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Simple Summary: We proposed a pragmatic method for quantifying the grazing density (GD) and
herding proximities (HP) based on unmanned aerial vehicles. We further tested its feasibility at three
typical household pastures on the Qinghai-Tibetan Plateau, China. The proposed method is ideal
for studying animal behavior and determining the correlation between the distribution of pastoral
livestock and resource usability.

Abstract: Grazing management is one of the most widely practiced land uses globally. Quantifying
the spatiotemporal distribution of livestock is critical for effective management of livestock-grassland
grazing ecosystem. However, to date, there are few convincing solutions for livestock dynamic
monitor and key parameters quantification under actual grazing situations. In this study, we proposed
a pragmatic method for quantifying the grazing density (GD) and herding proximities (HP) based
on unmanned aerial vehicles (UAVs). We further tested its feasibility at three typical household
pastures on the Qinghai-Tibetan Plateau, China. We found that: (1) yak herds grazing followed
a rotational grazing pattern spontaneously within the pastures, (2) Dispersion Index of yak herds
varied as an M-shaped curve within one day, and it was the lowest in July and August, and (3) the
average distance between the yak herd and the campsites in the cold season was significantly shorter
than that in the warm season. In this study, we developed a method to characterize the dynamic GD
and HP of yak herds precisely and effectively. This method is ideal for studying animal behavior
and determining the correlation between the distribution of pastoral livestock and resource usability,
delivering critical information for the development of grassland ecosystem and the implementation
of sustainable grassland management.

Keywords: herding proximities; reasonable management; dispersion degree; kernel density estima-
tion; precision livestock; farming animal husbandry

1. Introduction

Grasslands account for about a quarter of the ground surface worldwide, and managed
grazing on the natural rangeland is the most extensive and efficient utilization form [1,2].
Reasonable grazing management could improve grassland productivity, maintain and
enhance biodiversity, and increase the income of local herders [3–5]. However, the increas-
ing human disturbance and climate change have caused multiple ecological problems [6],
such as grassland degradation, exotic species invasion, and catastrophic loss of carbon
reserves [7–9]. It is essential to improve grazing management to regulate excessive pressure
and maintain the multifunctionality of grassland ecosystems [2,10].

Grazing density (GD, also referred to as stock density) monitoring and efficiency
evaluation are the key steps to improve the management of grassland [11,12]. Although,
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the controlled-grazing experiments have been conducted intensively in the steppe and
alpine meadow ecosystems in northwestern China [13,14], while it has been acknowledged
that there is big gap between real-world conditions and control experiments. Unlike the
designed experiments, GD under real-world conditions have rarely been quantified because
of the limitations of efficient monitor technology and available data. Some studies have
focused on quantifying GD through vegetation indices and ground observation visually
or by using time-lapse cameras [15–17], while some other researchers have attempted to
quantify GD only by the remote sensing indices [1,17,18]. However, these studies usually
provide rough estimates based on some specific indicators, which may not be sufficient for
precise and reasonable management of grassland. Recently, Lei et al. [19] tried to produce
quantitative GD based on GPS collars and kernel density estimation (KDE) methods, while
the representativeness could be limited (though the temporal resolution is very high).

Developments in rangeland management have highlighted the crucial role of manag-
ing the spatial and temporal distribution of ungulate herbivory to uphold the ecosystem
services and support the biodiversity conservation [20,21]. It is generally acknowledged
that unlike the fence-controlled grazing, herbivores grazing freely tend to concentrate
grazing in specific areas of the pasture because of the variability in both the quantity and
quality of herbage [22], which could result in localized overgrazing while leaving other
areas of the pasture underutilized [23]. Thus, spatiotemporal heterogeneity in pastures
can pose limitations on the use of grazing as a management tool for animal husbandry
production and conservation [24], and managing the distribution of herbivores is a major
issue facing rangeland managers [25,26]. Some studies have been conducted to depict the
spatiotemporal distribution of herbivores, e.g., Barcella et al. [27] mapped the locations of
animal by direct field observation, where data points are firstly hand-painted on a paper
chart and subsequently vectorized as geographic elements in GIS, and their movements
are then marked by different polygons; Nakano et al. [16] monitored the herbivores by
time-lapse camera within approximately 0.034 ha. These studies attempted to provide
basic concepts and methods of the distribution of herbivores. However, their methods are
featured with low efficiency and precision because of the visual error and complicated
data processing. In recent years, the unmanned aerial vehicle (UAV) technology develops
rapidly, which provides a novel tool for animal monitoring [28–30]. Researchers have
utilized UAVs to monitor ungulate herbivores and tried to identify individuals based on
the aerial images [29,31,32]. Unfortunately, few studies have revealed the dynamic herd
movements and herding proximities (HP). Therefore, a new convincing and herd-based
(opposed to individual-based) method is urgently needed for evaluating the spatiotemporal
heterogeneity and social relation of herbivores, and UAVs provide a potential opportunity.

