Review of the Heat Stress-Induced Responses in Dairy Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Review Methodology
2.1. Criteria for the Bibliographic Source Selection
2.2. Review of the Reviews: Progress, Overlaps and Research Trends
2.3. Why This Further Review Paper on Heat Stress?
3. Physiological Responses
3.1. Body Temperature and Respiration Rate
3.2. Heart Rate and Rumination Time
3.3. Reproduction and Fertility
4. Morphological Responses
5. Behavioral Responses
5.1. Standing and Lying Behavior
5.2. Drinking Behavior
5.3. Feeding Behavior
Behavioral Responses | References | Section |
---|---|---|
Standing and lying behavior | (Shilja et al., 2016) [97] | Section 5.1 |
(Polsky and von Keyserlingk, 2017) [10] | ||
(Anderson et al., 2013) [66] | ||
(Lovarelli et al., 2020) [98] | ||
(Allen et al., 2015) [38] | ||
(Hendriks et al., 2019) [99] | ||
(Ramón-moragues et al., 2021) [69] | ||
(Cook et al., 2007) [100] | ||
(Hut et al., 2022) [101] | ||
Drinking behavior | (Hanušovský et al., 2017) [102] | Section 5.2 |
(Sullivan and Mader, 2018) [103] | ||
(Collier et al., 2019) [104] | ||
(Pereyra et al., 2010) [105] | ||
(Ammer et al., 2018) [106] | ||
(Tsai et al., 2020) [107] | ||
(Vizzotto et al., 2015) [108] | ||
(McDonald et al., 2020) [109] | ||
Feeding behavior | (Allen et al., 2015) [38] | Section 5.3 |
(Dourmad et al., 2022) [110] | ||
(Sejian et al., 2018) [54] | ||
(Miller-Cushon et al., 2019) [111] | ||
(Meneses et al., 2021) [62] | ||
(Sammad, Wang, et al., 2020) [70] | ||
(Garner et al., 2016) [112] | ||
(Bernabucci et al., 2009) [113] | ||
(Hut et al., 2022) [101] | ||
(Liu et al., 2017) [115] | ||
(Urrutia et al., 2019) [116] |
6. Metabolic Responses
7. Milk Responses
7.1. Milk Yield
7.2. Milk Quality
8. Immune Status Responses
9. Conclusions and Future Research Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Herbut, P.; Angrecka, S. Relationship between THI Level and Dairy Cows’ Behaviour during Summer Period. Ital. J. Anim. Sci. 2018, 17, 226–233. [Google Scholar] [CrossRef]
- Cesca, R.S.; Santos, R.C.; De Tonissi e Buschinelli de Goes, R.H.; Favarim, A.P.C.; de Oliveira, M.S.G.; da Silva, N.C. Thermal Comfort of Beef Cattle in the State of Mato Grosso Do Sul, Brazil. Cienc. E Agrotecnologia 2021, 45, e008321. [Google Scholar] [CrossRef]
- Thornton, P.; Nelson, G.; Mayberry, D.; Herrero, M. Impacts of Heat Stress on Global Cattle Production during the 21st Century: A Modelling Study. Lancet Planet. Health 2022, 6, e192–e201. [Google Scholar] [CrossRef] [PubMed]
- Bernabucci, U.; Biffani, S.; Buggiotti, L.; Vitali, A.; Lacetera, N.; Nardone, A. The Effects of Heat Stress in Italian Holstein Dairy Cattle. J. Dairy Sci. 2014, 97, 471–486. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.C.; Lopes, A.L.N.; Sanches, A.C.; Gomes, E.P.; da Silva, E.A.S.; da Silva, J.L.B. Intelligent Automated Monitoring Integrated with Animal Production Facilities. Eng. Agric. 2023, 43, e20220225. [Google Scholar] [CrossRef]
- Becker, C.A.; Collier, R.J.; Stone, A.E. Invited Review: Physiological and Behavioral Effects of Heat Stress in Dairy Cows. J. Dairy Sci. 2020, 103, 6751–6770. [Google Scholar] [CrossRef]
- Pinto, S.; Hoffmann, G.; Ammon, C.; Amon, T. Critical THI Thresholds Based on the Physiological Parameters of Lactating Dairy Cows. J. Therm. Biol. 2020, 88, 102523. [Google Scholar] [CrossRef]
- Idris, M.; Uddin, J.; Sullivan, M.; McNeill, D.M.; Phillips, C.J.C. Non-Invasive Physiological Indicators of Heat Stress in Cattle. Animals 2021, 11, 71. [Google Scholar] [CrossRef]
- Abeni, F.; Galli, A. Monitoring Cow Activity and Rumination Time for an Early Detection of Heat Stress in Dairy Cow. Int. J. Biometeorol. 2017, 61, 417–425. [Google Scholar] [CrossRef]
- Polsky, L.; Von Keyserlingk, M.A.G. Invited Review: Effects of Heat Stress on Dairy Cattle Welfare. J. Dairy Sci. 2017, 100, 8645–8657. [Google Scholar] [CrossRef]
- West, J.W. Effects of Heat-Stress on Production in Dairy Cattle. J. Dairy Sci. 2003, 86, 2131–2144. [Google Scholar] [CrossRef] [PubMed]
- Maia, G.G.; Siqueira, L.G.B.; de Paula Vasconcelos, C.O.; Tomich, T.R.; de Almeida Camargo, L.S.; Rodrigues, J.P.P.; de Menezes, R.A.; Gonçalves, L.C.; Teixeira, B.F.; de Oliveira Grando, R.; et al. Effects of Heat Stress on Rumination Activity in Holstein-Gyr Dry Cows. Livest. Sci. 2020, 239, 104092. [Google Scholar] [CrossRef]
- Müschner-Siemens, T.; Hoffmann, G.; Ammon, C.; Amon, T. Daily Rumination Time of Lactating Dairy Cows under Heat Stress Conditions. J. Therm. Biol. 2020, 88, 102484. [Google Scholar] [CrossRef] [PubMed]
- Guinn, J.M.; Nolan, D.T.; Krawczel, P.D.; Petersson-Wolfe, C.S.; Pighetti, G.M.; Stone, A.E.; Ward, S.H.; Bewley, J.M.; Costa, J.H.C. Comparing Dairy Farm Milk Yield and Components, Somatic Cell Score, and Reproductive Performance among United States Regions Using Summer to Winter Ratios. J. Dairy Sci. 2019, 102, 11777–11785. [Google Scholar] [CrossRef]
- Kino, E.; Kawakami, R.; Minamino, T.; Mikurino, Y.; Horii, Y.; Honkawa, K.; Sasaki, Y. Exploration of Factors Determining Milk Production by Holstein Cows Raised on a Dairy Farm in a Temperate Climate Area. Trop. Anim. Health Prod. 2019, 51, 529–536. [Google Scholar] [CrossRef]
- Lambertz, C.; Sanker, C.; Gauly, M. Climatic Effects on Milk Production Traits and Somatic Cell Score in Lactating Holstein-Friesian Cows in Different Housing Systems. J. Dairy Sci. 2014, 97, 319–329. [Google Scholar] [CrossRef]
- Tao, S.; Orellana Rivas, R.M.; Marins, T.N.; Chen, Y.C.; Gao, J.; Bernard, J.K. Impact of Heat Stress on Lactational Performance of Dairy Cows. Theriogenology 2020, 150, 437–444. [Google Scholar] [CrossRef]
