IgY Antibodies from Birds: A Review on Affinity and Avidity
Abstract
:Simple Summary
Abstract
1. Introduction
2. General Characteristics of IgY Antibodies
3. Applications
4. Affinity and Avidity
5. Factors Affecting IgY Antibody Avidity
5.1. Adjuvants
5.2. Time
5.3. Other Factors
6. Comparison of Avidity of Avian and Mammalian Antibodies
7. Methodology for the Determination of Affinity and Avidity of IgY Antibodies
8. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Regenmortel, M.; Azimzadeh, A. Determination of antibody affinity. J. Immunoass. 2000, 21, 211–234. [Google Scholar] [CrossRef] [PubMed]
- Oostindie, S.C.; Lazar, G.A.; Schuurman, J.; Parren, P.W.H.I. Avidity in antibody effector functions and biotherapeutic drug design. Nat. Rev. Drug. Discov. 2022, 21, 715–735. [Google Scholar] [CrossRef] [PubMed]
- Victora, G.D.; Nussenzweig, M.C. Germinal Centers. Annu. Rev. Immunol. 2022, 40, 413–442. [Google Scholar] [CrossRef] [PubMed]
- Beal, R.; Powers, C.; Wigley, P.; Barrow, P.; Smith, A. Temporal dynamics of the cellular, humoral and cytokine responses in chickens during primary and secondary infection with Salmonella enterica serovar Typhimurium. Avian Pathol. 2004, 33, 25–33. [Google Scholar] [CrossRef]
- León-Núñez, D.; Vizcaíno-López, M.F.; Escorcia, M.; Correa, D.; Pérez-Hernández, E.; Gómez-Chávez, F. IgY Antibodies as Biotherapeutics in Biomedicine. Antibodies 2022, 11, 62. [Google Scholar] [CrossRef]
- Leslie, G.; Clem, L. Phylogeny of immunoglobulin structure and function. 3. Immunoglobulins of the chicken. J. Exp. Med. 1969, 130, 1337–1352. [Google Scholar] [CrossRef]
- Zhang, X.; Calvert, R.; Sutton, B.; Doré, K. IgY: A key isotype in antibody evolution. Biol. Rev. Camb. Philos. Soc. 2017, 92, 2144–2156. [Google Scholar] [CrossRef]
- Warr, G.; Magor, K.; Higgins, D. IgY: Clues to the origins of modern antibodies. Immunol. Today 1995, 16, 392–398. [Google Scholar] [CrossRef]
- Tian, Z.; Zhang, X. Progress on research of chicken IgY antibody-FcRY receptor combination and transfer. J. Recept. Signal Transduct. Res. 2012, 32, 231–237. [Google Scholar] [CrossRef]
- Kitaguchi, K.; Minoura, M.; Noritake, M.; Mizutani, M.; Kinoshita, K.; Horio, F.; Murai, A. Determination of Immunoglobululin Y con-centration in Yolk Extract Prepared by Water Diluition Method: Comparisons among three strains of chickens. J. Poult. Sci. 2008, 45, 82–87. [Google Scholar] [CrossRef]
- Cardeal, P.C.; Araújo, I.C.S.; Vaz, D.P.; Abreu, A.R.C.; Melo, É.F.; Saldanha, M.M.; Pompeu, M.A.; Lara, L.J.C. Short communication: Effects of breeder age and pre-placement feed on IgY concentration in egg yolk and chick serum. J. Anim. Physiol. Anim. Nutr. 2022, 106, 561–565. [Google Scholar] [CrossRef] [PubMed]
- Karamzadeh-Dehaghani, A.T.A.; Zhandi, M.; Mojgani, N. Specific Chicken Egg Yolk Antibodies against Enterotoxigenic Escherichia coli K99 in Serum and Egg Yolk of Immunized Laying Hens. Iran. J. Appl. Anim. Sci. 2020, 10, 155–161. [Google Scholar]
- Sun, H.; Chen, S.; Cai, X.; Xu, G.; Qu, L. Correlation analysis of the total IgY level in hen serum, egg yolk and offspring serum. J. Anim. Sci. Biotechnol. 2013, 4, 10. [Google Scholar] [CrossRef] [PubMed]
- Vieira, J.G.H.; Oliveira, M.A.; Russo, E.M.; Maciel, R.M.; Pereira, A.B. Egg yolk as a source of antibodies for human parathyroid hormone (hPTH) radioimmunoassay. J. Immunoass. 1984, 5, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Woolley, J.A.; Landon, J. Comparison of antibody production to human interleukin-6 (IL-6) by sheep and chickens. J. Immunol. Methods 1995, 178, 253–265. [Google Scholar] [CrossRef]
- Lee, W.; Atif, A.; Tan, S.; Leow, C. Insights into the chicken IgY with emphasis on the generation and applications of chicken recombinant monoclonal antibodies. J. Immunol. Methods 2017, 447, 71–85. [Google Scholar] [CrossRef]
- Da Silva, W.D.; Tambourgi, D. IgY: A promising antibody for use in immunodiagnostic and in immunotherapy. Vet. Immunol. Immunopathol. 2010, 135, 173–180. [Google Scholar] [CrossRef]
- Carlander, D. Avian IgY Antibody In Vitro and In Vivo. Ph.D. Thesis, Faculty of Medicine in Clinical Chemistry, Uppsala University, Uppsala, Sweden, 2002. [Google Scholar]