The Qinghai-Tibetan Plateau (QTP) is the largest and highest plateau that is known as
the Third Pole, and grazing is the main management and utilization form for grasslands
on the QTP [33]. The yak, featured with exceptional adaptability to the alpine environ-
ment [34,35], is one of the most important herbivores on the QTP, providing food and
economical sources for the locals. Alpine grassland is the most extensive vegetation type,
while 90% of them have degraded to a different extent [10,31]. The Rangeland Contract
Responsibility System (RCRS) was introduced to the QTP in 1980s, leading to household
pastures becoming the primary unit for management and utilization of alpine grasslands [9].
The major characteristic of this management method is that livestock graze during the
day and are confined to a campsite at night, resulting in a radial grazing intensity gradi-
ent [29,36]. In this study, at three typical household pastures on the QTP, we monitored
yak herds dynamically and proposed a method for calculating GD and spatiotemporal
distribution of yaks. The specific objectives were to: (1) generate GD with the herd-based
monitoring of UAV at the household scale; (2) characterize the spatiotemporal distribution
of yak herds based on GD, and (3) analyze the variations of dispersion degree of yaks
during daytime, months, and whole grazing seasons. The pasture monitoring and data
analysis with the proposed methods are critical to improve our understanding of distribu-
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tion pattern and social relations of livestock, which helps rationalize grazing management
and promote the sustainable development of alpine grassland ecosystem.

2. Materials and Methods
2.1. Study Area

This study was carried out at Azi Research Station, Maqu County, Gansu Province,
China (Figure 1a), located in the east of the QTP (101◦52′07.9” E, 33◦24′24.1” N) with
an altitude of 3540 m above sea level and featured with the typical plateau continental
climate. The annual average temperature is approximately 1.1 ◦C, and the average annual
rainfall is approximately 620 mm, mostly occurring from June to September [1,14]. The
soil type is alpine meadow soil. The vegetation is typical alpine meadow dominated by
monocotyledonous plants such as Poaceae (e.g., Festuca ovina, Poa poophagorum, etc.) and
Cyperaceae (e.g., Carex kansuensis and Kobresia graminifolia). Some dicotyledonous species
such as Ranunculaceae, Asteraceae, and Scrophulariaceae are also common [37].

Figure 1. Study area on the Qinghai-Tibetan Plateaus (a) and the orthophotos of Pasture 3 (b). Lines
indicate ranch borders and black circles represent campsites of each pasture.

2.2. Experimental Design

Three typical household pastures around Azi research station were selected (Table 1).
These pastures featured with gentle topography (slope < 5◦) and were managed similarly,
that is, yaks move back to the campsites at night and graze freely within the pasture during
the daytime, while the time of pastures transitions were different.

Table 1. Area and monitoring period of three pastures that were selected for the experiments.

Pastures Area (ha) ~Yak Number (Head) Monitoring Period (in 2017)

1 49.10 235 July–September
2 68.66 188 April–October
3 113.61 200 April–October

Note: the yak number are approximate values as they are always change due to calves’ birth, and adults were
sold or killed by the pastoralists (or killed by wolves).

