UAV Assisted Livestock Distribution Monitoring and Quantification: A Low-Cost and High-Precision Solution
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Geolocations of Yak Extraction
2.4. GD Estimation
2.5. Yak Herds Dispersion
2.6. Distance between Herds and Campsites
2.7. Statistical Analysis
3. Results
3.1. GD Distribution within Pastures
3.2. DI of Yak Herds
3.3. Distance from Herds to the Campsites
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Ma, Q.; Chai, L.; Hou, F.; Chang, S.; Ma, Y.; Tsunekawa, A.; Cheng, Y. Quantifying Grazing Intensity Using Remote Sensing in Alpine Meadows on Qinghai-Tibetan Plateau. Sustainability 2019, 11, 417. [Google Scholar] [CrossRef]
- Wang, L.; Delgado-Baquerizo, M.; Wang, D.; Isbell, F.; Liu, J.; Feng, C.; Liu, J.; Zhong, Z.; Zhu, H.; Yuan, X.; et al. Diversifying Livestock Promotes Multidiversity and Multifunctionality in Managed Grasslands. Proc. Natl. Acad Sci. USA 2019, 116, 6187–6192. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.F.; Hou, Y.C.; Feng, Q.S.; Shi, J.J.; Dong, Q.M.; Ding, L.M.; Shang, Z.H. Study on Yak’s Grazing Behavior in Summer and Winter Pasture Using GPS and GIS Technology. J. Domest. Anim. Ecol. 2017, 38, 52–57. [Google Scholar]
- Ebrahimi, A.; Milotić, T.; Hoffmann, M. A Herbivore Specific Grazing Capacity Model Accounting for Spatio-Temporal Environmental Variation: A Tool for a More Sustainable Nature Conservation and Rangeland Management. Ecol. Model. 2010, 221, 900–910. [Google Scholar] [CrossRef]
- Xu, D.; Koper, N.; Guo, X. Quantifying the Influences of Grazing, Climate and Their Interactions on Grasslands Using Landsat TM Images. Grassl. Sci. 2018, 64, 118–127. [Google Scholar] [CrossRef]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global Food Demand and the Sustainable Intensification of Agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, A.; Bian, J. Simulation of the Grazing Effects on Grassland Aboveground Net Primary Production Using DNDC Model Combined with Time-Series Remote Sensing Data—A Case Study in Zoige Plateau, China. Remote Sens. 2016, 8, 168. [Google Scholar] [CrossRef]
- Xi, G.; Ma, C.; Xie, Y.; Guo, Z.; Bao, T.; Zhang, X.; Liu, Y.; Wang, H. Spatialization Method of Monitoring Grazing Intensity: A Case-Study of the Tibet Selinco Basin, Qinghai-Tibet Plateau. Land Degrad. Dev. 2023, 34, 1311–1322. [Google Scholar] [CrossRef]
- Cao, J.; Yeh, E.T.; Holden, N.M.; Qin, Y.; Ren, Z. The Roles of Overgrazing, Climate Change and Policy as Drivers of Degradation of China’s Grasslands. Nomadic Peoples 2013, 17, 82–101. [Google Scholar] [CrossRef]
- Li, W.; Liu, C.; Wang, W.; Zhou, H.; Xue, Y.; Xu, J.; Xue, P.; Yan, H. Effects of Different Grazing Disturbances on the Plant Diversity and Ecological Functions of Alpine Grassland Ecosystem on the Qinghai-Tibetan Plateau. Front. Plant Sci. 2021, 12, 765070. [Google Scholar] [CrossRef]