- Yakhkeshi, S.; Wu, R.; Chelliappan, B.; Zhang, X. Trends in industrialization and commercialization of IgY technology. Front. Immunol. 2022, 13, 991931. [Google Scholar] [CrossRef]
- Seixas, A.M.M.; Sousa, S.A.; Leitão, J.H. Antibody-Based Immunotherapies as a Tool for Tackling Multidrug-Resistant Bacterial Infections. Vaccines 2022, 10, 1789. [Google Scholar] [CrossRef] [PubMed]
- Tini, M.; Jewell, U.R.; Camenisch, G.; Chilov, D.; Gassmann, M. Generation and application of chicken egg-yolk antibodies. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2002, 131, 569–574. [Google Scholar] [CrossRef]
- Cova, L. DNA-designed avian IgY antibodies: Novel tools for research, diagnostics and therapy. J. Clin. Virol. 2005, 34, S70–S74. [Google Scholar] [CrossRef] [PubMed]
- Schade, R.; Calzado, E.G.; Sarmiento, R.; Chacana, P.A.; Porankiewicz-Asplund, J.; Terzolo, H.R. Chicken egg yolk antibodies (IgY-technology): A review of progress in production and use in research and human and veterinary medicine. Altern. Lab. Anim. 2005, 33, 129–154. [Google Scholar] [CrossRef] [PubMed]
- Spillner, E.; Braren, I.; Greunke, K.; Seismann, H.; Blank, S.; du Plessis, D. Avian IgY antibodies and their recombinant equivalents in research, diagnostics and therapy. Biologicals 2012, 40, 313–322. [Google Scholar] [CrossRef]
- Schade, R.; Hlinak, A. Egg Yolk Antibodies, State of the Art and Future Prospects. ALTEX 1996, 13, 5–9. [Google Scholar]
- Tan, S.H.; Mohamedali, A.; Kapur, A.; Lukjanenko, L.; Baker, M.S. A novel, cost-effective and efficient chicken egg IgY purification procedure. J. Immunol. Methods 2012, 380, 73–76. [Google Scholar] [CrossRef]
- Chen, C.J.; Hudson, A.F.; Jia, A.S.; Kunchur, C.R.; Song, A.J.; Tran, E.; Fisher, C.J.; Zanchi, D.; Lee, L.; Kargotich, S.; et al. Affordable IgY-based antiviral prophylaxis for resource-limited settings to address epidemic and pandemic risks. J. Glob. Health 2022, 12, 05009. [Google Scholar] [CrossRef]
- Kovacs-Nolan, J.; Mine, Y. Egg yolk antibodies for passive immunity. Annu. Rev. Food Sci. Technol. 2012, 3, 163–182. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Li, X.; Jin, L.; Zhen, Y.; Lu, Y.; Li, S.; You, J.; Wang, L. Application of chicken egg yolk immunoglobulins in the control of terrestrial and aquatic animal diseases: A review. Biotechnol. Adv. 2011, 29, 860–868. [Google Scholar] [CrossRef]
- Rahman, S.; Van Nguyen, S.; Icatlo, F.C., Jr.; Umeda, K.; Kodama, Y. Oral passive IgY-based immunotherapeutics: A novel solution for prevention and treatment of alimentary tract diseases. Hum. Vaccines Immunother. 2013, 9, 1039–1048. [Google Scholar] [CrossRef]
- Pereira, E.P.V.; van Tilburg, M.F.; Florean, E.O.P.T.; Guedes, M.I.F. Egg yolk antibodies (IgY) and their applications in human and veterinary health: A review. Int. Immunopharmacol. 2019, 73, 293–303. [Google Scholar] [CrossRef]
- El-Kafrawy, S.A.; Abbas, A.T.; Oelkrug, C.; Tahoon, M.; Ezzat, S.; Zumla, A.; Azhar, E.I. IgY antibodies: The promising potential to overcome antibiotic resistance. Front. Immunol. 2023, 14, 1065353. [Google Scholar] [CrossRef] [PubMed]
- Sanches, R.F.; Dos Santos Ferraro, A.C.; Marroni, F.E.C.; Venancio, E.J. Synergistic activity between beta-lactams and IgY antibodies against Pseudomonas aeruginosa in vitro. Mol. Immunol. 2022, 148, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Lanzarini, N.M.; Bentes, G.A.; Volotão, E.M.; Pinto, M.A. Use of chicken immunoglobulin Y in general virology. J. Immunoass. Immunochem. 2018, 39, 235–248. [Google Scholar] [CrossRef] [PubMed]
- De Souza, P.C.; Corrêa, A.E.N.; Gameiro, J.G.; de Oliveira Júnior, A.G.; Panagio, L.A.; Venancio, E.J.; Almeida, R.S. Production of IgY against iron permease Ftr1 from Candida albicans and evaluation of its antifungal activity using Galleria mellonella as a model of systemic infection. Microb. Pathog. 2023, 181, 106166. [Google Scholar] [CrossRef]
- Thirumalai, D.; Ambi, S.V.; Vieira-Pires, R.S.; Xiaoying, Z.; Sekaran, S.; Krishnan, U. Chicken egg yolk antibody (IgY) as diagnostics and therapeutics in parasitic infections—A review. Int. J. Biol. Macromol. 2019, 136, 755–763. [Google Scholar] [CrossRef]
- Abbas, A.T.; El-Kafrawy, S.A.; Sohrab, S.S.; Azhar, E.I.A. IgY antibodies for the immunoprophylaxis and therapy of respiratory infections. Hum. Vaccines Immunother. 2019, 15, 264–275. [Google Scholar] [CrossRef] [PubMed]