From April to October in 2017, yak herds of three pastures were monitored (4 or
more days/month). A DJI Phantom 3 Pro (equipped with a 12-megapixel RGB camera,
DJI Innovation Company, China) was utilized to track and monitor the herds during the
grazing periods with one (or two, occasionally) aerial photographs taken per hour for each
herd, that is, the aerial photographs cover all the yak within each pasture by adjusting
the flight height and shooting angle. The suitable height was 80–150 m, and the angle
could be rectified by the following “Geolocations of yak extraction” processes. The aerial
photographs ranging from 10 and 15 per monitoring day were taken, which depended on
the actual managements of herders (Figure A1).
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2.3. Geolocations of Yak Extraction

In order to pinpoint the geolocations of individual yaks accurately from the aerial pho-
tographs, we employed the MOSAIC flight mode to collect overlapping aerial photographs
(this work was only used to obtain the base map of each pasture; overlapping was 60%,
the height was 150 m, and the resolution was ~7 cm using Phantom 3 Pro in this study),
which were subsequently processed to generate georeferenced orthomosaics of the pastures
(e.g., Figure 1b). Briefly, FragMAP software [38] (installed and operated on Huawei M5,
Shenzhen, China) was used to acquire the overlapping aerial photographs automatically,
and then Pix4Dmapper software (Lausanne, Switzerland) was utilized to preprocess and
generate the orthophotos of the pastures.

Yaks are commonly black or black-white, with a body length ranging from 1 to 3 m
(for both calves and adults). In an RGB aerial photograph taken by UAVs, yaks are typically
represented as dark or white squares, occupying tens or hundreds of pixels (depending on
size, image resolution, flight height parameters, etc.). Meanwhile, grasslands are generally
depicted as green (warm season) or yellow (cold season), which makes it feasible to identify
yaks on the grassland based on the colors and pixel count.

To extract the geolocations of yaks efficiently, the combination of georeferencing and
image recognition was employed in this study [29]: (1) aerial photograph was orthorectified
according to the georeferenced orthomosaic, using at least 10 reference points in ArcGIS
(Version 10.2.2); (2) the adjusted photograph was cropped using the minimum bounding
rectangle (MBR) of the herd to remove invalid information; (3) spatial extent of the MBR
(latitude and longitude information for the top left point and bottom right point) was saved
as a TXT file; (4) geolocations of yaks were extracted automatically using HerdCounter (a
Java-based software to recognize and count the number of yaks in the orthorectified images,
Java version should be 1.8.0_191 or higher), and the latitude and longitude of individual
yaks were saved as CSV files in text form, and (5) the yak location points were loaded and
compared with the georeferenced monitoring photos (Figure 2).

Figure 2. Locating of yaks. (a) Original aerial photograph of yak herd; (b) geometric correction of
aerial photograph in ArcGIS; (c) trimmed aerial photograph of yak herd; (d) location of each yak
by HerdCounter, which is an independently developed Java software using OpenCV library; and
(e) verification of yak locations in ArcGIS.

2.4. GD Estimation

Kernel density estimation method has been widely used in the field for species distribu-
tion prediction [39,40]. This method is generally used as a mathematical tool for estimating
the probability density function of the entire population based on field samples [41–43]. It
assumes that there is a measurable event density or intensity within a given region, which
can be estimated by counting the number of event points within a certain area surrounding
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it. In other words, by placing kernel function at each event point, the intensity in any place
can be calculated by considering the influence of all kernel functions within the region.
However, what we expect is not a traditional probability surface but an intensity surface of
practical significance. In this study, the integral of single kernel function was redefined as
the GD caused by a yak within an hour in the pasture.

Based on these foundations, we developed a method to estimate the GD at the house-
hold scale based on the KDE method:

GD(x, y) =
3∑n

i=1 K(x− xi, y− yi)

sT f πh2 A (1)

where GD (x, y) represents the GD at point (x, y); s is the area of the designated pasture
measured in hectares; T is the annual grazing time of the pasture in days; f is the number of
times that UAV sampling is conducted to track herds in a collecting day; h is the bandwidth
measured in meters; n is the number of sample points falling within the circle with the
bandwidth as its radius at point (x, y); xi and yi represent the position of the ith data point in
the projected coordinate system, which is measured in meters; A is an optional adjustment
factor used in the monthly estimation of GD, with a default value of 1, and K represents a
radial basis function whose value decreases as the distance between the unknown point
and samples increases. In this study, the radial basis function is based on the triangle kernel
function and is calculated as Formula (2) [44]:

K(x− xi, y− yi) = 1−

∣∣∣∣√(x− xi)
2 + (y− yi)

2
∣∣∣∣

h
(2)

A spatial resolution of 1 m was used in generating the GD map. Furthermore, the
choice of bandwidth, a key parameter in KDE [45], was considered for the movement of
individual yaks. Based on previous research [46], the hourly yak movement radius is 300 m,
which was selected as the bandwidth. Actually, UAV monitoring was only carried out for
4–5 days per month, and thus an adjustment factor A was introduced, which is determined
by the ratio of the total number of days in the month sampled to the number of monitoring
days. The default value of A is 1 in Formula (1) for day-by-day and hour-by-hour GD
estimations.

