Homemade Nucleic Acid Preservation Buffer Proves Effective in Preserving the Equine Faecal Microbiota over Time at Ambient Temperatures
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Methodology
2.2. Sample Preparation
2.3. DNA Extraction and 16S rRNA Gene Sequencing
2.4. Bioinformatics
2.5. Statistical Methods
3. Results
3.1. Read Depth Was Most Influenced by DNA Yield and Individual Variation
3.2. Alpha Diversity Was Significantly Lower in FTA Cards
3.3. Beta Diversity Was Most Influenced by Individual and Group Membership
3.4. Microbial Community Was Distinct in FTA Cards
3.5. NAP Inhibited Time-Associated Changes in Bloom Taxa Abundance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biddle, A.; Nadeau, J.; Reed, S.; Ericsson, A.; Coleman, R.; Coleman, S.; Wickens, C.; Brooks, S.; Hammer, C.; Mastellar, S.; et al. National Information Management and Support System. NE2202: The Equine Microbiome. 2022. Available online: https://www.nimss.org/projects/view/mrp/outline/18869 (accessed on 1 October 2023).
- Milinovich, G.J.; Trott, D.J.; Burrell, P.C.; Van Eps, A.W.; Thoefner, M.B.; Blackall, L.L.; Al Jassim, R.A.M.; Morton, J.M.; Pollitt, C.C. Changes in Equine Hindgut Bacterial Populations during Oligofructose- Induced Laminitis. Environ. Microbiol. 2006, 8, 885–898. [Google Scholar] [CrossRef] [PubMed]
- Crawford, C.; Sepulveda, M.F.; Elliott, J.; Harris, P.A.; Bailey, S.R. Dietary Fructan Carbohydrate Increases Amine Production in the Equine Large Intestine: Implications for Pasture-Associated Laminitis1. J. Anim. Sci. 2007, 85, 2949–2958. [Google Scholar] [CrossRef] [PubMed]
- Tuniyazi, M.; He, J.; Guo, J.; Li, S.; Zhang, N.; Hu, X.; Fu, Y. Changes of Microbial and Metabolome of the Equine Hindgut during Oligofructose-Induced Laminitis. BMC Vet. Res. 2021, 17, 11. [Google Scholar] [CrossRef]
- Ayoub, C.; Arroyo, L.G.; MacNicol, J.L.; Renaud, D.; Weese, J.S.; Gomez, D.E. Fecal Microbiota of Horses with Colitis and Its Association with Laminitis and Survival during Hospitalization. Vet. Intern. Med. 2022, 36, 2213–2223. [Google Scholar] [CrossRef] [PubMed]
- Stewart, H.L.; Pitta, D.; Indugu, N.; Vecchiarelli, B.; Hennessy, M.L.; Engiles, J.B.; Southwood, L.L. Changes in the Faecal Bacterial Microbiota during Hospitalisation of Horses with Colic and the Effect of Different Causes of Colic. Equine Vet. J. 2021, 53, 1119–1131. [Google Scholar] [CrossRef]
- Morrison, P.K.; Newbold, C.J.; Jones, E.; Worgan, H.J.; Grove-White, D.H.; Dugdale, A.H.; Barfoot, C.; Harris, P.A.; Argo, C.M.G. The Equine Gastrointestinal Microbiome: Impacts of Age and Obesity. Front. Microbiol. 2018, 9, 3017. [Google Scholar] [CrossRef] [PubMed]
- McKinney, C.A.; Oliveira, B.C.M.; Bedenice, D.; Paradis, M.-R.; Mazan, M.; Sage, S.; Sanchez, A.; Widmer, G. The Fecal Microbiota of Healthy Donor Horses and Geriatric Recipients Undergoing Fecal Microbial Transplantation for the Treatment of Diarrhea. PLoS ONE 2020, 15, e0230148. [Google Scholar] [CrossRef]
- Biddle, A.S.; Tomb, J.F.; Fan, Z. Microbiome and Blood Analyte Differences Point to Community and Metabolic Signatures in Lean and Obese Horses. Front. Vet. Sci. 2018, 5, 225. [Google Scholar] [CrossRef] [PubMed]
- Morrison, P.K.; Newbold, C.J.; Jones, E.; Worgan, H.J.; Grove-White, D.H.; Dugdale, A.H.; Barfoot, C.; Harris, P.A.; Argo, C.M. The Equine Gastrointestinal Microbiome: Impacts of Weight-Loss. BMC Vet. Res. 2020, 16, 78. [Google Scholar] [CrossRef] [PubMed]