- Carlander, D.; Kollberg, H.; Wejåker, P.E.; Larsson, A. Peroral immunotherapy with yolk antibodies for the prevention and treatment of enteric infections. Immunol. Res. 2000, 21, 1–6. [Google Scholar] [CrossRef]
- Mine, Y.; Kovacs-Nolan, J. Chicken egg yolk antibodies as therapeutics in enteric infectious disease: A review. J. Med. Food 2002, 5, 159–169. [Google Scholar] [CrossRef]
- Diraviyam, T.; Zhao, B.; Wang, Y.; Schade, R.; Michael, A.; Zhang, X. Effect of chicken egg yolk antibodies (IgY) against diarrhea in domesticated animals: A systematic review and meta-analysis. PLoS ONE 2014, 9, e97716. [Google Scholar] [CrossRef]
- Sugano, N. Biological plaque control: Novel therapeutic approach to periodontal disease. J. Oral Sci. 2012, 54, 1–5. [Google Scholar] [CrossRef]
- Waters, V.; Smyth, A. Cystic fibrosis microbiology: Advances in antimicrobial therapy. J. Cyst. Fibros. 2015, 14, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Kurada, S.; Yadav, A.; Leffler, D.A. Current and novel therapeutic strategies in celiac disease. Expert Rev. Clin. Pharmacol. 2016, 9, 1211–1223. [Google Scholar] [CrossRef]
- Carlander, D.; Stålberg, J.; Larsson, A. Chicken antibodies: A clinical chemistry perspective. Upsala J. Med. Sci. 1999, 104, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Suresh, L.G.; Indhuprakash, S.T.; Gandhi, S.; Diraviyam, T. Amalgamation of nanotechnology with chicken IgY to enrich therapeutic and diagnostic applications: A systematic review. Immunotherapy 2023, 15, 867–884. [Google Scholar]
- Xiao, Y.; Gao, X. Use of IgY antibodies and semiconductor nanocrystal detection in cancer biomarker quantitation. Biomark. Med. 2010, 4, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Munhoz, L.S.; Vargas, G.D.; Fischer, G.; de Lima, M.; Esteves, P.A.; Hübner, S.O. Avian IgY antibodies: Characteristics and applications in immunodiagnostic. Ciência Rural 2014, 44, 153–160. [Google Scholar] [CrossRef]
- Da Silva, M.C.; Schaefer, R.; Gava, D.; Souza, C.K.; da Silva Vaz, I., Jr.; Bastos, A.P.; Venancio, E.J. Production and application of anti-nucleoprotein IgY antibodies for influenza A virus detection in swine. J. Immunol. Methods 2018, 461, 100–105. [Google Scholar] [CrossRef]
- Larsson, A.; Karlsson-Parra, A.; Sjöquist, J. Use of chicken antibodies in enzyme immunoassays to avoid interference by rheumatoid factors. Clin. Chem. 1991, 37, 411–414. [Google Scholar] [CrossRef]
- Larsson, A.; Campbell, A.; Eriksson, M. Chicken antibodies are highly suitable for particle enhanced turbidimetric assays. Front. Immunol. 2022, 13, 1016781. [Google Scholar] [CrossRef]
- Gandhi, S.; Alshehri, S.M. Molecular stability of the rabbit and chicken egg yolk immunoglobulins. Front. Biosci. 2021, 13, 185–194. [Google Scholar]
- Rosol, T.J.; Steinmeyer, C.L.; McCauley, L.K.; Merryman, J.I.; Werkmeister, J.R.; Gröne, A.; Weckmann, M.T.; Swayne, D.E.; Capen, C.C. Studies on chicken polyclonal anti-peptide antibodies specific for parathyroid hormone-related protein (1-36). Vet. Immunol. Immunopathol. 1993, 35, 321–337. [Google Scholar] [CrossRef] [PubMed]
- Karachaliou, C.; Vassilakopoulou, V.; Livaniou, E. IgY technology: Methods for developing and evaluating avian immunoglobulins for the in vitro detection of biomolecules. World J. Methodol. 2021, 11, 243–262. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W. The use of gene-specific IgY antibodies for drug target discovery. Drug Discov. Today 2003, 8, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Zhang, W. Affinity separation and enrichment methods in proteomic analysis. J. Proteom. 2008, 71, 284–303. [Google Scholar] [CrossRef] [PubMed]
- Sui, J.; Cao, L.; Lin, H. Antibacterial activity of egg yolk antibody (IgY) against Listeria monocytogenes and preliminary evaluation of its potential for food preservation. J. Sci. Food Agric. 2011, 91, 1946–1950. [Google Scholar] [CrossRef]
- Xu, F.X.; Xu, Y.P.; Jin, L.J.; Liu, H.; Wang, L.H.; You, J.S.; Li, S.Y.; Li, X. Effectiveness of egg yolk immunoglobulin (IgY) against periodontal disease-causing Fusobacterium nucleatum. J. Appl. MIcrobiol. 2012, 113, 983–991. [Google Scholar] [CrossRef]