2.5. Yak Herds Dispersion

In this study, the threshold segmentation was utilized to calculate the Dispersion Index
(DI) of yak herds. Given that yaks are social animals and tend to graze in groups, the radius
of the herd is usually within the bandwidth (the farthest distance traveled in one hour).
According to the principles of KDE, greater density values can be attained in positions
where the point distribution is dense [47]. Therefore, by appropriately dividing the cone at
a certain height, the area of the resulting segmented horizontal face can effectively represent
the dispersion degree of the yak herd. In this study, DI was defined as the area of the region
that exceeded the threshold after the segmentation process, and the threshold was set at
75% of the GD range.

2.6. Distance between Herds and Campsites

For each monitoring time, the Euclidean distances between GD peak and the campsites
were measured. As yaks tend to display synchronous behavior patterns, we identified the
actual locations of each herd by selecting the position with the highest hourly GD. It is
worth noting that the distance measurements within the campsites were excluded in the
calculations of daily averages.

2.7. Statistical Analysis

The calculations for GD, DI, and the distances between yak herds and campsites were
performed using Python (version 3.10) in PyCharm software (version 2021.3.1 Community
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Edition). The normality of the data was tested using the Shapiro–Wilk test. Quadratic
polynomial regression was used to explore the daily DI variation. To test for differences
among average DI values across multiple monitoring months, we conducted one-way
ANOVA, and due to unequal monitoring days in each month, we used the Duncan post-
test to test the differences among months. Independent t-tests were used to estimate the
significance of differences between the distances of yaks from the campsite during the
cold season (CS; April, May, and October) and warm season (WS; June to August). All
significance tests were two-tailed, with a significance level set at p < 0.05 to denote statistical
significance. The statistical analyses were conducted using IBM SPSS (version 26) and
GraphPad Prism (version 9.3, GraphPad Prism Software Inc., San Diego, CA, USA).

3. Results
3.1. GD Distribution within Pastures

In Pasture 1, the GD peak was primarily located around the campsite, with a slight
northward spread in July and August (Figure 3a,b), and the GD peak shifted a little to the south
in September (Figure 3c). Differently, Pastures 2 and 3 were grazed since April, and exhibited a
similar tendency in their GD peak movements, i.e., the GD peaks were around the campsites
and then shifted to other locations. One distinct feature was that the GD peaks of different
months were spread over the pastures without overlapping (Figures A2 and A3).
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Figure 3. Grazing density (GD) estimation in Pasture 1 in July (a), August (b), and September (c) 2017.
The black stars stand for the location of campsites.

In Pastures 2 and 3, yak herds were observed to spread over the pastures during both
warm and cold seasons. Meanwhile, the GD was found to be heterogeneous with two or three
peaks without overlap in the pastures (except the campsite areas, Figures 4 and 5). Throughout
the grazing period, there were two GD peaks within pastures, e.g., the campsites and the other
one kept some distances from the campsites (Figures 4 and 5).
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Figure 4. Grazing density distribution within Pastures 2 and 3 in warm (July–August) and cold
season (April, May, and October), and the whole grazing period. (a–c) GD distribution in warm, cold,
and whole season in Pasture 2; (d–f) GD distribution in warm, cold, and whole season in Pasture 3;
the pasture’s southwest corner was set as the coordinate system’s origin, and surface projections are
shown on the top. Black star is the location of the campsite. The black stars stand for the location of
campsites.
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3.2. DI of Yak Herds

The daily DI followed an M-shaped curve, i.e., with peaks occurring around 9 a.m.
and 4 p.m. and lower values at noon and the periods of start and end of grazing. However,
this tendency was not significant for Pasture 1 (Figure A4). Regarding the monthly Dis,
no significant difference was found between July and September in Pasture 1 (Figure 6a).
However, for Pastures 2 and 3, the highest Dis were observed in September/October (cold
season), while the lowest Dis were in July and August (warm season) (Figure 6b,c).
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3.3. Distance from Herds to the Campsites