- Walshe, N.; Cabrera-Rubio, R.; Collins, R.; Puggioni, A.; Gath, V.; Crispie, F.; Cotter, P.D.; Brennan, L.; Mulcahy, G.; Duggan, V. A Multiomic Approach to Investigate the Effects of a Weight Loss Program on the Intestinal Health of Overweight Horses. Front. Vet. Sci. 2021, 8, 668120. [Google Scholar] [CrossRef]
- Bulmer, L.S.; Murray, J.A.; Burns, N.M.; Garber, A.; Wemelsfelder, F.; McEwan, N.R.; Hastie, P.M. High-Starch Diets Alter Equine Faecal Microbiota and Increase Behavioural Reactivity. Sci. Rep. 2019, 9, 18621. [Google Scholar] [CrossRef] [PubMed]
- Hou, K.; Wu, Z.-X.; Chen, X.-Y.; Wang, J.-Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in Health and Diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Abellan-Schneyder, I.; Matchado, M.S.; Reitmeier, S.; Sommer, A.; Sewald, Z.; Baumbach, J.; List, M.; Neuhaus, K. Primer, Pipelines, Parameters: Issues in 16S rRNA Gene Sequencing. mSphere 2021, 6, e01202-20. [Google Scholar] [CrossRef]
- Beckers, K.F.; Schulz, C.J.; Childers, G.W. Rapid Regrowth and Detection of Microbial Contaminants in Equine Fecal Microbiome Samples. PLoS ONE 2017, 12, e0187044. [Google Scholar] [CrossRef] [PubMed]
- De Bustamante, M.M.; Plummer, C.; MacNicol, J.; Gomez, D. Impact of Ambient Temperature Sample Storage on the Equine Fecal Microbiota. Animals 2021, 11, 819. [Google Scholar] [CrossRef]
- Turnbaugh, P.J.; Ley, R.E.; Hamady, M.; Fraser-Liggett, C.M.; Knight, R.; Gordon, J.I. The Human Microbiome Project. Nature 2007, 449, 804–810. [Google Scholar] [CrossRef]
- Falony, G.; Joossens, M.; Vieira-Silva, S.; Wang, J.; Darzi, Y.; Faust, K.; Kurilshikov, A.; Bonder, M.J.; Valles-Colomer, M.; Vandeputte, D.; et al. Population-Level Analysis of Gut Microbiome Variation. Science 2016, 352, 560–564. [Google Scholar] [CrossRef]
- Song, S.J.; Amir, A.; Metcalf, J.L.; Amato, K.R.; Xu, Z.Z.; Humphrey, G.; Knight, R. Preservation Methods Differ in Fecal Microbiome Stability, Affecting Suitability for Field Studies. mSystems 2016, 1, e00021-16. [Google Scholar] [CrossRef]
- Camacho-Sanchez, M.; Burraco, P.; Gomez-Mestre, I.; Leonard, J.A. Preservation of RNA and DNA from Mammal Samples under Field Conditions. Mol. Ecol. Resour. 2013, 13, 663–673. [Google Scholar] [CrossRef] [PubMed]
- Menke, S.; Gillingham, M.A.F.; Wilhelm, K.; Sommer, S. Home-Made Cost Effective Preservation Buffer Is a Better Alternative to Commercial Preservation Methods for Microbiome Research. Front. Microbiol. 2017, 8, 102. [Google Scholar] [CrossRef]
- Wu, C.; Chen, T.; Xu, W.; Zhang, T.; Pei, Y.; Yang, Y.; Zhang, F.; Guo, H.; Wang, Q.; Wang, L.; et al. The Maintenance of Microbial Community in Human Fecal Samples by a Cost Effective Preservation Buffer. Sci. Rep. 2021, 11, 13453. [Google Scholar] [CrossRef]
- Gusberti, F.A.; Sampathkumar, P.; Siegrist, B.E.; Lang, N.P. Microbiological and Clinical Effects of Chlorhexidine Digluconate and Hydrogen Peroxide Mouthrinses on Developing Plaque and Gingivitis. J. Clin. Periodontol. 1988, 15, 60–67. [Google Scholar] [CrossRef]
- Mcdonnell, G.; Russell, A.D. Antiseptics and Disinfectants: Activity, Action, and Resistance. Clin. Microbiol. Rev. 1999, 12, 147–179. [Google Scholar] [CrossRef]
- Yu, Z.; Morrison, M. Improved Extraction of PCR-Quality Community DNA from Digesta and Faecal Samples. BioTechniques 2004, 36, 808–812. [Google Scholar] [CrossRef] [PubMed]
- Sigma Aldridge. MERK. Reliable DNA Extraction from Whatman® FTA® Cards. Available online: https://www.sigmaaldrich.com/GB/en/technical-documents/protocol/genomics/dna-and-rna-purification/whatman-reliable-extraction-of-dna (accessed on 1 October 2023).