- Dai, L.; Guo, X.; Ke, X.; Zhang, F.; Li, Y.; Peng, C.; Shu, K.; Li, Q.; Lin, L.; Cao, G. Moderate Grazing Promotes the Root Biomass in Kobresia Meadow on the Northern Qinghai–Tibet Plateau. Ecol. Evol. 2019, 9, 9395–9406. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.; Liang, C.; Tang, Y.; Harker-Schuch, I.; Porter, J.R. Effects and Relationships of Grazing Intensity on Multiple Ecosystem Services in the Inner Mongolian Steppe. Sci. Total Environ. 2019, 675, 642–650. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Han, G.; Ohm, M.; Schönbach, P.; Gierus, M.; Taube, F. Do Sheep Grazing Patterns Affect Ecosystem Functioning in Steppe Grassland Ecosystems in Inner Mongolia? Agric. Ecosyst. Environ. 2015, 213, 1–10. [Google Scholar] [CrossRef]
- Sun, Y.; Angerer, J.P.; Hou, F.J. Effects of Grazing Systems on Herbage Mass and Liveweight Gain of Tibetan Sheep in Eastern Qinghai-Tibetan Plateau, China. Rangel. J. 2015, 37, 181–190. [Google Scholar] [CrossRef]
- Wesuls, D.; Pellowski, M.; Suchrow, S.; Oldeland, J.; Jansen, F.; Dengler, J. The Grazing Fingerprint: Modelling Species Responses and Trait Patterns along Grazing Gradients in Semi-Arid Namibian Rangelands. Ecol. Indic. 2013, 27, 61–70. [Google Scholar] [CrossRef]
- Nakano, T.; Bavuudorj, G.; Iijima, Y.; Ito, T.Y. Quantitative Evaluation of Grazing Effect on Nomadically Grazed Grassland Ecosystems by Using Time-Lapse Cameras. Agric. Ecosyst. Environ. 2020, 287, 106685. [Google Scholar] [CrossRef]
- Li, F.; Zheng, J.; Wang, H.; Luo, J.; Zhao, Y.; Zhao, R. Mapping Grazing Intensity Using Remote Sensing in the Xilingol Steppe Region, Inner Mongolia, China. Remote Sens. Lett. 2016, 7, 328–337. [Google Scholar] [CrossRef]
- Cheng, H.; Jin, B.; Luo, K.; Pei, J.; Zhang, X.; Zhang, Y.; Tang, J.; Yang, Q.; Sun, G. Vegetation Response to Goats Grazing Intensity in Semiarid Hilly Grassland of the Loess Plateau, Lanzhou, China. Sustainability 2021, 13, 3569. [Google Scholar] [CrossRef]
- Lei, G.; Li, A.; Zhang, Z.; Bian, J.; Hu, G.; Wang, C.; Nan, X.; Wang, J.; Tan, J.; Liao, X. The Quantitative Estimation of Grazing Intensity on the Zoige Plateau Based on the Space-Air-Ground Integrated Monitoring Technology. Remote Sens. 2020, 12, 1399. [Google Scholar] [CrossRef]
- Fuhlendorf, S.D.; Fynn, R.W.; McGranahan, D.A.; Twidwell, D. Heterogeneity as the Basis for Rangeland Management. In Rangeland Systems: Processes, Management and Challenges; Springer: Cham, Switzerland, 2017; pp. 169–196. [Google Scholar]
- Venter, Z.S.; Hawkins, H.-J.; Cramer, M.D. Cattle Don’t Care: Animal Behaviour Is Similar Regardless of Grazing Management in Grasslands. Agric. Ecosyst. Environ. 2019, 272, 175–187. [Google Scholar] [CrossRef]
- Lamoot, I.; Meert, C.; Hoffmann, M. Habitat Use of Ponies and Cattle Foraging Together in a Coastal Dune Area. Biol. Conserv. 2005, 122, 523–536. [Google Scholar] [CrossRef]
- Jewell, P.L.; Güsewell, S.; Berry, N.R.; Käuferle, D.; Kreuzer, M.; Edwards, P.J. Vegetation Patterns Maintained by Cattle Grazing on a Degraded Mountain Pasture. Bot. Helv. 2005, 115, 109–124. [Google Scholar] [CrossRef]
- Middleton, B.A.; Holsten, B.; Van Diggelen, R. Biodiversity Management of Fens and Fen Meadows by Grazing, Cutting and Burning. Appl. Veg. Sci. 2006, 9, 307–316. [Google Scholar] [CrossRef]