The yaks grazed during July and September in Pasture 1, and the herd was distributed
around the campsite (Figure 3). In Pastures 2 and 3, the yaks grazed during April and
October, and the average distance between herds and campsites during the warm season
was significantly longer than that during the cold season (Figures 5 and 7, p = 0.0042 and
0.0404 for Pastures 2 and 3, respectively).
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4. Discussion

Livestock grazing plays an important role in ecosystem conservation and socioeco-
nomic development, especially for the alpine grassland ecosystem on the QTP [48]. Though
many studies have been conducted on grazing management, the significant effects of
herding behavior on foraging patterns and GD spatiotemporal heterogeneity of herbivore
herds have been perceived less evidently [49], and lacking the convincing approach may
be the major factor. For example, the GD measurements under real-world conditions are
traditionally based on a limited number of samples (e.g., the GPS collar or monitoring
some individuals visually; the samples are usually limited by financial support and labor
input) and conventional statistical methods [21,29]. In addition, those methods are often
hard to adequately reflect the dispersion variations that are usually ignored [50]. In this
study, we propose a method for calculating the GD, DI, and the distances between herds
and campsites of herbivore herds based on UAV track monitoring and the KDE algorithm.
One of the advantages of the herd-based observation is that the overall distribution of the
herds could be captured directly.

To our knowledge, this study is the first to document the variations in the heterogeneity
of spatiotemporal distribution of yak herds, GD, and DI under real-word conditions.
The GD peaks of different months and seasons were spread over the pastures without
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overlap, and the GDs were heterogeneous featured with two or three peaks without overlap
(Figures 4 and 5). The characteristics of GD imply that yaks preferred to graze in areas with
lower GD in the previous period (e.g., one month interval in this study). On the one hand,
it is inconsistent with the consensus that the herbivores repeatedly visit palatable patches
when they are managed by season-long grazing or free grazing [21,51], while our findings
also align with the conclusion of a previous study [52] that augmenting animal densities
through herding (opposed to fencing) will lead to a decrease in the selectivity for palatable
grass species in the savanna. Similarly, Samuels et al. [53] find that herded sheep exhibit
reducing consumption of annual herbs but increasing consumption of non-succulent shrubs
than the scattered sheep. The possible reason could be that herding at large spatial scales
allows animals to traverse a variety of vegetation communities, preventing prolonged stays
in any particular type [21]. On the other hand, the distribution of GD peaks followed
a rotational grazing pattern spontaneously, which suggests that yaks can regulate their
behaviors according to the changes in pasture conditions [29,46].

Animal behavior, as an outcome of intricate gene–environment interactions, serves as
an intermediary factor linking anthropogenic disturbances to the fitness of animals [54].
As individual dispersal remains a central part in population dynamics and an extensively
discussed topic in management programs [54], the evaluation of herding proximities has
both theoretical and practical applications in the realms of grazing management and animal
behavior [55–57]. In this study, threshold segmentation was firstly utilized to measure the
DI, and it was an efficient indicator for analyzing the social relationship among herbivores.
The daily DI featured with two peaks in the morning and the afternoon, and a trough at
noon, which is consistent with the findings in previous studies. This M-shaped variation is
believed to be associated with the foraging behaviors of ruminants, who typically forage in
the morning and afternoon and engage in rumination at midday [35,58,59]. Moreover, the
daily variations fluctuated modestly in July and August could be that yaks may not need to
occupy a large area when food is plentiful in July and August [58,60]. Conversely, the yak
herd usually kept a higher DI level in October when the forage resources become scarce, and
yaks graze over larger areas to meet individual feeding requirements [35]. This behavior
could be attributed to the rise in intraspecific competition for foraging with increasing
herd density [61], and individuals may be stimulated by this competition to devote more
time in grazing or increase intraspecific aggression. Furthermore, it could indicate that
yaks significantly reduce their ruminations or resting time and increase walking time when
forage quality is poor, in order to feed as much as possible to satisfy their basic energy
demands [59]. DI in June and September were significantly higher than that in July and
August (Figure 4), indicating that yaks tend to aggregate during the periods with higher
temperature, which is inconsistent with the study of Bai et al. [3]. This result could be
explained by the forage availability [60]. Therefore, it is necessary to explore the influence
of feeding demands, ambient temperature, and human activities on herd dispersion and
other animal behavior in the future studies [62].