- Kanagasubbulakshmi, S.; Kadirvelu, K. Paper-Based Simplified Visual Detection of Cry2Ab Insecticide from Transgenic Cottonseed Samples Using Integrated Quantum Dots-IgY Antibodies. J. Agric. Food Chem. 2021, 69, 4074–4080. [Google Scholar] [CrossRef]
- Zhou, X.; Ma, S. Anti-lipopolysaccharide egg yolk antibodies enhance the phagocytosis of mammalian phagocytes. Biol. Open 2018, 7, bio032821. [Google Scholar] [CrossRef]
- Xia, M.; Ahn, D.U.; Liu, C.; Cai, Z. A basis for IgY-themed functional foods: Digestion profile of oral yolk immunoglobulin (IgY) by INFOGEST static digestion model. Food Res. Int. 2022, 162, 112167. [Google Scholar] [CrossRef]
- Torres, M.; Casadevall, A. The immunoglobulin constant region contributes to affinity and specificity. Trends Immunol. 2008, 29, 91–97. [Google Scholar] [CrossRef]
- Budroni, S.; Buricchi, F.; Cavallone, A.; Volpini, G.; Mariani, A.; Lo Surdo, P.; Blohmke, C.J.; Del Giudice, G.; Medini, D.; Finco, O. Computational modeling of microfluidic data provides high-throughput affinity estimates for monoclonal antibodies. Comput. Struct. Biotechnol. J. 2021, 19, 3664–3672. [Google Scholar] [CrossRef] [PubMed]
- Reverberi, R.; Reverberi, L. Factors affecting the antigen-antibody reaction. Blood Transfus. 2007, 5, 227–240. [Google Scholar] [PubMed]
- Steward, M.; Lew, A. The importance of antibody affinity in the performance of immunoassays for antibody. J. Immunol. Methods 1985, 78, 173–190. [Google Scholar] [CrossRef]
- Tesfaye, D.Y.; Gudjonsson, A.; Bogen, B.; Fossum, E. Targeting Conventional Dendritic Cells to Fine-Tune Antibody Responses. Front. Immunol. 2019, 10, 1529. [Google Scholar] [CrossRef] [PubMed]
- Tabasinezhad, M.; Talebkhan, Y.; Wenzel, W.; Rahimi, H.; Omidinia, E.; Mahboudi, F. Trends in therapeutic antibody affinity maturation: From in-vitro towards next-generation sequencing approaches. Immunol. Lett. 2019, 212, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Bannard, O.; Cyster, J.G. Germinal centers: Programmed for affinity maturation and antibody diversification. Curr. Opin. Immunol. 2017, 45, 21–30. [Google Scholar] [CrossRef]
- Mesin, L.; Ersching, J.; Victora, G.D. Germinal Center B Cell Dynamics. Immunity 2016, 45, 471–482. [Google Scholar] [CrossRef]
- Oláh, I.; Glick, B. Structure of the germinal centers in the chicken caecal tonsil: Light and electron microscopic and autoradiographic studies. Poult. Sci. 1979, 58, 195–210. [Google Scholar] [CrossRef]
- Oláh, I.; Nagy, N. Retrospection to discovery of bursal function and recognition of avian dendritic cells; past and present. Dev. Comp. Immunol. 2013, 41, 310–315. [Google Scholar] [CrossRef]
- Arakawa, H.; Furusawa, S.; Ekino, S.; Yamagishi, H. Immunoglobulin gene hyperconversion ongoing in chicken splenic germinal centers. EMBO J. 1996, 15, 2540–2546. [Google Scholar] [CrossRef]
- Arakawa, H.; Kuma, K.; Yasuda, M.; Furusawa, S.; Ekino, S.; Yamagishi, H. Oligoclonal development of B cells bearing discrete Ig chains in chicken single germinal centers. J. Immunol. 1998, 160, 4232–4241. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, M.; Taura, Y.; Yokomizo, Y.; Ekino, S. A comparative study of germinal center: Fowls and mammals. Comp. Immunol. Microbiol. Infect. Dis. 1998, 21, 179–189. [Google Scholar] [CrossRef]
- Yasuda, M.; Kajiwara, E.; Ekino, S.; Taura, Y.; Hirota, Y.; Horiuchi, H.; Matsuda, H.; Furusawa, S. Immunobiology of chicken germinal center: I. Changes in surface Ig class expression in the chicken splenic germinal center after antigenic stimulation. Dev. Comp. Immunol. 2003, 27, 159–166. [Google Scholar] [CrossRef]
- Yasuda, M.; Horiuch, H.; Matsuda, H.; Furusawa, S. Immunobiology of chicken germinal center: II. Accumulation of apoptotic cells within the germinal center. Cell Tissue Res. 2003, 314, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Schwarzkopf, C.; Thiele, B. Effectivity of Alternative Adjuvants in Comparison to Freund’s Complete Adjuvant. ALTEX 1996, 13, 22–25. [Google Scholar] [PubMed]
- Devey, M. The Biological and Pathological Significance of Antibody Affinity. In Immunoglobulins in Health and Disease; French, M.A.H., Ed.; Springer: Dordrecht, The Netherlands, 1986; Volume 1, pp. 55–73. [Google Scholar]