- Burfeind, O.; Suthar, V.S.; Heuwieser, W. Effect of Heat Stress on Body Temperature in Healthy Early Postpartum Dairy Cows. Theriogenology 2012, 78, 2031–2038. [Google Scholar] [CrossRef]
- Zhou, M.; Aarnink, A.J.A.; Huynh, T.T.T.; van Dixhoorn, I.D.E.; Groot Koerkamp, P.W.G. Effects of Increasing Air Temperature on Physiological and Productive Responses of Dairy Cows at Different Relative Humidity and Air Velocity Levels. J. Dairy Sci. 2022, 105, 1701–1716. [Google Scholar] [CrossRef]
- Fernandez-Novo, A.; Pérez-Garnelo, S.S.; Villagrá, A.; Pérez-Villalobos, N.; Astiz, S. The Effect of Stress on Reproduction and Reproductive Technologies in Beef Cattle—A Review. Animals 2020, 10, 2096. [Google Scholar] [CrossRef]
- Ukita, H.; Yamazaki, T.; Yamaguchi, S.; Abe, H.; Baba, T.; Bai, H.; Takahashi, M.; Kawahara, M. Environmental Factors Affecting the Conception Rates of Nulliparous and Primiparous Dairy Cattle. J. Dairy Sci. 2022, 105, 6947–6955. [Google Scholar] [CrossRef]
- Bagath, M.; Krishnan, G.; Devaraj, C.; Rashamol, V.P.; Pragna, P.; Lees, A.M.; Sejian, V. The Impact of Heat Stress on the Immune System in Dairy Cattle: A Review. Res. Vet. Sci. 2019, 126, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Park, D.S.; Gu, B.H.; Park, Y.J.; Joo, S.S.; Lee, S.S.; Kim, S.H.; Kim, E.T.; Kim, D.H.; Lee, S.S.; Lee, S.J.; et al. Dynamic Changes in Blood Immune Cell Composition and Function in Holstein and Jersey Steers in Response to Heat Stress. Cell Stress Chaperones 2021, 26, 705–720. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, A.T.; Powell, C.D.; Arcier, E.; Aldenhoven, N. The Relationship between On-Farm Environmental Conditions inside and Outside Cow Sheds during the Summer in England: Can Temperature Humidity Index Be Predicted from Outside Conditions? Anim.—Open Space 2022, 1, 100019. [Google Scholar] [CrossRef]
- Dahl, G.E.; Tao, S.; Laporta, J. Heat Stress Impacts Immune Status in Cows Across the Life Cycle. Front. Vet. Sci. 2020, 7, 116. [Google Scholar] [CrossRef] [PubMed]
- Eslamizad, M.; Albrecht, D.; Kuhla, B. The Effect of Chronic, Mild Heat Stress on Metabolic Changes of Nutrition and Adaptations in Rumen Papillae of Lactating Dairy Cows. J. Dairy Sci. 2020, 103, 8601–8614. [Google Scholar] [CrossRef]
- Gonzalez-Rivas, P.A.; Chauhan, S.S.; Ha, M.; Fegan, N.; Dunshea, F.R.; Warner, R.D. Effects of Heat Stress on Animal Physiology, Metabolism, and Meat Quality: A Review. Meat Sci. 2020, 162, 108025. [Google Scholar] [CrossRef]
- Lees, J.C.; Lees, A.M.; Gaughan, J.B. Developing a Heat Load Index for Lactating Dairy Cows. Anim. Prod. Sci. 2018, 58, 1387–1391. [Google Scholar] [CrossRef]
- Chen, J.M.; Schütz, K.E.; Tucker, C.B. Sprinkler Flow Rate Affects Dairy Cattle Preferences, Heat Load, and Insect Deterrence Behavior. Appl. Anim. Behav. Sci. 2016, 182, 1–8. [Google Scholar] [CrossRef]
- Schüller, L.K.; Burfeind, O.; Heuwieser, W. Impact of Heat Stress on Conception Rate of Dairy Cows in the Moderate Climate Considering Different Temperature-Humidity Index Thresholds, Periods Relative to Breeding, and Heat Load Indices. Theriogenology 2014, 81, 1050–1057. [Google Scholar] [CrossRef]
- Veissier, I.; Van laer, E.; Palme, R.; Moons, C.P.H.; Ampe, B.; Sonck, B.; Andanson, S.; Tuyttens, F.A.M. Heat Stress in Cows at Pasture and Benefit of Shade in a Temperate Climate Region. Int. J. Biometeorol. 2018, 62, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Vitali, A.; Felici, A.; Lees, A.M.; Giacinti, G.; Maresca, C.; Bernabucci, U.; Gaughan, J.B.; Nardone, A.; Lacetera, N. Heat Load Increases the Risk of Clinical Mastitis in Dairy Cattle. J. Dairy Sci. 2020, 103, 8378–8387. [Google Scholar] [CrossRef] [PubMed]
- Tresoldi, G.; Schütz, K.E.; Tucker, C.B. Assessing Heat Load in Drylot Dairy Cattle: Refining on-Farm Sampling Methodology. J. Dairy Sci. 2016, 99, 8970–8980. [Google Scholar] [CrossRef]
- Ekine-Dzivenu, C.C.; Mrode, R.; Oyieng, E.; Komwihangilo, D.; Lyatuu, E.; Msuta, G.; Ojango, J.M.K.; Okeyo, A.M. Evaluating the Impact of Heat Stress as Measured by Temperature-Humidity Index (THI) on Test-Day Milk Yield of Small Holder Dairy Cattle in a Sub-Sahara African Climate. Livest. Sci. 2020, 242, 104314. [Google Scholar] [CrossRef] [PubMed]
- Correia Sales, G.F.; Carvalho, B.F.; Schwan, R.F.; de Figueiredo Vilela, L.; Moreno Meneses, J.A.; Gionbelli, M.P.; da Silva Ávila, C.L. Heat Stress Influence the Microbiota and Organic Acids Concentration in Beef Cattle Rumen. J. Therm. Biol. 2021, 97, 102897. [Google Scholar] [CrossRef]
- Kim, S.H.; Ramos, S.C.; Valencia, R.A.; Cho, Y.I.; Lee, S.S. Heat Stress: Effects on Rumen Microbes and Host Physiology, and Strategies to Alleviate the Negative Impacts on Lactating Dairy Cows. Front. Microbiol. 2022, 13, 804562. [Google Scholar] [CrossRef]
- McCarthy, C.S.; Dooley, B.C.; Branstad, E.H.; Kramer, A.J.; Horst, E.A.; Mayorga, E.J.; Al-Qaisi, M.; Abeyta, M.A.; Perez-Hernandez, G.; Goetz, B.M.; et al. Energetic Metabolism, Milk Production, and Inflammatory Response of Transition Dairy Cows Fed Rumen-Protected Glucose. J. Dairy Sci. 2020, 103, 7451–7461. [Google Scholar] [CrossRef]
- Allen, J.D.; Hall, L.W.; Collier, R.J.; Smith, J.F. Effect of Core Body Temperature, Time of Day, and Climate Conditions on Behavioral Patterns of Lactating Dairy Cows Experiencing Mild to Moderate Heat Stress. J. Dairy Sci. 2015, 98, 118–127. [Google Scholar] [CrossRef]
- Chung, H.; Li, J.; Kim, Y.; Van Os, J.M.C.; Brounts, S.H.; Choi, C.Y. Using Implantable Biosensors and Wearable Scanners to Monitor Dairy Cattle’s Core Body Temperature in Real-Time. Comput. Electron. Agric. 2020, 174, 105453. [Google Scholar] [CrossRef]
