Diagnostic Efficacy of Plasma-Based Real-Time PCR for Schistosomiasis Japonica in Mice before and after Treatment with Praziquantel
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Parasites and Animals
2.2. Sample Collection
2.3. DNA Extraction
2.4. Preparation of Soluble Egg Antigen (SEA)
2.5. The qPCR Assay
2.6. Detection of Schistosomiasis Japonica in Mice with qPCR
2.7. qPCR Analysis of Infected Mice after PZQ Treatment
2.8. Enzyme-linked Immunosorbent Assay (ELISA) Analysis of Infected Mice after PZQ Treatment
2.9. Data Analysis
3. Results
3.1. Detection of Mouse Schistosomiasis Japonica with the qPCR Assay
3.2. qPCR Detection of Schistosomiasis Japonica in Mice after PZQ Treatment
3.3. ELISA Detection of Mice Schistosomiasis Japonica after PZQ Treatment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- LoVerde, P.T. Schistosomiasis. Adv. Exp. Med. Biol. 2019, 1154, 45–70. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.J.; Xu, Z.M.; Yang, F.; Dang, H.; Li, Y.L.; Lu, S.; Cao, C.L.; Xu, J.; Li, S.Z.; Zhou, X.N. Endemic status of schistosomiasis in People’s Republic of China in 2020. Zhongguo Xue Xi Chong Bing. Fang. Zhi Za Zhi 2021, 33, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Guo, Q.; Fu, Z.; Liu, J.; Lin, J.; Xiao, K.; Sun, P.; Cong, X.; Liu, R.; Hong, Y. Reviews and advances in diagnostic research on Schistosoma japonicum. Acta Trop. 2021, 213, 105743. [Google Scholar] [CrossRef] [PubMed]
- Lv, C.; Deng, W.; Wang, L.; Qin, Z.; Zhou, X.; Xu, J. Molecular Techniques as Alternatives of Diagnostic Tools in China as Schistosomiasis Moving towards Elimination. Pathogens 2022, 11, 287. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chen, L.; Yin, X.; Hua, W.; Hou, M.; Ji, M.; Yu, C.; Wu, G. Application of DNA-based diagnostics in detection of schistosomal DNA in early infection and after drug treatment. Parasit. Vectors 2011, 4, 164. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.M.; Rong, R.; Lu, Z.X.; Shi, C.J.; Xu, J.; Zhang, H.Q.; Gong, W.; Luo, W. Schistosoma japonicum: A PCR assay for the early detection and evaluation of treatment in a rabbit model. Exp. Parasitol. 2009, 121, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Cai, P.; Weerakoon, K.G.; Mu, Y.; Olveda, R.M.; Ross, A.G.; Olveda, D.U.; McManus, D.P. Comparison of Kato Katz, antibody-based ELISA and droplet digital PCR diagnosis of schistosomiasis japonica: Lessons learnt from a setting of low infection intensity. PLoS Negl. Trop. Dis. 2019, 13, e0007228. [Google Scholar] [CrossRef]
- Guo, Q.; Chen, C.; Zhou, K.; Li, Y.; Tong, L.; Yue, Y.; Zhou, K.; Liu, J.; Fu, Z.; Lin, J.; et al. Evaluation of a real-time PCR assay for diagnosis of schistosomiasis japonica in the domestic goat. Parasit. Vectors 2020, 13, 535. [Google Scholar] [CrossRef]
- Zhao, X.; Gu, K.; Zeng, Q.; Gao, L.; Cheng, D. Diagnostic Value of SjR2 Gene in Colonic Tissue from Schistosoma Japonicum Infected Hosts. Med. Sci. Monit. 2019, 25, 427–435. [Google Scholar] [CrossRef]
- Kato-Hayashi, N.; Leonardo, L.R.; Arevalo, N.L.; Tagum, M.N.; Apin, J.; Agsolid, L.M.; Chua, J.C.; Villacorte, E.A.; Kirinoki, M.; Kikuchi, M.; et al. Detection of active schistosome infection by cell-free circulating DNA of Schistosoma japonicum in highly endemic areas in Sorsogon Province, the Philippines. Acta Trop. 2015, 141 Pt B, 178–183. [Google Scholar] [CrossRef]