- Suwannalai, P.; Britsemmer, K.; Knevel, R.; Scherer, H.U.; Nivine Levarht, E.W.; van der Helm-van Mil, A.H.; van Schaardenburg, D.; Huizinga, T.W.J.; Toes, R.E.M.; Trouw, L.A. Low-avidity anticitrullinated protein antibodies (ACPA) are associated with a higher rate of joint destruction in rheumatoid arthritis. Ann. Rheum. Dis. 2014, 73, 270–276. [Google Scholar] [CrossRef]
- Nimmo, G.R.; Lew, A.M.; Stanley, C.M.; Steward, M.W. Influence of Antibody affinity on the performance of different antibody assays. J. Immunol. Methods 1984, 72, 177–187. [Google Scholar] [CrossRef]
- Hedman, K.; Seppälä, I. Recent rubella virus infection indicated by a low avidity of specific IgG. J. Clin. Immunol. 1988, 8, 214–221. [Google Scholar] [CrossRef]
- Elkon, K.; Casali, P. Nature and functions of autoantibodies. Nat. Clin. Pract. Rheumatol. 2008, 4, 491–498. [Google Scholar] [CrossRef]
- Yuan, W.; Cao, H.; Wan, P.; Shi, R.; Zhou, S.; Zheng, J. Clinical evaluation of total and high-avidity anti-dsDNA antibody assays for the diagnosis of systemic lupus erythematosus. Lupus 2019, 28, 1387–1396. [Google Scholar] [CrossRef]
- Hajilooi, M.; Keramat, F.; Moazenian, A.; Rastegari-Pouyani, M.; Solgi, G. The quantity and quality of anti-SARS-CoV-2 antibodies show contrariwise association with COVID-19 severity: Lessons learned from IgG avidity. Med. Microbiol. Immunol. 2023, 212, 203–220. [Google Scholar] [CrossRef]
- Eisen, H.N.; Siskind, G.W. Variations in affinities of antibodies during the immune response. Biochemistry 1964, 3, 996–1008. [Google Scholar] [CrossRef] [PubMed]
- Frankel, M.E.; Gerhard, W. The rapid determination of binding constants for antiviral antibodies by a radioimmunoassay. An analysis of the interaction between hybridoma proteins and influenza virus. Mol. Immunol. 1979, 16, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Friguet, B.; Chaffotte, A.F.; Djavadi-Ohaniance, L.; Goldberg, M.E. Measurements of the true affinity constant in solution of antigen-antibody complexes by enzyme-linked immunosorbent assay. J. Immunol. Methods 1985, 77, 305–319. [Google Scholar] [CrossRef]
- Salvi, G.; De Los Rios, P.; Vendruscolo, M. Effective interactions between chaotropic agents and proteins. Proteins 2005, 61, 492–499. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, R.; Hosking, C.; Jones, C. The measurement of relative antibody affinity by ELISA using thiocyanate elution. J. Immunol. Methods. 1988, 106, 191–194. [Google Scholar] [CrossRef]
- Alves, G.G.; Gonçalves, L.A.; Assis, R.A.; Oliveira Júnior, C.A.; Silva, R.O.S.; Heneine, L.G.D.; Lobato, F.C.F. Production and purification of Clostridium perfringens type D epsilon toxin and IgY antitoxin. Anaerobe 2021, 69, 102354. [Google Scholar] [CrossRef]
- Silva, G.B.; Faria, L.S.; Lopes, C.A.; Nunes, D.S.; Ribeiro, V.S.; de Sousa, J.E.N.; Paiva, F.C.M.; Gonçalves-Pires, M.R.F.; Borges, I.P.; Santos, M.M.; et al. Egg yolk immunoglobulin Y as a promising tool to detect immune complexes in neurocysticercosis serum samples. Trans. R. Soc. Trop. Med. Hyg. 2020, 114, 585–592. [Google Scholar] [CrossRef]
- Leiva, C.L.; Cangelosi, A.; Mariconda, V.; Farace, M.; Geoghegan, P.; Brero, L.; Fernández-Miyakawa, M.; Chacana, P. IgY-based antivenom against Bothrops alternatus: Production and neutralization efficacy. Toxicon 2019, 163, 84–92. [Google Scholar] [CrossRef]
- Lopes, C.A.; de Faria, L.S.; de Sousa, J.E.N.; Borges, I.P.; Ribeiro, R.P.; Bueno, L.L.; Ávila, V.M.R.; Ferreira Júnior, Á.; Costa-Cruz, J.M. Anti-Ascaris suum immunoglobulin Y as a novel biotechnological tool for the diagnosis of human ascariasis. J. Helminthol. 2019, 94, e71. [Google Scholar] [CrossRef]
- Correa, V.A.; Rodrigues, T.S.; Portilho, A.I.; de Lima, G.T.; De Gaspari, E. Modified ELISA for antibody avidity evaluation: The need for standardization. Biomed. J. 2021, 44, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Scott, T.R. Our current understanding of humoral immunity of poultry. Poult. Sci. 2004, 83, 574–579. [Google Scholar] [CrossRef] [PubMed]
- Eto, S.F.; Andrade, F.F.; Pinheiro, J.W.; Balarin, M.R.; Ramos, S.P.; Venancio, E.J. Effect of inoculation route on the production of antibodies and histological characteristics of the spleen in laying hens. Braz. J. Poult. Sci. 2012, 14, 63–66. [Google Scholar] [CrossRef]
