---|---|
A | B | C | D | ||
Liver (g) | 74.2 ± 2.70 b | 73.5 ± 4.38 b | 89.44 ± 6.84 a | 70.03 ± 3.22 b | 0.025 |
Liver index | 2.09 ± 0.02 b | 2.11 ± 0.07 b | 2.42 ± 0.08 a | 2.14 ± 0.00 b | 0.040 |
Spleen (g) | 2.81 ± 0.18 | 2.94 ± 0.29 | 3.18 ± 0.15 | 2.88 ± 0.12 | 0.570 |
Spleen index | 0.08 ± 0.00 | 0.09 ± 0.01 | 0.09 ± 0.00 | 0.09 ± 0.00 | 0.440 |
Abdominal fat (g) | 36.72 ± 2.33 | 34.01 ± 3.95 | 38.16 ± 0.72 | 34.99 ± 3.89 | 0.080 |
Abdominal fat index | 1.03 ± 0.06 | 0.98 ± 0.11 | 1.04 ± 0.04 | 1.06 ± 0.08 | 0.170 |
Breast Muscle (g) | 421.87 ± 12.71 ab | 405.67 ± 19.14 b | 478.73 ± 17.2 a | 384.54 ± 28 b | 0.015 |
Breast Muscle Ratio (%) | 11.85 ± 0.31 b | 11.66 ± 0.34 b | 13.04 ± 0.29 a | 11.67 ± 0.53 b | 0.040 |
Leg Muscle (g) | 324.66 ± 8.95 | 312.88 ± 12.71 | 327.56 ± 14.02 | 299.88 ± 7.30 | 0.292 |
Leg Muscle Ratio (%) | 9.12 ± 0.22 | 9.02 ± 0.29 | 8.91 ± 0.19 | 9.22 ± 0.22 | 0.855 |
Item | Grouping | p | |||
---|---|---|---|---|---|
A | B | C | D | ||
pH value | 6.45 ± 0.09 | 6.53 ± 0.03 | 6.38 ± 0.09 | 6.41 ± 0.07 | 0.581 |
Shear force (N) | 65.39 ± 2.31 a | 69.71 ± 2.32 a | 58.82 ± 4.86 b | 65.4 ± 2.58 a | 0.033 |
Brightness (L*) | 35.24 ± 0.63 a | 34.92 ± 0.55 ab | 33.01 ± 0.43 b | 34.4 ± 0.86 ab | 0.044 |
Redness (a*) | 15.81 ± 0.61 c | 16.68 ± 0.53 bc | 18.28 ± 0.24 a | 17.48 ± 0.47 ab | 0.006 |
Yellowness (b*) | 1.56 ± 0.31 | 1.87 ± 0.38 | 1.23 ± 0.19 | 1.73 ± 0.29 | 0.383 |
Fat | 1.256 ± 0.191 | 1.533 ± 0.314 | 1.178 ± 0.146 | 1.689 ± 0.492 | 0.638 |
Protein | 20.978 ± 0.375 | 21.167 ± 0.534 | 22.267 ± 0.233 | 22.167 ± 0.481 | 0.077 |
Ash content | 1.911 ± 0.152 | 1.511 ± 0.115 | 1.744 ± 0.151 | 1.789 ± 0.125 | 0.234 |
Cooking loss (%) | 20.61 ± 1.07 b | 24.09 ± 0.76 a | 20.54 ± 1.29 b | 18.62 ± 1.31 b | 0.014 |
Muscle fiber density (N/mm²) | 1565.6 ± 180.97 | 1473.34 ± 66.16 | 1545.01 ± 146.71 | 1090.15 ± 241.82 | 0.101 |
Muscle fiber cross-sectional area (CA/μm²) | 560.93 ± 109.87 b | 532.66 ± 78.85 b | 608.88 ± 83.43 b | 1352.41 ± 379.05 a | 0.030 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, D.; Xu, C.; Liu, Y.; Dai, Z.; Pan, Z.; Chen, R.; Guo, R.; Chen, F.; Shi, Z.; Ying, S. The Impact of Different Relative Humidity Levels on the Production Performance, Slaughter Performance, and Meat Quality of White Pekin Ducks Aged 4 to 42 Days. Animals 2023, 13, 3711. https://doi.org/10.3390/ani13233711
Sun D, Xu C, Liu Y, Dai Z, Pan Z, Chen R, Guo R, Chen F, Shi Z, Ying S. The Impact of Different Relative Humidity Levels on the Production Performance, Slaughter Performance, and Meat Quality of White Pekin Ducks Aged 4 to 42 Days. Animals. 2023; 13(23):3711. https://doi.org/10.3390/ani13233711
Chicago/Turabian StyleSun, Dongyue, Congcong Xu, Yi Liu, Zichun Dai, Ziyi Pan, Rong Chen, Rihong Guo, Fang Chen, Zhendan Shi, and Shijia Ying. 2023. "The Impact of Different Relative Humidity Levels on the Production Performance, Slaughter Performance, and Meat Quality of White Pekin Ducks Aged 4 to 42 Days" Animals 13, no. 23: 3711. https://doi.org/10.3390/ani13233711
APA StyleSun, D., Xu, C., Liu, Y., Dai, Z., Pan, Z., Chen, R., Guo, R., Chen, F., Shi, Z., & Ying, S. (2023). The Impact of Different Relative Humidity Levels on the Production Performance, Slaughter Performance, and Meat Quality of White Pekin Ducks Aged 4 to 42 Days. Animals, 13(23), 3711. https://doi.org/10.3390/ani13233711