- Liu, J.; Li, L.; Chen, X.; Lu, Y.; Wang, D. Effects of Heat Stress on Body Temperature, Milk Production, and Reproduction in Dairy Cows: A Novel Idea for Monitoring and Evaluation of Heat Stress—A Review. Asian-Australas. J. Anim. Sci. 2019, 32, 1332–1339. [Google Scholar] [CrossRef]
- Isola, J.V.V.; Menegazzi, G.; Busanello, M.; dos Santos, S.B.; Agner, H.S.S.; Sarubbi, J. Differences in Body Temperature between Black-and-White and Red-and-White Holstein Cows Reared on a Hot Climate Using Infrared Thermography. J. Therm. Biol. 2020, 94, 102775. [Google Scholar] [CrossRef] [PubMed]
- Grant, M.J.; Booth, A. A Typology of Reviews: An Analysis of 14 Review Types and Associated Methodologies. Health Inf. Libr. J. 2009, 26, 91–108. [Google Scholar] [CrossRef] [PubMed]
- Aromataris, E.; Munn, Z. Introduction to Scoping Reviews. JBI Man. Evid. Synth. 2020. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef]
- Kadzere, C.T.; Murphy, M.R.; Silanikove, N.; Maltz, E. Heat Stress in Lactating Dairy Cows: A Review. Livest. Prod. Sci. 2002, 77, 59–91. [Google Scholar] [CrossRef]
- De Rensis, F.; Scaramuzzi, R.J. Heat Stress and Seasonal Effects on Reproduction in the Dairy Cow—A Review. Theriogenology 2003, 60, 1139–1151. [Google Scholar] [CrossRef]
- Atrian, P.; Shahryar, H.A. Heat Stress in Dairy Cows (A Review). Res. Zool. 2012, 2012, 31–37. [Google Scholar] [CrossRef]
- Baumgard, L.H.; Rhoads, R.P. Effects of Heat Stress on Postabsorptive Metabolism and Energetics. Annu. Rev. Anim. Biosci. 2013, 1, 311–337. [Google Scholar] [CrossRef]
- Das, R.; Sailo, L.; Verma, N.; Bharti, P.; Saikia, J.; Imtiwati; Kumar, R. Impact of Heat Stress on Health and Performance of Dairy Animals: A Review. Vet. World 2016, 9, 260–268. [Google Scholar] [CrossRef]
- Dash, S.; Chakravarty, A.K.; Singh, A.; Upadhyay, A.; Singh, M.; Yousuf, S. Effect of Heat Stress on Reproductive Performances of Dairy Cattle and Buffaloes: A Review. Vet. World 2016, 9, 235–244. [Google Scholar] [CrossRef]
- Roth, Z. Effect of Heat Stress on Reproduction in Dairy Cows: Insights into the Cellular and Molecular Responses of the Oocyte. Annu. Rev. Anim. Biosci. 2017, 5, 151–170. [Google Scholar] [CrossRef] [PubMed]
- Prathap, P.; Abhijith, A.; Joy, A. Heat Stress and Dairy Cow: Impact on Both Milk Yield and Composition. Artic. Int. J. Dairy Sci. 2016, 12, 1–11. [Google Scholar] [CrossRef]
- Fournel, S.; Ouellet, V.; Charbonneau, É. Practices for Alleviating Heat Stress of Dairy Cows in Humid Continental Climates: A Literature Review. Animals 2017, 7, 37. [Google Scholar] [CrossRef] [PubMed]
- Sejian, V.; Bhatta, R.; Gaughan, J.B.; Dunshea, F.R.; Lacetera, N. Review: Adaptation of Animals to Heat Stress. Animal 2018, 12, S431–S444. [Google Scholar] [CrossRef]
- Godyń, D.; Herbut, P.; Angrecka, S. Measurements of Peripheral and Deep Body Temperature in Cattle—A Review. J. Therm. Biol. 2019, 79, 42–49. [Google Scholar] [CrossRef]
- Habibu, B.; Yaqub, L.S.; Dzenda, T.; Kawu, M.U. Sensitivity, Impact and Consequences of Changes in Respiratory Rate during Thermoregulation in Livestock—A Review. Ann. Anim. Sci. 2019, 19, 291–304. [Google Scholar] [CrossRef]
- Herbut, P.; Angrecka, S.; Godyń, D.; Hoffmann, G. The Physiological and Productivity Effects of Heat Stress in Cattle—A Review. Ann. Anim. Sci. 2019, 19, 579–593. [Google Scholar] [CrossRef]
- Ji, B.; Banhazi, T.; Perano, K.; Ghahramani, A.; Bowtell, L.; Wang, C.; Li, B. A Review of Measuring, Assessing and Mitigating Heat Stress in Dairy Cattle. Biosyst. Eng. 2020, 199, 4–26. [Google Scholar] [CrossRef]
- Burhans, W.S.; Rossiter Burhans, C.A.; Baumgard, L.H. Invited Review: Lethal Heat Stress: The Putative Pathophysiology of a Deadly Disorder in Dairy Cattle. J. Dairy Sci. 2022, 105, 3716–3735. [Google Scholar] [CrossRef]
- Neves, S.F.; Silva, M.C.F.; Miranda, J.M.; Stilwell, G.; Cortez, P.P. Predictive Models of Dairy Cow Thermal State: A Review from a Technological Perspective. Vet. Sci. 2022, 9, 416. [Google Scholar] [CrossRef]
- Rathwa, S.D.; Vasava, A.A.; Pathan, M.M.; Madhira, S.P.; Patel, Y.G.; Pande, A.M. Effect of Season on Physiological, Biochemical, Hormonal, and Oxidative Stress Parameters of Indigenous Sheep. Vet. World 2017, 10, 650–654. [Google Scholar] [CrossRef] [PubMed]
- Meneses, J.A.M.; de Sá, O.A.A.L.; Coelho, C.F.; Pereira, R.N.; Batista, E.D.; Ladeira, M.M.; Casagrande, D.R.; Gionbelli, M.P. Effect of Heat Stress on Ingestive, Digestive, Ruminal and Physiological Parameters of Nellore Cattle Feeding Low- or High-Energy Diets. Livest. Sci. 2021, 252, 104676. [Google Scholar] [CrossRef]
- Jeelani, R.; Konwar, D.; Khan, A.; Kumar, D.; Chakraborty, D.; Brahma, B. Reassessment of Temperature-Humidity Index for Measuring Heat Stress in Crossbred Dairy Cattle of a Sub-Tropical Region. J. Therm. Biol. 2019, 82, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Scharf, B.; Carroll, J.A.; Riley, D.G.; Chase, C.C.; Coleman, S.W.; Keisler, D.H.; Weaber, R.L.; Spiers, D.E. Evaluation of Physiological and Blood Serum Differences in Heat-Tolerant (Romosinuano) and Heat-Susceptible (Angus) Bos Taurus Cattle during Controlled Heat Challenge. J. Anim. Sci. 2010, 88, 2321–2336. [Google Scholar] [CrossRef]
- Van Os, J.M.C. Considerations for Cooling Dairy Cows with Water. Vet. Clin. N. Am.—Food Anim. Pract. 2019, 35, 157–173. [Google Scholar] [CrossRef] [PubMed]