- Babraham Bioinformatics; Andrews, S.R. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 1 October 2023).
- Brabraham Bioinformatics; Krueger, F. Trim Galore. 2015. Available online: https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ (accessed on 1 October 2023).
- Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize Analysis Results for Multiple Tools and Samples in a Single Report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, R.H.; Larsson, K.-H.; Taylor, A.F.S.; Bengtsson-Palme, J.; Jeppesen, T.S.; Schigel, D.; Kennedy, P.; Picard, K.; Glöckner, F.O.; Tedersoo, L.; et al. The UNITE Database for Molecular Identification of Fungi: Handling Dark Taxa and Parallel Taxonomic Classifications. Nucleic Acids Res. 2019, 47, D259–D264. [Google Scholar] [CrossRef]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; Heisterkamp, S.; Van Willigen, B.; Ranke, J. Linear and Nonlinear Mixed Effects Models; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Zuur, A.F.; Ieno, E.N.; Walker, N.; Saveliev, A.A.; Smith, G.M. Mixed Effects Models and Extensions in Ecology with R; Statistics for Biology and Health; Springer: New York, NY, USA, 2009; ISBN 978-0-387-87457-9. [Google Scholar]
- Vegan: Community Ecology Package; Oksanen, J.; Blanche, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; et al. Community Ecology Package 2020. Available online: https://cran.r-project.org/web/packages/vegan/index.html (accessed on 1 October 2023).
- Lin, H.; Peddada, S.D. Analysis of Compositions of Microbiomes with Bias Correction. Nat. Commun. 2020, 11, 3514. [Google Scholar] [CrossRef]
- Drake, L.E.; Cuff, J.P.; Young, R.E.; Marchbank, A.; Chadwick, E.A.; Symondson, W.O.C. An Assessment of Minimum Sequence Copy Thresholds for Identifying and Reducing the Prevalence of Artefacts in Dietary Metabarcoding Data. Methods Ecol. Evol. 2022, 13, 694–710. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Cross, T.-W.L.; Doukhanine, E.; Swanson, K.S. An Ambient Temperature Collection and Stabilization Strategy for Canine Microbiota Studies. Sci. Rep. 2020, 10, 13383. [Google Scholar] [CrossRef] [PubMed]
- Carroll, I.M.; Ringel-Kulka, T.; Siddle, J.P.; Klaenhammer, T.R.; Ringel, Y. Characterization of the Fecal Microbiota Using High-Throughput Sequencing Reveals a Stable Microbial Community during Storage. PLoS ONE 2012, 7, e46953. [Google Scholar] [CrossRef] [PubMed]
- Hale, V.L.; Tan, C.L.; Knight, R.; Amato, K.R. Effect of Preservation Method on Spider Monkey (Ateles Geoffroyi) Fecal Microbiota over 8 weeks. J. Microbiol. Methods 2015, 113, 16–26. [Google Scholar] [CrossRef]
- Nel Van Zyl, K.; Whitelaw, A.C.; Newton-Foot, M. The Effect of Storage Conditions on Microbial Communities in Stool. PLoS ONE 2020, 15, e0227486. [Google Scholar] [CrossRef] [PubMed]
- Holzhausen, E.A.; Nikodemova, M.; Deblois, C.L.; Barnet, J.H.; Peppard, P.E.; Suen, G.; Malecki, K.M. Assessing the Impact of Storage Time on the Stability of Stool Microbiota Richness, Diversity, and Composition. Gut Pathog. 2021, 13, 75. [Google Scholar] [CrossRef]