- Turley, J.L.; Lavelle, E.C. Resolving adjuvant mode of action to enhance vaccine efficacy. Curr. Opin. Immunol. 2022, 77, 102229. [Google Scholar] [CrossRef]
- French, V.I.; Stark, J.M.; White, R.G. The influence of adjuvants on the immunological response of the chicken. II. Effects of Freund’s complete adjuvant on later antibody production after a single injection of immunogen. Immunology 1970, 18, 645–655. [Google Scholar]
- Yamaga, K.; Benedict, A.A. Class, amounts and affinities of anti-dinitrophenyl antibodies in chickens. I. Production of 7S and 17S antibodies of equal affinity by intravenous injection of antigen. J. Immunol. 1975, 115, 750–758. [Google Scholar] [CrossRef]
- Yamaga, K.; Benedict, A.A. Class, amounts, and affinities of anti-dinitrophenyl antibodies in chickens. II. Production of a restricted population of high affinity 7S antibodies by injection of antigen emulsified in adjuvant. J. Immunol. 1975, 115, 759–764. [Google Scholar] [CrossRef]
- Grzywa, R.; Walczak, M.; Łupicka-Słowik, A.; Bobrek, K.; Boivin, S.; Brown, E.; Gawel, A.; Stefaniak, T.; Oleksyszyn, J.; Sieńczyk, M. Adjuvant-dependent immunogenicity of Staphylococcus aureus Efb and Map proteins in chickens. Vet. Immunol. Immunopathol. 2015, 166, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Svendsen Bollen, L.; Crowley, A.; Stodulski, G.; Hau, J. Antibody production in rabbits and chickens immunized with human IgG. A comparison of titre and avidity development in rabbit serum, chicken serum and egg yolk using three different adjuvants. J. Immunol. Methods 1996, 191, 113–120. [Google Scholar] [CrossRef]
- Leiva, C.L.; Cangelosi, A.; Mariconda, V.; Celi, A.; Joaquim, P.; Geoghegan, P.; Fernández-Miyakawa, M.; Chacana, P. Use of adjuvant ISA VG 71 to produce neutralizing egg yolk antibodies against bothropic venom. Appl. Microbiol. Biotechnol. 2023, 107, 1947–1957. [Google Scholar] [CrossRef]
- Da Silva Raposo, R.; Santarém, V.A.; Merigueti, Y.F.F.B.; Rubinsky-Elefant, G.; de Lima Cerazo, L.M.; Pereira, L.; Zampieri, B.P.; da Silva, A.V.; Laposy, C.B. Kinetic and avidity of IgY anti-Toxocara antibodies in experimentally infected chickens. Exp. Parasitol. 2016, 171, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Borges, I.P.; Silva, M.F.; Santiago, F.M.; de Faria, L.S.; Ferreira Júnior, Á.; da Silva, R.J.; Costa, M.S.; de Freitas, V.; Yoneyama, K.A.G.; Ferro, E.A.V.; et al. Antiparasitic effects induced by polyclonal IgY antibodies anti-phospholipase A2 from Bothrops pauloensis venom. Int. J. Biol. Macromol. 2018, 112, 333–342. [Google Scholar] [CrossRef] [PubMed]
- De Faria, L.S.; de Souza, D.L.; Ribeiro, R.P.; de Sousa, J.E.N.; Borges, I.P.; Ávila, V.M.R.; Ferreira-Júnior, A.; Goulart, J.R.; Costa-Cruz, J.M. Highly specific and sensitive anti-Strongyloides venezuelensis IgY antibodies applied to the human strongyloidiasis immunodiagnosis. Parasitol. Int. 2019, 72, 101933. [Google Scholar] [CrossRef] [PubMed]
- Carrara, G.M.P.; Silva, G.B.; Faria, L.S.; Nunes, D.S.; Ribeiro, V.S.; Lopes, C.A.; Gonçalves-Pires, R.F.; Borges, I.P.; Ferreira-Junior, A.; Ávila, V.M.R.; et al. IgY antibody and human neurocysticercosis: A novel approach on immunodiagnosis using Taenia crassiceps hydrophobic antigens. Parasitology 2020, 147, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Ferreira Júnior, Á.; Santiago, F.M.; Silva, M.V.; Ferreira, F.B.; Macêdo Júnior, A.G.; Mota, C.M.; Faria, M.S.; Silva Filho, H.H.; Silva, D.A.O.; Cunha-Júnior, J.P.; et al. Production, characterization and applications for Toxoplasma gondii-specific polyclonal chicken egg yolk immunoglobulins. PLoS ONE 2012, 7, e40391. [Google Scholar] [CrossRef]
- Barenco, P.V.C.; Lourenço, E.V.; Cunha-Júnior, J.P.; Almeida, K.C.; Roque-Barreira, M.C.; Silva, D.A.O.; Araújo, E.C.B.; Coutinho, L.B.; Oliveira, M.C.; Mineo, T.W.P.; et al. Toxoplasma gondii 70 kDa heat shock protein: Systemic detection is associated with the death of the parasites by the immune response and its increased expression in the brain is associated with parasite replication. PLoS ONE 2014, 9, e96527. [Google Scholar] [CrossRef]