- Anderson, S.D.; Bradford, B.J.; Harner, J.P.; Tucker, C.B.; Choi, C.Y.; Allen, J.D.; Hall, L.W.; Rungruang, S.; Collier, R.J.; Smith, J.F. Effects of Adjustable and Stationary Fans with Misters on Core Body Temperature and Lying Behavior of Lactating Dairy Cows in a Semiarid Climate. J. Dairy Sci. 2013, 96, 4738–4750. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; Wang, F.; Xiao, J.; Wang, Y.; Yang, H.; Li, S.; Cao, Z. Heat Stress on Calves and Heifers: A Review. J. Anim. Sci. Biotechnol. 2020, 11, 79. [Google Scholar] [CrossRef]
- Grotjan, S.; Os, J.V.; Reviewed, A.Y.; Kohlman, T.; Stuttgen, S. Written by Aerica Bjurstrom Animal Handling During Heat Stress; University of Wisconsin-Madison: Madison, WI, USA, 2020. [Google Scholar]
- Ramón-moragues, A.; Carulla, P.; Mínguez, C.; Villagrá, A.; Estellés, F. Dairy Cows Activity under Heat Stress: A Case Study in Spain. Animals 2021, 11, 2305. [Google Scholar] [CrossRef]
- Sammad, A.; Wang, Y.J.; Umer, S.; Lirong, H.; Khan, I.; Khan, A.; Ahmad, B.; Wang, Y. Nutritional Physiology and Biochemistry of Dairy Cattle under the Influence of Heat Stress: Consequences and Opportunities. Animals 2020, 10, 793. [Google Scholar] [CrossRef]
- Kovács, L.; Kézér, F.L.; Ruff, F.; Jurkovich, V.; Szenci, O. Heart Rate, Cardiac Vagal Tone, Respiratory Rate, and Rectal Temperature in Dairy Calves Exposed to Heat Stress in a Continental Region. Int. J. Biometeorol. 2018, 62, 1791–1797. [Google Scholar] [CrossRef]
- Bun, C.; Watanabe, Y.; Uenoyama, Y.; Inoue, N.; Ieda, N.; Matsuda, F.; Tsukamura, H.; Kuwahara, M.; Maeda, K.I.; Ohkura, S.; et al. Evaluation of Heat Stress Response in Crossbred Dairy Cows under Tropical Climate by Analysis of Heart Rate Variability. J. Vet. Med. Sci. 2018, 80, 181–185. [Google Scholar] [CrossRef]
- Cardoso, C.C.; Peripolli, V.; Amador, S.A.; Brandão, E.G.; Esteves, G.I.F.; Sousa, C.M.Z.; França, M.F.M.S.; Gonçalves, F.G.; Barbosa, F.A.; Montalvão, T.C.; et al. Physiological and Thermographic Response to Heat Stress in Zebu Cattle. Livest. Sci. 2015, 182, 83–92. [Google Scholar] [CrossRef]
- Lakhani, P.; Alhussien, M.N.; Lakhani, N.; Jindal, R.; Nayyar, S. Seasonal Variation in Physiological Responses, Stress and Metabolic-Related Hormones, and Oxidative Status of Murrah Buffaloes. Biol. Rhythm Res. 2018, 49, 844–852. [Google Scholar] [CrossRef]
- Grinter, L.N.; Mazon, G.; Costa, J.H.C. Voluntary Heat Stress Abatement System for Dairy Cows: Does It Mitigate the Effects of Heat Stress on Physiology and Behavior? J. Dairy Sci. 2023, 106, 519–533. [Google Scholar] [CrossRef]
- Toledo, I.M.; Dahl, G.E.; De Vries, A. Dairy Cattle Management and Housing for Warm Environments. Livest. Sci. 2022, 255, 104802. [Google Scholar] [CrossRef]
- Stone, A.E.; Jones, B.W.; Becker, C.A.; Bewley, J.M. Influence of Breed, Milk Yield, and Temperature-Humidity Index on Dairy Cow Lying Time, Neck Activity, Reticulorumen Temperature, and Rumination Behavior. J. Dairy Sci. 2017, 100, 2395–2403. [Google Scholar] [CrossRef] [PubMed]
- Moretti, R.; Biffani, S.; Chessa, S.; Bozzi, R. Heat Stress Effects on Holstein Dairy Cows’ Rumination. Animal 2017, 11, 2320–2325. [Google Scholar] [CrossRef] [PubMed]
- Soriani, N.; Panella, G.; Calamari, L. Rumination Time during the Summer Season and Its Relationships with Metabolic Conditions and Milk Production. J. Dairy Sci. 2013, 96, 5082–5094. [Google Scholar] [CrossRef]
- Wolfenson, D.; Roth, Z. Impact of Heat Stress on Cow Reproduction and Fertility. Anim. Front. 2018, 9, 32–38. [Google Scholar] [CrossRef]
- Nanas, I.; Barbagianni, M.; Dadouli, K.; Dovolou, E.; Amiridis, G.S. Ultrasonographic Findings of the Corpus Luteum and the Gravid Uterus during Heat Stress in Dairy Cattle. Reprod. Domest. Anim. 2021, 56, 1329–1341. [Google Scholar] [CrossRef]
- Roy, K.S.; Prakash, B.S. Seasonal Variation and Circadian Rhythmicity of the Prolactin Profile during the Summer Months in Repeat-Breeding Murrah Buffalo Heifers. Reprod. Fertil. Dev. 2007, 19, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Lucy, M.C. Reproductive Loss in High-Producing Dairy Cattle: Where Will It End? J. Dairy Sci. 2001, 84, 1277–1293. [Google Scholar] [CrossRef] [PubMed]
- Stamperna, K.; Giannoulis, T.; Nanas, I.; Kalemkeridou, M.; Dadouli, K.; Moutou, K.; Amiridis, G.S.; Dovolou, E. Short Term Temperature Elevation during IVM Affects Embryo Yield and Alters Gene Expression Pattern in Oocytes, Cumulus Cells and Blastocysts in Cattle. Theriogenology 2020, 156, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Piccioni, F.; Zappavigna, V.; Verrotti, A.C. Translational Regulation during Oogenesis and Early Development: The Cap-Poly(A) Tail Relationship. Comptes Rendus—Biol. 2005, 328, 863–881. [Google Scholar] [CrossRef]
- Gendelman, M.; Aroyo, A.; Yavin, S.; Roth, Z. Seasonal Effects on Gene Expression, Cleavage Timing, and Developmental Competence of Bovine Preimplantation Embryos. Reproduction 2010, 140, 73–82. [Google Scholar] [CrossRef]
- Hansen, P.J. Exploitation of Genetic and Physiological Determinants of Embryonic Resistance to Elevated Temperature to Improve Embryonic Survival in Dairy Cattle during Heat Stress. Theriogenology 2007, 68, S242–S249. [Google Scholar] [CrossRef]
- Sammad, A.; Umer, S.; Shi, R.; Zhu, H.; Zhao, X.; Wang, Y. Dairy Cow Reproduction under the Influence of Heat Stress. J. Anim. Physiol. Anim. Nutr. 2020, 104, 978–986. [Google Scholar] [CrossRef]
- Roth, Z. Reproductive Physiology and Endocrinology Responses of Cows Exposed to Environmental Heat Stress—Experiences from the Past and Lessons for the Present. Theriogenology 2020, 155, 150–156. [Google Scholar] [CrossRef]