- Metcalf, J.L.; Song, S.J.; Morton, J.T.; Weiss, S.; Seguin-Orlando, A.; Joly, F.; Feh, C.; Taberlet, P.; Coissac, E.; Amir, A.; et al. Evaluating the Impact of Domestication and Captivity on the Horse Gut Microbiome. Sci. Rep. 2017, 7, 15497. [Google Scholar] [CrossRef] [PubMed]
- Tavenner, M.K.; McDonnell, S.M.; Biddle, A.S. Development of the Equine Hindgut Microbiome in Semi-Feral and Domestic Conventionally-Managed Foals. Anim. Microbiome 2020, 2, 43. [Google Scholar] [CrossRef] [PubMed]
- Pribyl, A.L.; Parks, D.H.; Angel, N.Z.; Boyd, J.A.; Hasson, A.G.; Fang, L.; MacDonald, S.L.; Wills, B.A.; Wood, D.L.A.; Krause, L.; et al. Critical Evaluation of Faecal Microbiome Preservation Using Metagenomic Analysis. ISME Commun. 2021, 1, 14. [Google Scholar] [CrossRef]
- Bolt Botnen, A.; Bjørnsen, M.B.; Alberdi, A.; Gilbert, M.T.P.; Aizpurua, O. A Simplified Protocol for DNA Extraction from FTA Cards for Faecal Microbiome Studies. Heliyon 2023, 9, e12861. [Google Scholar] [CrossRef]
- Costea, P.I.; Zeller, G.; Sunagawa, S.; Pelletier, E.; Alberti, A.; Levenez, F.; Tramontano, M.; Driessen, M.; Hercog, R.; Jung, F.-E.; et al. Towards Standards for Human Fecal Sample Processing in Metagenomic Studies. Nat. Biotechnol. 2017, 35, 1069–1076. [Google Scholar] [CrossRef]
- Fiedorová, K.; Radvanský, M.; Němcová, E.; Grombiříková, H.; Bosák, J.; Černochová, M.; Lexa, M.; Šmajs, D.; Freiberger, T. The Impact of DNA Extraction Methods on Stool Bacterial and Fungal Microbiota Community Recovery. Front. Microbiol. 2019, 10, 821. [Google Scholar] [CrossRef] [PubMed]
- Van Lingen, H.J.; Edwards, J.E.; Vaidya, J.D.; Van Gastelen, S.; Saccenti, E.; Van Den Bogert, B.; Bannink, A.; Smidt, H.; Plugge, C.M.; Dijkstra, J. Diurnal Dynamics of Gaseous and Dissolved Metabolites and Microbiota Composition in the Bovine Rumen. Front. Microbiol. 2017, 8, 425. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.E.; Shetty, S.A.; van den Berg, P.; Burden, F.; van Doorn, D.A.; Pellikaan, W.F.; Dijkstra, J.; Smidt, H. Multi-Kingdom Characterization of the Core Equine Fecal Microbiota Based on Multiple Equine (Sub)Species. Anim. Microbiome 2020, 2, 6. [Google Scholar] [CrossRef] [PubMed]
- Janabi, A.H.D.; Kerkhof, L.J.; McGuinness, L.R.; Biddle, A.S.; McKeever, K.H. Comparison of a Modified Phenol/Chloroform and Commercial-Kit Methods for Extracting DNA from Horse Fecal Material. J. Microbiol. Methods 2016, 129, 14–19. [Google Scholar] [CrossRef] [PubMed]
Horse | Group | Sex | Breed | Age (Years) | Routine |
---|---|---|---|---|---|
1 | 1 | Mare | Irish draft X | 9 | Grazing 24/7, stabled for exercise. Fed Dengie Alfa A, Allen & Page Calm and Condition, TopSpec Cool Balancer, NAF Seaweed and Garlic Granules (once per day). Haylage when stabled. Hay in field. |
2 | 1 | Gelding | WB X | 8 | Grazing day, stabled at night w/haylage. Fed Spillers Conditioning Fibre and TopSpec UlsaKind Cubes (twice per day). |