- Xu, J.; Rong, R.; Zhang, H.Q.; Shi, C.J.; Zhu, X.Q.; Xia, C.M. Sensitive and rapid detection of Schistosoma japonicum DNA by loop-mediated isothermal amplification (LAMP). Int. J. Parasitol. 2010, 40, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Rosser, A.; Rollinson, D.; Forrest, M.; Webster, B.L. Isothermal Recombinase Polymerase amplification (RPA) of Schistosoma haematobium DNA and oligochromatographic lateral flow detection. Parasit. Vectors 2015, 8, 446. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Sun, A.; Zhang, M.; Gao, F.; Han, Y.; Fu, Z.; Shi, Y.; Lin, J. Proteomics analysis of differentially expressed proteins in schistosomula and adult worms of Schistosoma japonicum. Acta Trop. 2013, 126, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Shao, B.; Gui, X.; Lu, Z.; Lv, R.; Li, H.; Lu, K.; Hong, Y.; Fu, Z.; Jin, Y.; Lin, J.; et al. Praziquantel promotes protection against Schistosoma japonicum infection in mice. Acta Tropica 2023, 241, 106874. [Google Scholar] [CrossRef] [PubMed]
- Das, D.; Namboodiri, S. Selection of a suitable paper membrane for Loop Mediated Isothermal DNA amplification reaction (LAMP) in a point-of-care diagnostic kit-Experimental and CFD analysis. Chem. Eng. Sci. 2021, 229, 116130. [Google Scholar] [CrossRef]
- WHO. Ending the Neglect to Attain the Sustainable Development Goals—A Road Map for Neglected Tropical Diseases 2021–2030; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Ramirez-Castillo, F.Y.; Loera-Muro, A.; Jacques, M.; Garneau, P.; Avelar-Gonzalez, F.J.; Harel, J.; Guerrero-Barrera, A.L. Waterborne pathogens: Detection methods and challenges. Pathogens 2015, 4, 307–334. [Google Scholar] [CrossRef]
- Zhu, Y.C. Immunodiagnosis and its role in schistosomiasis control in China: A review. Acta Trop. 2005, 96, 130–136. [Google Scholar] [CrossRef]
- Sun, K.; Xing, W.; Yu, X.; Fu, W.; Wang, Y.; Zou, M.; Luo, Z.; Xu, D. Recombinase polymerase amplification combined with a lateral flow dipstick for rapid and visual detection of Schistosoma japonicum. Parasit. Vectors 2016, 9, 476. [Google Scholar] [CrossRef]
- Aula, O.P.; McManus, D.P.; Jones, M.K.; You, H.; Cai, P.; Gordon, C.A. Optimisation of the DNA dipstick as a rapid extraction method for Schistosoma japonicum in infected mice samples and spiked human clinical samples. Infect. Dis. Poverty 2023, 12, 71. [Google Scholar] [CrossRef]
- Mesquita, S.G.; Lugli, E.B.; Matera, G.; Fonseca, C.T.; Caldeira, R.L.; Webster, B. Development of real-time and lateral flow recombinase polymerase amplification assays for rapid detection of Schistosoma mansoni. Front. Microbiol. 2022, 13, 1043596. [Google Scholar] [CrossRef]
- Kumagai, T.; Matsumoto-Takahashi, E.L.A.; Ishikawa, H.; Keomalaphet, S.; Khattignavong, P.; Soundala, P.; Hongvanthong, B.; Oyoshi, K.; Sasaki, Y.; Mizukami, Y.; et al. Detection of Schistosoma mekongi DNA in Human Stool and Intermediate Host Snail Neotricula aperta via Loop-Mediated Isothermal Amplification Assay in Lao PDR. Pathogens 2022, 11, 1413. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.J.; Zheng, H.J.; Xu, J.; Zhu, X.Q.; Wang, S.Y.; Xia, C.M. Sensitive and specific target sequences selected from retrotransposons of Schistosoma japonicum for the diagnosis of schistosomiasis. PLoS Negl. Trop. Dis. 2012, 6, e1579. [Google Scholar] [CrossRef] [PubMed]
Number of Worms (n) | Number of Samples | Positive Samples | Positive Rate (95%CI) |
---|---|---|---|