- Nabenishi, H.; Ohta, H.; Nishimoto, T.; Morita, T.; Ashizawa, K.; Tsuzuki, Y. Effect of the Temperature-Humidity Index on Body Temperature and Conception Rate of Lactating Dairy Cows in Southwestern Japan. J. Reprod. Dev. 2011, 57, 450–456. [Google Scholar] [CrossRef]
- McManus, C.; Paludo, G.R.; Louvandini, H.; Gugel, R.; Sasaki, L.C.B.; Paiva, S.R. Heat Tolerance in Brazilian Sheep: Physiological and Blood Parameters. Trop. Anim. Health Prod. 2009, 41, 95–101. [Google Scholar] [CrossRef]
- Da Silva, R.G.; Scala, N.L.; Tonhati, H. Radiative Properties of the Skin and Haircoat of Cattle and Other Animals. Trans. ASAE 1962, 46, 913–918. [Google Scholar] [CrossRef]
- Katiyatiya, C.L.F.; Bradley, G.; Muchenje, V. Thermotolerance, Health Profile and Cellular Expression of HSP90AB1 in Nguni and Boran Cows Raised on Natural Pastures under Tropical Conditions. J. Therm. Biol. 2017, 69, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Soerensen, D.D.; Pedersen, L.J. Infrared Skin Temperature Measurements for Monitoring Health in Pigs: A Review. Acta Vet. Scand. 2015, 57, 5. [Google Scholar] [CrossRef] [PubMed]
- Hillman, P.E.; Lee, C.N.; Carpenter, J.R.; Baek, K.S. A Parkhurst Impact of Hair Color on Thermoregulation of Dairy Cows to Direct Sunlight; American Society of Agricultural and Biological Engineers (ASABE): Saint Joseph, MI, USA, 2013. [Google Scholar]
- Lee, C.N.; Baek, K.S.; Parkhurst, A. The Impact of Hair Coat Color on Longevity of Holstein Cows in the Tropics. J. Anim. Sci. Technol. 2016, 58, 41. [Google Scholar] [CrossRef] [PubMed]
- Shilja, S.; Sejian, V.; Bagath, M.; Mech, A.; David, C.G.; Kurien, E.K.; Varma, G.; Bhatta, R. Adaptive Capability as Indicated by Behavioral and Physiological Responses, Plasma HSP70 Level, and PBMC HSP70 mRNA Expression in Osmanabadi Goats Subjected to Combined (Heat and Nutritional) Stressors. Int. J. Biometeorol. 2016, 60, 1311–1323. [Google Scholar] [CrossRef] [PubMed]
- Lovarelli, D.; Tamburini, A.; Mattachini, G.; Zucali, M.; Riva, E.; Provolo, G.; Guarino, M. Relating Lying Behavior With Climate, Body Condition Score, and Milk Production in Dairy Cows. Front. Vet. Sci. 2020, 7, 565415. [Google Scholar] [CrossRef]
- Hendriks, S.J.; Phyn, C.V.C.; Turner, S.A.; Mueller, K.R.; Kuhn-Sherlock, B.; Donaghy, D.J.; Huzzey, J.M.; Roche, J.R. Effect of Weather on Activity and Lying Behaviour in Clinically Healthy Grazing Dairy Cows during the Transition Period. Anim. Prod. Sci. 2019, 60, 148–153. [Google Scholar] [CrossRef]
- Cook, N.B.; Mentink, R.L.; Bennett, T.B.; Burgi, K. The Effect of Heat Stress and Lameness on Time Budgets of Lactating Dairy Cows. J. Dairy Sci. 2007, 90, 1674–1682. [Google Scholar] [CrossRef]
- Hut, P.R.; Scheurwater, J.; Nielen, M.; van den Broek, J.; Hostens, M.M. Heat Stress in a Temperate Climate Leads to Adapted Sensor-Based Behavioral Patterns of Dairy Cows. J. Dairy Sci. 2022, 105, 6909–6922. [Google Scholar] [CrossRef]
- Hanušovský, O.; Bíro, D.; Šimko, M.; Gálik, B.; Juráček, M.; Rolinec, M.; Herkeľ, R. Drinking Regime Evaluation with Continuous Ruminal Monitoring Boluses. Acta Fytotech. Zootech. 2017, 20, 1–5. [Google Scholar] [CrossRef]
- Sullivan, K.F.; Mader, T.L. Managing Heat Stress Episodes in Confined Cattle. Vet. Clin. N. Am.—Food Anim. Pract. 2018, 34, 325–339. [Google Scholar] [CrossRef] [PubMed]
- Collier, R.J.; Baumgard, L.H.; Zimbelman, R.B.; Xiao, Y. Heat Stress: Physiology of Acclimation and Adaptation. Anim. Front. 2019, 9, 12–19. [Google Scholar] [CrossRef]
- Pereyra, A.V.G.; May, V.M.; Catracchia, C.G.; Herrero, M.A.; Flores, M.C.; Mazzini, M. Influence of Water Temperature and Heat Stress on Drinking Ater Intake in Dairy Cows. Chil. J. Agric. Res. 2010, 70, 328–336. [Google Scholar] [CrossRef]
- Ammer, S.; Lambertz, C.; von Soosten, D.; Zimmer, K.; Meyer, U.; Dänicke, S.; Gauly, M. Impact of Diet Composition and Temperature–Humidity Index on Water and Dry Matter Intake of High-Yielding Dairy Cows. J. Anim. Physiol. Anim. Nutr. 2018, 102, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.C.; Hsu, J.T.; Ding, S.T.; Rustia, D.J.A.; Lin, T.T. Assessment of Dairy Cow Heat Stress by Monitoring Drinking Behaviour Using an Embedded Imaging System. Biosyst. Eng. 2020, 199, 97–108. [Google Scholar] [CrossRef]
- Vizzotto, E.F.; Fischer, V.; Thaler Neto, A.; Abreu, A.S.; Stumpf, M.T.; Werncke, D.; Schmidt, F.A.; McManus, C.M. Access to Shade Changes Behavioral and Physiological Attributes of Dairy Cows during the Hot Season in the Subtropics. Animal 2015, 9, 1559–1566. [Google Scholar] [CrossRef]
- McDonald, P.V.; von Keyserlingk, M.A.G.; Weary, D.M. Hot Weather Increases Competition between Dairy Cows at the Drinker. J. Dairy Sci. 2020, 103, 3447–3458. [Google Scholar] [CrossRef]
- Dourmad, J.-Y.; Le Velly, V.; Gourdine, J.-L.; Renaudeau, D. Effect of Ambient Temperature in Lactating Sows, a Meta-Analysis and Simulation Approach in the Context of Climate Change. Anim.—Open Space 2022, 1, 100025. [Google Scholar] [CrossRef]
- Miller-Cushon, E.K.; Dayton, A.M.; Horvath, K.C.; Monteiro, A.P.A.; Weng, X.; Tao, S. Effects of Acute and Chronic Heat Stress on Feed Sorting Behaviour of Lactating Dairy Cows. Animal 2019, 13, 2044–2051. [Google Scholar] [CrossRef]
- Garner, J.B.; Douglas, M.L.; Williams, S.R.O.; Wales, W.J.; Marett, L.C.; Nguyen, T.T.T.; Reich, C.M.; Hayes, B.J. Genomic Selection Improves Heat Tolerance in Dairy Cattle. Sci. Rep. 2016, 6, 34114. [Google Scholar] [CrossRef]