3 | 1 | Gelding | Irish draft X | 15 | Grazing day, stabled at night w/ haylage. Fed TopSpec Comprehensive Feed Balancer, Speedibeet, NAF 5 Star Supaflex Joint Supplement (twice per day). |
4 | 1 | Mare | Irish Cob | 17 | Grazing 24/7 w/hay, stabled for exercise, fed Dengie HiFi Molasses Free and Allen & Page Veteran Vitality. Haylage when stabled (once per day). |
5 | 1 | Gelding | Haflinger | 11 | Grazing during day, stabled at night w/hay. FedTopspec Lite balancer and Topspec TopChop Zero and Linseed oil (twice per day). |
6 | 2 | Gelding | Shetland | 14 | Restricted grazing 24/7 with rationed hay access. Fed Baileys Fibre Plus Nuggets. |
7 | 2 | Gelding | Shetland | 14 | Restricted grazing 24/7 with rationed hay access. Fed Baileys Fibre Plus Nuggets. |
8 | 2 | Gelding | Shetland | 11 | Restricted grazing 24/7 with rationed hay access. Fed Baileys Fibre Plus Nuggets. |
9 | 2 | Gelding | Shetland | 13 | Restricted grazing 24/7 with rationed hay access. Fed Baileys Fibre Plus Nuggets. |
10 | 2 | Gelding | Shetland | 13 | Restricted grazing 24/7 with rationed hay access. Fed Baileys Fibre Plus Nuggets. |
2 | 3 (D1) | Gelding WB X 8 Grazing day, stabled at night w/haylage. Fed Spillers Conditioning Fibre and TopSpec UlsaKind Cubes (twice per day). | |||
3 (D2) | |||||
3 (D3) | |||||
3 (D4) | |||||
3 (D5) |
Taxa | Log Fold Change | SE | Wald’s Test Statistic | p-Value | q-Value | Differential to -80REF | |
---|---|---|---|---|---|---|---|
Group 1 | |||||||
Phylum | Fibrobacterota | −1.09 | 0.367 | −2.965 | 0.003 | 0.036 | FTA |
Family | Eubacteriaceae | 3.421 | 0.768 | 4.455 | <0.001 | <0.001 | FTA |
Group 2 | |||||||
Phylum | Bacteroidetes | −1.014 | 0.318 | −3.191 | 0.001 | 0.011 | FTA |
Spirochaetes | −2.368 | 0.373 | −6.351 | <0.001 | <0.001 | FTA | |
Fibrobacterota | −2.415 | 0.470 | −5.139 | <0.001 | <0.001 | FTA | |
Actinobacteria | 5.133 | 1.078 | 4.764 | <0.001 | <0.001 | FTA | |
Family | Spirochaetaceae | −2.368 | 0.433 | −5.464 | <0.001 | <0.001 | FTA |
p-251-o5 | −3.134 | 0.717 | −4.372 | <0.001 | <0.001 | FTA | |
Fibrobacteraceae | −2.415 | 0.519 | −4.651 | <0.001 | <0.001 | FTA | |
Coriobacteriales Incertae Sedis | 5.450 | 0.734 | 7.428 | <0.001 | <0.001 | FTA | |
Eubacteriaceae | 5.909 | 0.577 | 10.238 | <0.001 | <0.001 | FTA | |
Group 3 | |||||||
Phylum | Fibrobacterota | 0.641 | 0.194 | 3.308 | 0.001 | 0.010 | NAP |
Spirochaetes | −1.118 | 0.308 | −3.635 | <0.001 | 0.003 | FTA | |
Patescibacteria | 3.339 | 1.126 | 2.967 | 0.003 | 0.033 | CLX | |
Family | Spirochaetaceae | −1.1181 | 0.336 | −3.327 | 0.001 | 0.040 | FTA |
Taxa | Log Fold Change | SE | Wald’s Test Statistic | p-Value | q-Value | Differential to -80REF | |
---|---|---|---|---|---|---|---|
Group 1 | |||||||
Phylum | Proteobacteria | 5.771 | 0.957 | 6.033 | <0.001 | <0.001 | TP3CLX |
Family | Planococcaceae | 4.589 | 1.041 | 4.409 | <0.001 | 0.001 | TP3CLX |
4.372 | 1.041 | 4.201 | <0.001 | 0.003 | TP3COLD | ||