Seasonal rotational grazing is the most common grazing management method on
the QTP since the introduction of RCRS in 1980s [29], thus a radial grazing pattern be-
comes common because livestock engage in daytime grazing activities but are penned
into a designated campsite overnight [36]. Different from the speculative or descriptive
conclusion in the previous studies, we firstly depict the “piosphere” (an important natural
phenomenon for the ecology and management of grasslands) based on actual measured
values and specific algorithm (Figure 4). It provides an important potential way to study
the interaction between herbivores and grassland, and one important practical application
is the appropriate allocation of pastures, that is in general, herbage availability is regarded
as the most important factor for pastures separation, while animal behavior is often ig-
nored [63,64]. In the current studies, herds–campsite distance is considered as a “response
to grassland condition” [29,65]. In this study, we find that the distance to the campsites
in CS was significantly shorter than that in WS, which is inconsistent with the general
cognition that animals would graze farther areas to obtain more forage. One possible
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reason could be that the tradeoff between energy accumulation and consumption [27,35,64],
that is, the long period and spread over grazing within the pastures (Pasture 2 and 3),
resulted in low forage availability. More important is that the herds could realize this
and react accordingly. Moreover, the huge differences of GD, DI, and distance from the
campsites indicate that manage pattern (especially the grazing period in this study) could
affect the herd behavior significantly, implying that monitoring the herds’ behavior and
further formulating reasonable manage patterns is necessary and urgent.

In this study, we introduced a herd-based method to quantify GD precisely and
efficiently, taking into account the DI of the herbivores. Unlike the commonly utilized
monitoring methods that estimate animal activities basing on indirect evidence only from
some individuals, the UAV-based method considers data collected from the entire animal
herd for analyses. However, we realize that the KDE method may underestimate GD
systematically due to the boundary effects [66]. Several solutions have been proposed such
as the boundary symmetry method [67], and it is necessary to explore the appropriate
algorithm for the practical applications in the future studies. In addition, GD-based
threshold segmentation was used to calculate DI, which facilitated the quantification of
herd dispersion. Nevertheless, obtaining more data is crucial for accurate assessment
and generalized conclusions, as it is crucial to note that the dynamics of animal behavior
vary across spatiotemporal scales and manage patterns [25,62]. Indeed, there are some
uncertainties regarding the direct application of our study’s results to other conditions
(e.g., different vegetation type, animal species and composition, environmental conditions,
and landforms), thus more monitored pastures and surveys may also enhance the validity
of our findings. Furthermore, the herd-based geolocation (i.e., forage selection results
are predominantly determined by optimizing the ratio between energy uptake and cost
considerations) should be employed to determine the pastures’ allocation of a rotational
grazing system on the QTP, providing insights into the reasonable utilization management
of grasslands [62]—for instance, the total CS area confirmation and whether it is necessary
to be separated, which would be important for survival of livestock in the harsh natural
environment and sustainable development of local husbandry on the QTP. Meanwhile, the
severe challenge could be how to implement the proposed method at a larger scale, and
how to explore the potential influences of external factors [68,69].

In summary, the herd-based method offers distinct advantages in accurately quan-
tifying GD and DI and also provides a foundation for further exploration of herd social
relationships and potential environmental impacts. Meanwhile, the systematic underes-
timation of the KDE method, limited monitoring data, and herd concentration shift may
impact the generalizability of results. Thus, future research could refine dispersion indices
to account for partial concentration and develop more precise algorithms for determining
the herd’s center of distribution.

5. Conclusions

The UAV-based nonintrusive monitoring approach proposed in this study is capable
of depicting the GD and DI distribution of the livestock and expands the scope of livestock
behavior investigation from individual-level analysis to a herd-level perspective. The
spatiotemporal distribution of GDs indicates that the utilization of pasture is akin to a
“rotational grazing” regime during the whole grazing season. The M-shaped variation
of DI corresponds to the daily foraging behavior patterns, implying that it may fulfill
a vital role in predicting dynamics and social relations and how livestock respond to
environmental changes. Meanwhile, it will be necessary to address certain limitations,
such as more accurate species extraction algorithms and the systematic underestimation of
two-dimensional KDE. Additionally, research on the relationships between herd dynamics
and biotic and abiotic factors would be extremely valuable for the sustainable development
of grassland ecosystems.
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