- Bailey, D.W.; Gross, J.E.; Laca, E.A.; Rittenhouse, L.R.; Coughenour, M.B.; Swift, D.M.; Sims, P.L. Mechanisms That Result in Large Herbivore Grazing Distribution Patterns. J. Range Manag. 1996, 49, 386–400. [Google Scholar] [CrossRef]
- Cooper, S.M.; Perotto-Baldivieso, H.L.; Owens, M.K.; Meek, M.G.; Figueroa-Pagán, M. Distribution and Interaction of White-Tailed Deer and Cattle in a Semi-Arid Grazing System. Agric. Ecosyst. Environ. 2008, 127, 85–92. [Google Scholar] [CrossRef]
- Barcella, M.; Filipponi, F.; Assini, S. A Simple Model to Support Grazing Management by Direct Field Observation. Agric. Ecosyst. Environ. 2016, 234, 107–117. [Google Scholar] [CrossRef]
- Chrétien, L.-P.; Théau, J.; Ménard, P. Visible and Thermal Infrared Remote Sensing for the Detection of White-Tailed Deer Using an Unmanned Aerial System. Wildl. Soc. Bull. 2016, 40, 181–191. [Google Scholar] [CrossRef]
- Sun, Y.; Yi, S.; Hou, F.; Luo, D.; Hu, J.; Zhou, Z. Quantifying the Dynamics of Livestock Distribution by Unmanned Aerial Vehicles (UAVs): A Case Study of Yak Grazing at the Household Scale. Rangel. Ecol. Manag. 2020, 73, 642–648. [Google Scholar] [CrossRef]
- Wang, D.; Song, Q.; Liao, X.; Ye, H.; Shao, Q.; Fan, J.; Cong, N.; Xin, X.; Yue, H.; Zhang, H. Integrating Satellite and Unmanned Aircraft System (UAS) Imagery to Model Livestock Population Dynamics in the Longbao Wetland National Nature Reserve, China. Sci. Total Environ. 2020, 746, 140327. [Google Scholar] [CrossRef]
- Guo, X.; Shao, Q.; Li, Y.; Wang, Y.; Wang, D.; Liu, J.; Fan, J.; Yang, F. Application of UAV Remote Sensing for a Population Census of Large Wild Herbivores—Taking the Headwater Region of the Yellow River as an Example. Remote Sens. 2018, 10, 1041. [Google Scholar] [CrossRef]
- Barbedo, J.G.A.; Koenigkan, L.V.; Santos, T.T.; Santos, P.M. A Study on the Detection of Cattle in UAV Images Using Deep Learning. Sensors 2019, 19, 5436. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Q.; Wang, L.; Wang, K.; Yang, Y.; Ma, T.; Wang, Z.; Zhang, X.; Ni, Z.; Hou, F.; Long, R. Yak Whole-Genome Resequencing Reveals Domestication Signatures and Prehistoric Population Expansions. Nat. Commun. 2015, 6, 10283. [Google Scholar] [CrossRef] [PubMed]
- Shao, B.; Long, R.; Ding, Y.; Wang, J.; Ding, L.; Wang, H. Morphological Adaptations of Yak (Bos grunniens) Tongue to the Foraging Environment of the Qinghai-Tibetan Plateau1. J. Anim. Sci. 2010, 88, 2594–2603. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.M.; Wang, Y.P.; Brosh, A.; Chen, J.Q.; Gibb, M.J.; Shang, Z.H.; Guo, X.S.; Mi, J.D.; Zhou, J.W.; Wang, H.C.; et al. Seasonal Heat Production and Energy Balance of Grazing Yaks on the Qinghai-Tibetan Plateau. Anim. Feed Sci. Technol. 2014, 198, 83–93. [Google Scholar] [CrossRef]
- Fernández-Giménez, M.E.; Allington, G.R.H.; Angerer, J.; Reid, R.S.; Jamsranjav, C.; Ulambayar, T.; Hondula, K.; Baival, B.; Batjav, B.; Altanzul, T.; et al. Using an Integrated Social-Ecological Analysis to Detect Effects of Household Herding Practices on Indicators of Rangeland Resilience in Mongolia. Environ. Res. Lett. 2018, 13, 075010. [Google Scholar] [CrossRef]