- Bernabucci, U.; Lacetera, N.; Danieli, P.P.; Bani, P.; Nardone, A.; Ronchi, B. Influence of Different Periods of Exposure to Hot Environment on Rumen Function and Diet Digestibility in Sheep. Int. J. Biometeorol. 2009, 53, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Gantner, V.; Kuterovac, K.; Potočnik, K. Effect of Heat Stress on Metabolic Disorders Prevalence Risk and Milk Production in Holstein Cows in Croatia. Ann. Anim. Sci. 2016, 16, 451–461. [Google Scholar] [CrossRef]
- Liu, Z.; Ezernieks, V.; Wang, J.; Wanni Arachchillage, N.; Garner, J.B.; Wales, W.J.; Cocks, B.G.; Rochfort, S. Heat Stress in Dairy Cattle Alters Lipid Composition of Milk. Sci. Rep. 2017, 7, 961. [Google Scholar] [CrossRef] [PubMed]
- Urrutia, N.; Bomberger, R.; Matamoros, C.; Harvatine, K.J. Effect of Dietary Supplementation of Sodium Acetate and Calcium Butyrate on Milk Fat Synthesis in Lactating Dairy Cows. J. Dairy Sci. 2019, 102, 5172–5181. [Google Scholar] [CrossRef]
- Pragna, P.; Sejian, V.; Soren, N.M.; Bagath, M.; Krishnan, G.; Beena, V.; Devi, P.I.; Bhatta, R. Summer Season Induced Rhythmic Alterations in Metabolic Activities to Adapt to Heat Stress in Three Indigenous (Osmanabadi, Malabari and Salem Black) Goat Breeds. Biol. Rhythm Res. 2018, 49, 551–565. [Google Scholar] [CrossRef]
- Temple, D.; Manteca, X. Animal Welfare in Extensive Production Systems Is Still an Area of Concern. Front. Sustain. Food Syst. 2020, 4, 545902. [Google Scholar] [CrossRef]
- Van Der Poll, T.; Opal, S.M. Host-Pathogen Interactions in Sepsis. Lancet Infect. Dis. 2008, 8, 32–43. [Google Scholar] [CrossRef]
- Gyawali, B.; Ramakrishna, K.; Dhamoon, A.S. Sepsis: The Evolution in Definition, Pathophysiology, and Management. SAGE Open Med. 2019, 7, 205031211983504. [Google Scholar] [CrossRef]
- Lamp, O.; Derno, M.; Otten, W.; Mielenz, M.; Nürnberg, G.; Kuhla, B. Metabolic Heat Stress Adaption in Transition Cows: Differences in Macronutrient Oxidation between Late-Gestating and Early-Lactating German Holstein Dairy Cows. PLoS ONE 2015, 10, e0125264. [Google Scholar] [CrossRef]
- Wheelock, J.B.; Rhoads, R.P.; VanBaale, M.J.; Sanders, S.R.; Baumgard, L.H. Effects of Heat Stress on Energetic Metabolism in Lactating Holstein Cows. J. Dairy Sci. 2010, 93, 644–655. [Google Scholar] [CrossRef]
- Koch, F.; Lamp, O.; Eslamizad, M.; Weitzel, J.; Kuhla, B. Metabolic Response to Heat Stress in Late-Pregnant and Early Lactation Dairy Cows: Implications to Liver-Muscle Crosstalk. PLoS ONE 2016, 11, e0160912. [Google Scholar] [CrossRef] [PubMed]
- Ríus, A. Invited Review: Adaptations of Protein and Amino Acid Metabolism to Heat Stress in Dairy Cows and Other Livestock Species. Appl. Anim. Sci. 2019, 35, 39–48. [Google Scholar] [CrossRef]
- Gao, S.T.; Guo, J.; Quan, S.Y.; Nan, X.M.; Fernandez, M.V.S.; Baumgard, L.H.; Bu, D.P. The Effects of Heat Stress on Protein Metabolism in Lactating Holstein Cows. J. Dairy Sci. 2017, 100, 5040–5049. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Zhang, L.; Dong, R.Y.; Liang, M.Y.; Lu, Y.; Sun, X.Q.; Zhao, X. Comparing Responses of Dairy Cows to Short-Term and Long-Term Heat Stress in Climate-Controlled Chambers. J. Dairy Sci. 2021, 104, 2346–2356. [Google Scholar] [CrossRef] [PubMed]
- M’Hamdi, N.; Darej, C.; Attia, K.; El Akram Znaidi, I.; Khattab, R.; Djelailia, H.; Bouraoui, R.; Taboubi, R.; Marzouki, L.; Ayadi, M. Modelling THI Effects on Milk Production and Lactation Curve Parameters of Holstein Dairy Cows. J. Therm. Biol. 2021, 99, 102917. [Google Scholar] [CrossRef] [PubMed]
- Gauly, M.; Bollwein, H.; Breves, G.; Brügemann, K.; Dänicke, S.; Daş, G.; Demeler, J.; Hansen, H.; Isselstein, J.; König, S.; et al. Future Consequences and Challenges for Dairy Cow Production Systems Arising from Climate Change in Central Europe—A Review. Animal 2013, 7, 843–859. [Google Scholar] [CrossRef]
- Summer, A.; Lora, I.; Formaggioni, P.; Gottardo, F. Impact of Heat Stress on Milk and Meat Production. Anim. Front. 2019, 9, 39–46. [Google Scholar] [CrossRef]
- Heinicke, J.; Ibscher, S.; Belik, V.; Amon, T. Cow Individual Activity Response to the Accumulation of Heat Load Duration. J. Therm. Biol. 2019, 82, 23–32. [Google Scholar] [CrossRef]
- Wildridge, A.M.; Thomson, P.C.; Garcia, S.C.; John, A.J.; Jongman, E.C.; Clark, C.E.F.; Kerrisk, K.L. Short Communication: The Effect of Temperature-Humidity Index on Milk Yield and Milking Frequency of Dairy Cows in Pasture-Based Automatic Milking Systems. J. Dairy Sci. 2018, 101, 4479–4482. [Google Scholar] [CrossRef]
- Manica, E.; Coltri, P.P.; Pacheco, V.M.; Martello, L.S. Changes in the Pattern of Heat Waves and the Impacts on Holstein Cows in a Subtropical Region. Int. J. Biometeorol. 2022, 66, 2477–2488. [Google Scholar] [CrossRef]
- Reyad, M.A.; Sarker, M.A.H.; Uddin, M.E.; Habib, R.; Rashid, M.H.U. Effect of Heat Stress on Milk Production and Its Composition of Holstein Friesian Crossbred Dairy Cows. Asian J. Med. Biol. Res. 2016, 2, 190–195. [Google Scholar] [CrossRef]
- Cowley, F.C.; Barber, D.G.; Houlihan, A.V.; Poppi, D.P. Immediate and Residual Effects of Heat Stress and Restricted Intake on Milk Protein and Casein Composition and Energy Metabolism. J. Dairy Sci. 2015, 98, 2356–2368. [Google Scholar] [CrossRef] [PubMed]
- Mellado, M.; Coronel, F.; Estrada, A.; Ríos, F.G. Lactation Performance of Holstein and Holstein x GYR Cattle under Intensive Condition in a Subtropical Environment. Trop. Subtrop. Agroecosyst. 2011, 14, 927–931. [Google Scholar]
- Laporta, J.; Ferreira, F.C.; Ouellet, V.; Dado-Senn, B.; Almeida, A.K.; De Vries, A.; Dahl, G.E. Late-Gestation Heat Stress Impairs Daughter and Granddaughter Lifetime Performance. J. Dairy Sci. 2020, 103, 7555–7568. [Google Scholar] [CrossRef] [PubMed]