- De Andrade, F.G.; Eto, S.F.; dos Santos Ferraro, A.C.N.; Gonzales Marioto, D.T.G.; Vieira, N.J.; Cheirubim, A.P.; Ramos, S.P.; Venancio, E.J. The production and characterization of anti-bothropic and anti-crotalic IgY antibodies in laying hens: A long term experiment. Toxicon 2013, 66, 18–24. [Google Scholar] [CrossRef]
- Sampaio, L.C.L.; Baldissera, M.D.; Grando, T.H.; Gressler, L.T.; Capeleto, D.M.; de Sa, M.F.; de Jesus, F.P.K.; dos Santos, A.G., Jr.; Anciuti, A.N.; Colonetti, K.; et al. Production, purification and therapeutic potential of egg yolk antibodies for treating Trypanosoma evansi infection. Vet. Parasitol. 2014, 204, 96–103. [Google Scholar] [CrossRef]
- Da Rocha, D.G.; Fernandez, J.H.; de Almeida, C.M.C.; da Silva, C.L.; Magnoli, F.C.; da Silva, O.E.; da Silva, W.D. Development of IgY antibodies against anti-snake toxins endowed with highly lethal neutralizing activity. Eur. J. Pharm. Sci. 2017, 106, 404–412. [Google Scholar] [CrossRef]
- Montini, M.P.O.; Fernandes, E.V.; dos Santos Ferraro, A.C.N.; Almeida, M.A.; da Silva, F.C.; Venancio, E.J. Effects of inoculation route and dose on production and avidity of IgY antibodies. Food Agric. Immunol. 2018, 29, 306–315. [Google Scholar] [CrossRef]
- Eto, S.; Fernandes, D.C.; Yunis-aguinaga, J.; Da Silva Claudiano, G.; Shimada, M.T.; Salvador, R.; de Moraes, F.R.; De Moraes, J.R.E. Characterization and production of IgY antibodies anti-Photobacterium damselae subsp. piscicida: Therapeutic and prophylactic use in Rachycentron canadum. Aquaculture 2019, 513, 734424. [Google Scholar]
- Eto, S.F.; Fernandes, D.C.; Moraes, A.C.; Prado, E.J.R.; Baldassi, A.C.; Manrique, W.G.; Silva, I.C.; Medeiros, A.S.R.; Belo, M.A.A.; Balbuena, T.S.; et al. Validation of IgY for the diagnosis of Streptococcus agalactiae-caused endocarditis and bacterial meningitis in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2018, 76, 153–160. [Google Scholar] [CrossRef]
- Fernandes, D.C.; Eto, S.F.; Funnicelli, M.I.G.; Fernandes, C.C.; Charlie-Silva, I.; Belo, M.A.A.; Pizauro, J.M. Immunoglobulin Y in the diagnosis of Aeromonas hydrophila infection in Nile tilapia (Oreochromis niloticus). Aquaculture 2019, 500, 576–585. [Google Scholar] [CrossRef]
- Grzywa, R.; Łupicka-Słowik, A.; Walczak, M.; Idzi, M.; Bobrek, K.; Boivin, S.; Gawel, A.; Stefaniak, T.; Oleksyszyn, J.; Sieńczyk, M. Highly sensitive detection of cancer antigen 15-3 using novel avian IgY antibodies. ALTEX 2014, 31, 43–52. [Google Scholar] [CrossRef]
- Łupicka-Słowik, A.; Walczak, M.; Grzywa, R.; Bobrek, K.; Łęcka, M.; Boivin, S.; Gawel, A.; Stefaniak, T.; Oleksyszyn, J.; Sieńczyk, M. Generation and application of polyclonal IgY antibodies specific for full-length and nicked prostate-specific antigen. Bioanalysis 2014, 6, 3197–3213. [Google Scholar] [CrossRef]
- Lee, K.; Ametani, A.; Shimizu, M.; Hatta, H.; Yamamoto, T.; Kaminogawa, S. Production and characterization of anti-human insulin antibodies in the hen’s egg. Agric. Biol. Chem. 1991, 55, 2141–2143. [Google Scholar] [PubMed]
- Berghof, T.V.L.; Arts, J.A.J.; Bovenhuis, H.; Lammers, A.; van der Poel, J.J.; Parmentier, H.K. Antigen-dependent effects of divergent selective breeding based on natural antibodies on specific humoral immune responses in chickens. Vaccine 2018, 36, 1444–1452. [Google Scholar] [CrossRef]
- Parmentier, H.K.; Lammers, A.; Hoekman, J.J.; De Vries Reilingh, G.; Zaanen, I.T.A.; Savelkoul, H.F.J. Different levels of natural antibodies in chickens divergently selected for specific antibody responses. Dev. Comp. Immunol. 2004, 28, 39–49. [Google Scholar] [CrossRef]
- Gautvik, K.; Teig, V.; Halvorsen, J.; Arnesen, E.; Myhre, L.; Heimann, P.; Tollman, R. Development of sequence specific radioimmunoassay of human parathyroid hormone and its use in the diagnosis of hyperparathyroidism. Scand. J. Clin. Lab. Investig. 1979, 39, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.E.; Conrad, H.E.; Voss, E.W. Radiochromatographic carbohydrate analyses of high and low affinity IgG antibodies. Immunochemistry 1976, 13, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Ikemori, Y.; Peralta, R.C.; Kuroki, M.; Yokoyama, H.; Kodama, Y. Research note: Avidity of chicken yolk antibodies to enterotoxigenic Escherichia coli fimbriae. Poult. Sci. 1993, 72, 2361–2365. [Google Scholar] [CrossRef] [PubMed]