- Wei, W.R.; An, S.H.; Zheng, Q.Y.; Qin, M.S.; Chen, T. Structural changes in vegetation coincident with reseeding Elymus nutans can increase perceived predation risk of plateau pikas (Ochotona curzoniae). Appl. Anim. Behav. Sci. 2022, 255, 105745. [Google Scholar] [CrossRef]
- Yi, S. FragMAP: A Tool for Long-Term and Cooperative Monitoring and Analysis of Small-Scale Habitat Fragmentation Using an Unmanned Aerial Vehicle. Int. J. Remote Sens. 2017, 38, 2686–2697. [Google Scholar] [CrossRef]
- Fleming, C.H.; Calabrese, J.M. A New Kernel Density Estimator for Accurate Home-Range and Species-Range Area Estimation. Methods Ecol. Evol. 2017, 8, 571–579. [Google Scholar] [CrossRef]
- Fang, B.; Jiang, Y.; Cao, Y. A Study of Species Distribution Prediction Based on Kernel Density Estimation. Acad. J. Environ. Earth Sci. 2021, 3, 47–51. [Google Scholar]
- Hou, L.L.; Xin, X.P.; Sun, H.X.; Tao, Y.; Chen, J.Q.; Yan, R.R.; Zhang, X.; Shen, B.B.; Altome, A.I.A.; Hamed, Y.M.Z.; et al. Grazing-induced cattle behaviour modulates the secondary production in a Eurasian steppe ecosystem. Sci. Total Environ. 2023, 889, 16419. [Google Scholar] [CrossRef]
- Gerber, M.S. Predicting crime using twitter and Kernel Density Estimation. Decis. Support Sys. 2014, 61, 115–125. [Google Scholar] [CrossRef]
- Peng, J.; Zhao, S.; Liu, Y.; Tian, L. Identifying the Urban-Rural Fringe Using Wavelet Transform and Kernel Density Estimation: A Case Study in Beijing City, China. Environ. Modell. Softw. 2016, 83, 286–302. [Google Scholar] [CrossRef]
- García, R.T.; Lopez, M.F.; Pérez Sánchez, J.C.; Pérez Sánchez, R. The Kernel Density Estimation for the visualization of spatial patterns in urban studies. In Proceedings of the 15th International Multidisciplinary Scientific GeoConference, Albena, Bulgaria, 18–24 June 2015; pp. 867–874. [Google Scholar]
- Florek, M.; Hauser, H. Quantitative Data Visualization with Interactive KDE Surfaces. In Proceedings of the 26th Spring Conference on Computer Graphics—SCCG ′10, Budmerice, Slovakia, 13–15 May 2010; ACM Press: Budmerice, Slovakia, 2010; p. 33. [Google Scholar]
- Ding, L.M.; Long, R.J.; Shang, Z.H.; Wang, C.T.; Yang, Y.H.; Xu, S.H. Feeding Behaviour of Yaks on Spring, Transitional, Summer and Winter Pasture in the Alpine Region of the Qinghai–Tibetan Plateau. Appl. Anim. Behav. Sci. 2008, 111, 373–390. [Google Scholar]
- Lichman, M.; Smyth, P. Modeling Human Location Data with Mixtures of Kernel Densities. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; Association for Computing Machinery: New York, NY, USA, 2014; pp. 35–44. [Google Scholar]
- Feng, B.F.; Zhao, X.Q.; Dong, Q.M.; Xu, S.X.; Zhao, L.; Cao, J.H. The Effect of Feed Supplementing and Processing on the Live-Weight Gain of Tibetan Sheep during the Cold Season on the Qinghai-Tibetan Plateau. J. Anim. Vet. Adv. 2013, 12, 208–211. [Google Scholar]
- Venter, Z.S.; Hawkins, H.-J.; Cramer, M.D. Implications of Historical Interactions between Herbivory and Fire for Rangeland Management in African Savannas. Ecosphere 2017, 8, e01946. [Google Scholar] [CrossRef]