- Bernabucci, U.; Lacetera, N.; Baumgard, L.H.; Rhoads, R.P.; Ronchi, B.; Nardone, A. Metabolic and Hormonal Acclimation to Heat Stress in Domesticated Ruminants. Animal 2010, 4, 1167–1183. [Google Scholar] [CrossRef] [PubMed]
- Rhoads, M.L.; Rhoads, R.P.; VanBaale, M.J.; Collier, R.J.; Sanders, S.R.; Weber, W.J.; Crooker, B.A.; Baumgard, L.H. Effects of Heat Stress and Plane of Nutrition on Lactating Holstein Cows: I. Production, Metabolism, and Aspects of Circulating Somatotropin. J. Dairy Sci. 2009, 92, 1986–1997. [Google Scholar] [CrossRef]
- Moore, S.S.; Costa, A.; Penasa, M.; Callegaro, S.; De Marchi, M. How Heat Stress Conditions Affect Milk Yield, Composition, and Price in Italian Holstein Herds. J. Dairy Sci. 2023, 106, 4042–4058. [Google Scholar] [CrossRef]
- Tao, S.; Bubolz, J.; do Amaral, B.; Thompson, I.; Hayen, M.; Johnson, S.; Dahl, G. Effect of Heat Stress during the Dry Period on Mammary Gland Development. J. Dairy Sci. 2011, 94, 5976–5986. [Google Scholar] [CrossRef]
- Mylostyvyi, R.; Chernenko, O. Correlations between Environmental Factors and Milk Production of Holstein Cows. Data 2019, 4, 103. [Google Scholar] [CrossRef]
- Bertocchi, L.; Vitali, A.; Lacetera, N.; Nardone, A.; Varisco, G.; Bernabucci, U. Seasonal Variations in the Composition of Holstein Cow’s Milk and Temperature–Humidity Index Relationship. Animal 2014, 8, 667–674. [Google Scholar] [CrossRef]
- Bernabucci, U.; Basiricò, L.; Morera, P.; Dipasquale, D.; Vitali, A.; Piccioli Cappelli, F.; Calamari, L. Effect of Summer Season on Milk Protein Fractions in Holstein Cows. J. Dairy Sci. 2015, 98, 1815–1827. [Google Scholar] [CrossRef] [PubMed]
- Florio, M.; Giannone, C.; Ianni, A.; Bennato, F.; Grotta, L.; Martino, G. Seasonal and Feeding System Effects on Qualitative Parameters of Bovine Milk Produced in the Abruzzo Region (Italy). Agriculture 2022, 12, 917. [Google Scholar] [CrossRef]
- Farrell, H.M.; Jimenez-Flores, R.; Bleck, G.T.; Brown, E.M.; Butler, J.E.; Creamer, L.K.; Hicks, C.L.; Hollar, C.M.; Ng-Kwai-Hang, K.F.; Swaisgood, H.E. Nomenclature of the Proteins of Cows’ Milk--Sixth Revision. J. Dairy Sci. 2004, 87, 1641–1674. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Juanes, F.; Alonso, J.M.; Zancada, L.; Hueso, P. Distribution and Fatty Acid Content of Phospholipids from Bovine Milk and Bovine Milk Fat Globule Membranes. Int. Dairy J. 2009, 19, 273–278. [Google Scholar] [CrossRef]
- Ouellet, V.; Cabrera, V.E.; Fadul-Pacheco, L.; Charbonneau, É. The Relationship between the Number of Consecutive Days with Heat Stress and Milk Production of Holstein Dairy Cows Raised in a Humid Continental Climate. J. Dairy Sci. 2019, 102, 8537–8545. [Google Scholar] [CrossRef] [PubMed]
- Tejaswi, V.; Balachander, B.; Samad, H.A.; Sarkar, M.; Maurya, V.P.; Singh, G. Assessment of Heat Stress Induced Alterations in Polymorphonuclear (PMN) Cell Activity in Native and Crossbred Cows. J. Appl. Anim. Res. 2020, 48, 549–552. [Google Scholar] [CrossRef]
- Alhussien, M.N.; Dang, A.K. Impact of Different Seasons on the Milk Somatic and Differential Cell Counts, Milk Cortisol and Neutrophils Functionality of Three Indian Native Breeds of Cattle. J. Therm. Biol. 2018, 78, 27–35. [Google Scholar] [CrossRef]
- Alhussien, M.; Manjari, P.; Mohammed, S.; Sheikh, A.A.; Reddi, S.; Dixit, S.; Dang, A.K. Incidence of Mastitis and Activity of Milk Neutrophils in Tharparkar Cows Reared under Semi-Arid Conditions. Trop. Anim. Health Prod. 2016, 48, 1291–1295. [Google Scholar] [CrossRef]
- Safa, S.; Kargar, S.; Moghaddam, G.A.; Ciliberti, M.G.; Caroprese, M. Heat Stress Abatement during the Postpartum Period: Effects on Whole Lactation Milk Yield, Indicators of Metabolic Status, Inflammatory Cytokines, and Biomarkers of the Oxidative Stress. J. Anim. Sci. 2019, 97, 122. [Google Scholar] [CrossRef]
- Chen, S.; Wang, J.; Peng, D.; Li, G.; Chen, J.; Gu, X. Exposure to Heat-Stress Environment Affects the Physiology, Circulation Levels of Cytokines, and Microbiome in Dairy Cows. Sci. Rep. 2018, 8, 14606. [Google Scholar] [CrossRef]
- Thompson, I.M.T.; Tao, S.; Monteiro, A.P.A.; Jeong, K.C.; Dahl, G.E. Effect of Cooling during the Dry Period on Immune Response after Streptococcus Uberis Intramammary Infection Challenge of Dairy Cows. J. Dairy Sci. 2014, 97, 7426–7436. [Google Scholar] [CrossRef] [PubMed]
- Ali Judi, R.; Nihad Abed Shubar, S.; AbdUlAmeer Hadi Alsherify, B.; Kreem Al-Taiy, M. Differentiation in Some of Cytokines Levels of Holstein Cows Exposure to Heat Stress. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2022. [Google Scholar] [CrossRef]
- Guo, Z.; Gao, S.; Ouyang, J.; Ma, L.; Bu, D. Impacts of Heat Stress-Induced Oxidative Stress on the Milk Protein Biosynthesis of Dairy Cows. Animals 2021, 11, 726. [Google Scholar] [CrossRef] [PubMed]
- Lundberg; Nyman, A.K.; Aspán, A.; Börjesson, S.; Unnerstad, H.E.; Waller, K.P. Udder Infections with Staphylococcus Aureus, Streptococcus Dysgalactiae, and Streptococcus Uberis at Calving in Dairy Herds with Suboptimal Udder Health. J. Dairy Sci. 2016, 99, 2102–2117. [Google Scholar] [CrossRef] [PubMed]
- Gernand, E.; König, S.; Kipp, C. Influence of On-Farm Measurements for Heat Stress Indicators on Dairy Cow Productivity, Female Fertility, and Health. J. Dairy Sci. 2019, 102, 6660–6671. [Google Scholar] [CrossRef]
Measure Class | Description | Advantages | Limitations |
---|---|---|---|
Animal-based measures (AMB) | Methods for assessing animal welfare that inspect how animals react physiologically and behaviorally to their surroundings and encounters (e.g., body condition score, milk production and composition, reproductive performance, time spent lying, etc.). | Provide precise and immediate quantification. | Require in-depth knowledge and understanding of the animal. |