- Pérez, M.; Rubén, C.; Murcia Mejía, C.; Zarco Quintero, L. Producción de anticuerpos antiprogesterona apartir de la yema de huevo de gallinas y del suero sanguíneo de conejos, para ser utilizados en radioinmunoanálisis/Production of antibodies against progesterone from the eggyolk of hens and from rabbit blood. Vet. Méx. 1994, 25, 117–125. [Google Scholar]
- Xiao, Y.; Gao, X.; Gannot, G.; Emmert-Buck, M.R.; Srivastava, S.; Wagner, P.D.; Amos, M.D.; Barker, P.E. Quantitation of HER2 and telomerase biomarkers in solid tumors with IgY antibodies and nanocrystal detection. Int. J. Cancer 2008, 122, 2178–2186. [Google Scholar] [CrossRef] [PubMed]
- Tu, Y.-Y.; Ma, C.-Y.; Ho, S.-B.; Chen, C.-C.; Chang, H.-M. Afffinity measurement of lactoferrin (LF)-anti-LF immunoglobulin in Yolk (IgY) complexes by competitive indirect enzyme-linked immunosorbent assay (CI-ELISA). J. Food Drug Anal. 2006, 14, 379–384. [Google Scholar] [CrossRef]
- Walczak, M.; Grzywa, R.; Łupicka-Słowik, A.; Skoreński, M.; Bobrek, K.; Nowak, D.; Boivin, S.; Brown, E.L.; Oleksyszyn, J.; Sieńczyk, M. Method for generation of peptide-specific IgY antibodies directed to Staphylococcus aureus extracellular fibrinogen binding protein epitope. Biopolymers 2015, 104, 552–559. [Google Scholar] [CrossRef] [PubMed]
- Łupicka-Słowik, A.; Psurski, M.; Grzywa, R.; Bobrek, K.; Smok, P.; Walczak, M.; Gawel, A.; Stefaniak, T.; Oleksyszyn, J.; Scieczyk, M. Development of Adenosine Deaminase-Specific IgY Antibodies: Diagnostic and Inhibitory Application. Appl. Biochem. Biotechnol. 2018, 184, 1358–1374. [Google Scholar] [CrossRef]
- Singh, S.M.; Alkie, T.N.; Nagy, É.; Kulkarni, R.R.; Hodgins, D.C.; Sharif, S. Delivery of an inactivated avian influenza virus vaccine adjuvanted with poly(D,L-lactic-co-glycolic acid) encapsulated CpG ODN induces protective immune responses in chickens. Vaccine 2016, 34, 4807–4813. [Google Scholar] [CrossRef]
- Tu, Y.; Chen, C.; Chang, H. Isolation of immunoglobulin in yolk (IgY) and rabbit serum immunoglobulin G (IgG) specific against bovine lactoferrin by immunoaffinity chromatography. Food Res. Int. 2001, 34, 783–789. [Google Scholar] [CrossRef]
- Chen, C.; Tu, Y.; Chen, T.; Chang, H. Isolation and characterization of immunoglobulin in yolk (IgY) specific against hen egg white lysozyme by immunoaffinity chromatography. J. Agric. Food Chem. 2002, 50, 5424–5428. [Google Scholar] [CrossRef]
- Lemamy, G.J.; Roger, P.; Mani, J.C.; Robert, M.; Rochefort, H.; Brouillet, J.P. High-affinity antibodies from hen’s-egg yolks against human mannose-6-phosphate/insulin-like growth-factor-II receptor (M6P/IGFII-R): Characterization and potential use in clinical cancer studies. Int. J. Cancer 1999, 80, 896–902. [Google Scholar] [CrossRef]
- Skottrup, P.D.; López, R.; Ksiazek, M.; Højrup, P.; Baelum, V.; Potempa, J.; Kaczmarek, J.Z. An IgY-based immunoassay to evaluate the biomarker potential of the Tannerella forsythia virulence factor karilysin in human saliva. J. Immunol. Methods 2019, 469, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Lehtonen, O.P.; Viljanen, M.K. Antigen density in ELISA; Effect on avidity dependency. J. Immunol. Methods 1980, 36, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Bauwens, R.M.; Kint, J.A.; Devos, M.P.; Van Brussel, K.A.; De Leenheer, A.P. Production, purification and characterization of antibodies to 1,25-dihydroxyvitamin D raised in chicken egg yolk. Clin. Chim. Acta 1987, 170, 37–44. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pacheco, B.L.B.; Nogueira, C.P.; Venancio, E.J. IgY Antibodies from Birds: A Review on Affinity and Avidity. Animals 2023, 13, 3130. https://doi.org/10.3390/ani13193130
Pacheco BLB, Nogueira CP, Venancio EJ. IgY Antibodies from Birds: A Review on Affinity and Avidity. Animals. 2023; 13(19):3130. https://doi.org/10.3390/ani13193130
Chicago/Turabian StylePacheco, Bianca Lisley Barboza, Camila Parada Nogueira, and Emerson José Venancio. 2023. "IgY Antibodies from Birds: A Review on Affinity and Avidity" Animals 13, no. 19: 3130. https://doi.org/10.3390/ani13193130
APA StylePacheco, B. L. B., Nogueira, C. P., & Venancio, E. J. (2023). IgY Antibodies from Birds: A Review on Affinity and Avidity. Animals, 13(19), 3130. https://doi.org/10.3390/ani13193130