- Teitelbaum, C.S.; Mueller, T. Beyond Migration: Causes and Consequences of Nomadic Animal Movements. Trends Eco. Evol. 2019, 34, 569–581. [Google Scholar] [CrossRef] [PubMed]
- Porensky, L.M.; Veblen, K.E. Generation of Ecosystem Hotspots Using Short-Term Cattle Corrals in an African Savanna. Rangel. Ecol. Manag. 2015, 68, 131–141. [Google Scholar] [CrossRef]
- Odadi, W.O.; Riginos, C.; Rubenstein, D.I. Tightly Bunched Herding Improves Cattle Performance in African Savanna Rangeland. Rangel. Ecol. Manag. 2018, 71, 481–491. [Google Scholar] [CrossRef]
- Samuels, I.; Cupido, C.; Swarts, M.B.; Palmer, A.R.; Paulse, J.W. Feeding Ecology of Four Livestock Species under Different Management in a Semi-Arid Pastoral System in South Africa. Afr. J. Range For. Sci. 2016, 33, 1–9. [Google Scholar] [CrossRef]
- Berger-Tal, O.; Blumstein, D.T.; Carroll, S.; Fisher, R.N.; Mesnick, S.L.; Owen, M.A.; Saltz, D.; St Claire, C.C.; Swaisgood, R.R. A Systematic Survey of the Integration of Animal Behavior into Conservation. Conserv. Biol. 2016, 30, 744–753. [Google Scholar] [CrossRef]
- Mueller, T.; Olson, K.A.; Dressler, G.; Leimgruber, P.; Fuller, T.K.; Nicolson, C.; Novaro, A.J.; Bolgeri, M.J.; Wattles, D.; DeStefano, S.; et al. How Landscape Dynamics Link Individual- to Population-Level Movement Patterns: A Multispecies Comparison of Ungulate Relocation Data. Glob. Ecol. Biogeogr. 2011, 20, 683–694. [Google Scholar] [CrossRef]
- Ge, Z.; Liu, Q.-X. Foraging Behaviours Lead to Spatiotemporal Self-Similar Dynamics in Grazing Ecosystems. Ecol. Lett. 2022, 25, 378–390. [Google Scholar] [CrossRef] [PubMed]
- Fleming, C.H.; Fagan, W.F.; Mueller, T.; Olson, K.A.; Leimgruber, P.; Calabrese, J.M. Rigorous Home Range Estimation with Movement Data: A New Autocorrelated Kernel Density Estimator. Ecology 2015, 96, 1182–1188. [Google Scholar] [CrossRef] [PubMed]
- Aublet, J.F.; Festa-Bianchet, M.; Bergero, D.; Bassano, B. Temperature Constraints on Foraging Behaviour of Male Alpine Ibex (Capra ibex) in Summer. Oecologia 2009, 159, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Tsedan, G.; Fan, Q.; Wang, S.; Wang, Z.; Chang, S.; Hou, F. Behavioral Patterns of Yaks (Bos grunniens) Grazing on Alpine Shrub Meadows of the Qinghai-Tibetan Plateau. Appl. Anim. Behav. Sci. 2021, 234, 105182. [Google Scholar] [CrossRef]
- Huang, X.; Mi, J.; Denman, S.E.; Basangwangdui; Pingcuozhandui; Zhang, Q.; Long, R.; McSweeney, C.S. Changes in Rumen Microbial Community Composition in Yak in Response to Seasonal Variations. J. Appl. Microbiol. 2022, 132, 1652–1665. [Google Scholar] [CrossRef] [PubMed]
- Molvar, E.M.; Bowyer, R.T. Costs and Benefits of Group Living in a Recently Social Ungulate: The Alaskan Moose. J. Mammal. 1994, 75, 621–630. [Google Scholar] [CrossRef]
- Bonar, M.; Lewis, K.P.; Webber, Q.M.R.; Dobbin, M.; Laforge, M.P.; Vander Wal, E. Geometry of the Ideal Free Distribution: Individual Behavioural Variation and Annual Reproductive Success in Aggregations of a Social Ungulate. Ecol. Lett. 2020, 23, 1360–1369. [Google Scholar] [CrossRef]