Moraxellaceae | 5.701 | 1.024 | 5.565 | <0.001 | <0.001 | TP3CLX | |
Clostridiaceae | 4.143 | 1.017 | 4.074 | <0.001 | 0.005 | TP3COLD | |
4.529 | 1.017 | 4.455 | <0.001 | 0.001 | TP3COLD | ||
Group 2 | |||||||
Phylum | Fibrobacterota | −5.683 | 1.25 | −4.546 | <0.001 | <0.001 | TP4COLD |
Bacteroidetes | −3.109 | 1.144 | −2.717 | 0.007 | 0.028 | TP2FTA | |
Proteobacteria | 2.745 | 0.762 | 3.603 | <0.001 | 0.008 | TP3CLX | |
5.148 | 0.762 | 6.758 | <0.001 | <0.001 | TP3COLD | ||
5.193 | 0.762 | 6.818 | <0.001 | <0.001 | TP4COLD | ||
Spirochaetes | −4.305 | 1.338 | −3.218 | 0.001 | 0.036 | TP1FTA | |
Family | Planococcaceae | 5.182 | 0.887 | 5.839 | <0.001 | <0.001 | TP3COLD |
Fibrobacteraceae | −5.683 | 1.332 | −4.266 | <0.001 | <0.001 | TP4COLD | |
Moraxellaceae | 4.799 | 0.862 | 4.807 | <0.001 | <0.001 | TP3COLD | |
4.142 | 0.862 | 4.807 | <0.001 | <0.001 | TP4COLD | ||
Clostridiaceae | 3.102 | 0.845 | 3.671 | <0.001 | 0.006 | TP3CLX | |
Group 3 | |||||||
Phylum | Actinobacteria | 3.315 | 0.781 | 4.246 | <0.001 | <0.001 | TP2FTA |
2.291 | 0.781 | 2.934 | 0.003 | 0.023 | TP3COLD | ||
2.952 | 0.781 | 3.782 | <0.001 | 0.001 | TP3FTA | ||
Family | Clostridiaceae | 2.919 | 0.963 | 3.032 | 0.002 | 0.046 | TP3CLX |
3.238 | 0.963 | 3.364 | 0.001 | 0.015 | TP4CLX | ||
3.099 | 0.963 | 3.219 | 0.001 | 0.024 | TP3COLD | ||
5.91 | 1.021 | 3.032 | <0.001 | <0.001 | TP4COLD | ||
[Eubacterium] coprostanoligenes group | 4.211 | 1.38 | 3.052 | 0.002 | 0.043 | TP2FTA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ward, A.B.; Harris, P.A.; Argo, C.M.; Watson, C.; Neacsu, M.; Russell, W.R.; Ribeiro, A.; Collie-Duguid, E.; Heidari, Z.; Morrison, P.K. Homemade Nucleic Acid Preservation Buffer Proves Effective in Preserving the Equine Faecal Microbiota over Time at Ambient Temperatures. Animals 2023, 13, 3107. https://doi.org/10.3390/ani13193107
Ward AB, Harris PA, Argo CM, Watson C, Neacsu M, Russell WR, Ribeiro A, Collie-Duguid E, Heidari Z, Morrison PK. Homemade Nucleic Acid Preservation Buffer Proves Effective in Preserving the Equine Faecal Microbiota over Time at Ambient Temperatures. Animals. 2023; 13(19):3107. https://doi.org/10.3390/ani13193107
Chicago/Turabian StyleWard, Ashley B., Patricia A. Harris, Caroline McG. Argo, Christine Watson, Madalina Neacsu, Wendy R. Russell, Antonio Ribeiro, Elaina Collie-Duguid, Zeynab Heidari, and Philippa K. Morrison. 2023. "Homemade Nucleic Acid Preservation Buffer Proves Effective in Preserving the Equine Faecal Microbiota over Time at Ambient Temperatures" Animals 13, no. 19: 3107. https://doi.org/10.3390/ani13193107
APA StyleWard, A. B., Harris, P. A., Argo, C. M., Watson, C., Neacsu, M., Russell, W. R., Ribeiro, A., Collie-Duguid, E., Heidari, Z., & Morrison, P. K. (2023). Homemade Nucleic Acid Preservation Buffer Proves Effective in Preserving the Equine Faecal Microbiota over Time at Ambient Temperatures. Animals, 13(19), 3107. https://doi.org/10.3390/ani13193107