Resource-based measures (RBM) | Animal welfare indicators that evaluate the availability and quality of resources provided to animals (e.g., housing conditions, lighting, ventilation efficiency, access to shade and pasture, etc.). | Provide objective and quantitative data. | Focusing on the physical structures does not allow evaluation of the welfare of the individual animal. |
Management-based measures (MBM) | Animal welfare measures that evaluate how animals are managed or treated, including the management practices employed in rearing animals and the physical environment in which they are housed (e.g., training and education, implementation of animal welfare policies, record-keeping and data analysis). | Provide practical solutions to welfare issues. | May not reflect animal welfare. Can be affected by human biases. |
Physiological Responses | References | Section |
---|---|---|
Body temperature and respiration rate | (Neves et al., 2022) [60] | Section 3.1 |
(Rathwa et al., 2017) [61] | ||
(Idris et al., 2021) [8] | ||
(Meneses et al., 2021) [62] | ||
(Jeelani et al., 2019) [63] | ||
(Scharf et al., 2010) [64] | ||
(Sejian et al., 2018) [54] | ||
(Burfeind et al., 2012) [18] | ||
(van Os, 2019) [65] | ||
(Anderson et al., 2013) [66] | ||
(Ji et al., 2020) [58] | ||
(Wang et al., 2020) [67] | ||
(Grotjan et al., 2020) [68] | ||
(Ramón-moragues et al., 2021) [69] | ||
(Polsky and von Keyserlingk, 2017) [10] | ||
(Pinto et al., 2020) [7] | ||
(Sammad et al., 2020) [88] | ||
Heart rate and rumination time | (Kovács et al., 2018) [71] | Section 3.2 |
(Bun et al., 2018) [72] | ||
(Meneses et al., 2021) [62] | ||
(Cardoso et al., 2015) [73] | ||
(Lakhani et al., 2018) [74] | ||
(Grinter et al., 2023) [75] | ||
(Toledo et al., 2022) [76] | ||
(Stone et al., 2017) [77] | ||
(Moretti et al., 2017) [78] | ||
(Müschner-Siemens et al., 2020) [13] | ||
(Soriani et al., 2013) [79] | ||
(Ramón-moragues et al., 2021) [69] | ||
(Maia et al., 2020) [12] | ||
Reproduction and fertility | (Wolfenson and Roth, 2019) [80] | Section 3.3 |
(Nanas et al., 2021) [81] | ||
(Roy and Prakash, 2007) [82] | ||
(Lucy, 2001) [83] | ||
(Roth, 2017) [51] | ||
(Stamperna et al., 2020) [84] | ||
(Piccioni et al., 2005) [85] | ||
(Gendelman et al., 2010) [86] | ||
(Hansen, 2007) [87] | ||
(Sammad et al., 2020) [88] | ||
(Roth, 2020) [89] | ||
(Nabenishi et al., 2011) [90] | ||
(Schüller et al., 2014) [30] |
Morphological Responses | References | Section |
---|---|---|
Coat color and heat stress | (McManus et al., 2009) [91] | Section 4 |
(da Silva et al., 1962) [92] | ||
(Katiyatiya et al., 2017) [93] | ||
(Soerensen and Pedersen, 2015) [94] | ||
(P. E Hillman et al., 2013) [95] | ||
(Isola et al., 2020) [41] | ||
(Sejian et al., 2018) [54] | ||
(Lee et al., 2016) [96] |
Metabolic Responses | References | Section |
---|---|---|
Energetic metabolism | (Pragna et al., 2018) [117] | Section 6 |
(Burhans et al., 2022) [59] | ||
(Temple et al., 2020) [118] | ||
(Van Der Poll et al., 2008) [119] | ||
(Gyawali et al., 2019) [120] | ||
(Lamp et al., 2015) [121] | ||
(Wheelock et al., 2010) [122] | ||
(Koch et al., 2016) [123] | ||
(Ríus A.G., 2019) [124] | ||
(Gao et al., 2017) [125] | ||
(Baumgard et al., 2013) [48] | ||
(Hou et al., 2021) [126] |
Milk Responses | References | Section |
---|---|---|
Milk yield | (M’Hamdi et al., 2021) [127] | Section 7.1 |
(Kino et al., 2019) [15] | ||
(Ekine-Dzivenu et al., 2020) [34] | ||
(Gauly et al., 2013) [128] | ||
(Tao et al., 2020) [17] | ||
(Summer et al., 2019) [129] | ||
(Heinicke et al., 2019) [130] | ||
(Wildridge et al., 2018) [131] | ||
(Manica et al., 2022) [132] | ||
(Reyad et al., 2016) [133] | ||
(Cowley et al., 2015) [134] | ||
(Mellado et al., 2011) [135] | ||
(Laporta et al., 2020) [136] | ||
(Bernabucci et al., 2010) [137] | ||
(Rhoads et al., 2009) [138] | ||
(Wheelock et al., 2010) [122] | ||
(Moore et al., 2023) [139] | ||
(Tao et al., 2011) [140] | ||
(Prathap et al., 2016) [52] | ||
Milk quality | (Das et al., 2016) [49] | Section 7.2 |
(Mylostyvyi et al., 2019) [141] | ||
(Bertocchi et al., 2014) [142] | ||
(Hill and Wall, 2014) [143] | ||
(Bernabucci et al., 2015) [144] | ||
(Florio et al., 2022) [145] | ||
(Farrell et al., 2004) [146] | ||
(Sánchez-Juanes et al., 2009) [147] | ||
(Liu et al., 2017) [115] | ||
(Ouellet et al., 2019) [148] | ||
(Cowley et al., 2015) [134] | ||
(Gao et al., 2017) [125] |
Immune Status Responses | References | Section |
---|---|---|
Immunity | (Tejaswi et al., 2020) [148] | Section 8 |
(Alhussien et al., 2018) [149] | ||
(Alhussien et al., 2016) [150] | ||
(Safa et al., 2019) [151] | ||
(Chen et al., 2018) [152] | ||
(Thompson et al., 2014) [153] | ||
(Ali Judi et al., 2022) [154] | ||
(Burhans et al., 2022) [59] | ||
(Guo et al., 2021) [155] | ||
(Lundberg et al., 2016) [156] | ||
(Gernand et al., 2019) [157] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giannone, C.; Bovo, M.; Ceccarelli, M.; Torreggiani, D.; Tassinari, P. Review of the Heat Stress-Induced Responses in Dairy Cattle. Animals 2023, 13, 3451. https://doi.org/10.3390/ani13223451
Giannone C, Bovo M, Ceccarelli M, Torreggiani D, Tassinari P. Review of the Heat Stress-Induced Responses in Dairy Cattle. Animals. 2023; 13(22):3451. https://doi.org/10.3390/ani13223451
Chicago/Turabian StyleGiannone, Claudia, Marco Bovo, Mattia Ceccarelli, Daniele Torreggiani, and Patrizia Tassinari. 2023. "Review of the Heat Stress-Induced Responses in Dairy Cattle" Animals 13, no. 22: 3451. https://doi.org/10.3390/ani13223451