- Abram, P.K.; Boivin, G.; Moiroux, J.; Brodeur, J. Behavioural Effects of Temperature on Ectothermic Animals: Unifying Thermal Physiology and Behavioural Plasticity. Biol. Rev. 2017, 92, 1859–1876. [Google Scholar] [CrossRef]
- Liu, P.P.; Ding, L.M.; Zhou, Y.Q.; Jing, X.P.; Degen, A.A. Behavioural Characteristics of Yaks Grazing Summer and Winter Pastures on the Qinghai-Tibetan Plateau. Appl. Anim. Behav. Sci. 2019, 218, 104826. [Google Scholar] [CrossRef]
- Terekhina, A.; Filippova, V.; Volkovitskiy, A.; Shklyar, K.; Orekhov, P.; Sokolova, N.; Abdulmanova, S.; Sokolov, A. Influence of Indigenous Herding Activities on the Spatio-Temporal Distribution of Reindeer during the Summer-Autumn Period: Case from Yamal, Russia. Hum. Ecol. 2022, 51, 21–34. [Google Scholar] [CrossRef]
- Kang, Y.-J.; Noh, Y.; Lim, O.-K. Kernel Density Estimation with Bounded Data. Struct. Multidisc. Optim. 2018, 57, 95–113. [Google Scholar] [CrossRef]
- Chen, L.; Huang, X.; Zhang, H. Modeling the Charging Behaviors for Electric Vehicles Based on Ternary Symmetric Kernel Density Estimation. Energies 2020, 13, 1551. [Google Scholar] [CrossRef]
- Rivero, M.J.; Grau-Campanario, P.; Mullan, S.; Held, S.D.E.; Stokes, J.E.; Lee, M.R.F.; Cardenas, L.M. Factors Affecting Site Use Preference of Grazing Cattle Studied from 2000 to 2020 through GPS Tracking: A Review. Sensors 2021, 21, 2696. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, J.; Xin, X.; Wang, M.; Pan, F.; Yan, R.; Li, L. Effects of Stocking Rate on the Interannual Patterns of Ecosystem Biomass and Soil Nitrogen Mineralization in a Meadow Steppe of Northeast China. Plant Soil 2022, 473, 9–31. [Google Scholar] [CrossRef]
Pastures | Area (ha) | ~Yak Number (Head) | Monitoring Period (in 2017) |
---|---|---|---|
1 | 49.10 | 235 | July–September |
2 | 68.66 | 188 | April–October |
3 | 113.61 | 200 | April–October |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, W.; Luo, Y.; Liao, Y.; Wu, W.; Wei, X.; Yang, Y.; He, X.Z.; Shen, Y.; Ma, Q.; Yi, S.; et al. UAV Assisted Livestock Distribution Monitoring and Quantification: A Low-Cost and High-Precision Solution. Animals 2023, 13, 3069. https://doi.org/10.3390/ani13193069
Ji W, Luo Y, Liao Y, Wu W, Wei X, Yang Y, He XZ, Shen Y, Ma Q, Yi S, et al. UAV Assisted Livestock Distribution Monitoring and Quantification: A Low-Cost and High-Precision Solution. Animals. 2023; 13(19):3069. https://doi.org/10.3390/ani13193069
Chicago/Turabian StyleJi, Wenxiang, Yifei Luo, Yafang Liao, Wenjun Wu, Xinyi Wei, Yudie Yang, Xiong Zhao He, Yutong Shen, Qingshan Ma, Shuhua Yi, and et al. 2023. "UAV Assisted Livestock Distribution Monitoring and Quantification: A Low-Cost and High-Precision Solution" Animals 13, no. 19: 3069. https://doi.org/10.3390/ani13193069
APA StyleJi, W., Luo, Y., Liao, Y., Wu, W., Wei, X., Yang, Y., He, X. Z., Shen, Y., Ma, Q., Yi, S., & Sun, Y. (2023). UAV Assisted Livestock Distribution Monitoring and Quantification: A Low-Cost and High-Precision Solution. Animals, 13(19), 3069. https://doi.org/10.3390/ani13193069