n ≤ 10 | 44 | 43 | 97.7% (87.98–99.94%) |
20 ≥ n > 10 | 32 | 32 | 100% (89.11–100%) |
40 ≥ n > 20 | 43 | 43 | 100% (91.78–100%) |
80 ≥ n > 40 | 19 | 19 | 100% (82.35–100%) |
n > 80 | 15 | 15 | 100% (78.20–100%) |
Total | 153 | 152 | 99.3% (96.41–99.98%) |
BALB/c Mice | 1 w | 2 w | 3 w | 4 w | 5 w | 6 w | NOW | EPG in Liver |
---|---|---|---|---|---|---|---|---|
1 | − | + | + | − | − | − | 0 | 179 ± 78 |
2 | + | + | + | + | + | − | 0 | 1264 ± 1086 |
3 | + | + | + | − | − | − | 0 | 1772 ± 468 |
4 | + | + | − | − | − | − | 0 | 305 ± 305 |
5 | + | + | + | − | − | − | 0 | 896 ± 784 |
6 | + | + | − | − | − | − | 0 | 1762 ± 549 |
7 | + | + | − | − | − | − | 3 ♂ | 2643 ± 1242 |
8 | + | + | + | − | − | − | 0 | 1766 ± 629 |
9 | + | + | − | − | − | − | 0 | 4349 ± 167 |
10 | − | − | − | − | − | − | 0 | 0 |
11 | − | + | − | − | − | − | 2 ♂ | 0 |
12 | + | − | + | + | − | − | 2 ♂ | 3528 ± 349 |
13 | + | + | − | − | − | − | 3 ♂ | 3746 ± 1782 |
14 | + | − | + | + | + | − | 0 | 465 ± 101 |
15 | + | + | + | − | + | − | 0 | 1355 ± 753 |
16 | + | − | + | − | − | − | 0 | 4111 ± 1135 |
17 | + | + | + | + | − | − | 0 | 3362 ± 776 |
18 | + | + | − | + | + | − | 0 | 1969 ± 731 |
19 | + | − | + | − | − | − | 1 ♂ | 4075 ± 1282 |
20 | + | + | − | + | − | − | 3 ♂ | 3476 ± 1706 |
21 | + | − | + | + | − | − | 0 | 3149 ± 1864 |
22 | + | − | − | − | − | − | 0 | 2848 ± 237 |
23 | + | + | + | − | − | − | 0 | 299 ± 259 |
Positive rate | 87.0% | 70.0% | 56.5% | 30.4% | 17.4% | 0 |
BALB/c Mice | 1 w | 2 w | 3 w | 4 w | 5 w | 6 w | NOW | EPG in Liver |
---|---|---|---|---|---|---|---|---|
1 | + | + | + | − | − | − | 0 | 2993 ± 333 |
2 | + | + | + | − | − | − | 3 ♂ | 3098 ± 406 |
3 | + | + | − | + | + | − | 0 | 3058 ± 172 |
4 | + | + | − | − | − | − | 0 | 1772 ± 145 |
5 | + | + | − | + | − | − | 2 ♂ | 5017 ± 1430 |
6 | + | + | + | − | − | − | 2 ♂ | 7988 ± 2005 |
7 | + | + | + | − | − | − | 0 | 3041 ± 2066 |
8 | + | + | + | − | − | − | 1 ♂ | 2374 ± 936 |
9 | + | + | − | − | − | − | 0 | 2130 ± 1217 |
10 | + | + | + | − | − | − | 0 | 3523 ± 370 |
11 | + | + | − | − | − | − | 2 ♂ | 2773 ± 1001 |
12 | + | + | − | + | + | − | 0 | 1995 ± 794 |
13 | + | + | − | + | − | − | 0 | 2044 ± 1230 |
14 | + | + | − | + | − | − | 0 | 6833 ± 1477 |
15 | + | + | + | − | − | − | 1 ♂ | 4077 ± 1698 |
Positive rate | 100.0% | 100.0% | 46.7% | 33.3% | 13.3% | 0 |
Infected with 10 Cercariae | Infected with 40 Cercariae | No Infection | ||||
---|---|---|---|---|---|---|
ELISA | qPCR | ELISA | qPCR | ELISA | qPCR | |
Number of samples | 23 | 23 | 15 | 15 | 10 | 10 |
Positive samples | 15 | 0 | 14 | 0 | 0 | 0 |
Positive rate | 65.20% | 0 | 93.30% | 0 | 0 | 0 |
Negative rate | 34.80% | 100.00% | 6.70% | 100.00% | \ | \ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Zhou, X.; Guo, Q.; Lv, C.; Tang, Y.; Guo, Q.; Chen, Y.; Zhou, K.; Fu, Z.; Liu, J.; et al. Diagnostic Efficacy of Plasma-Based Real-Time PCR for Schistosomiasis Japonica in Mice before and after Treatment with Praziquantel. Animals 2023, 13, 3068. https://doi.org/10.3390/ani13193068
Chen C, Zhou X, Guo Q, Lv C, Tang Y, Guo Q, Chen Y, Zhou K, Fu Z, Liu J, et al. Diagnostic Efficacy of Plasma-Based Real-Time PCR for Schistosomiasis Japonica in Mice before and after Treatment with Praziquantel. Animals. 2023; 13(19):3068. https://doi.org/10.3390/ani13193068
Chicago/Turabian StyleChen, Cheng, Xue Zhou, Qinghong Guo, Chao Lv, Yalan Tang, Qingqing Guo, Yang Chen, Kerou Zhou, Zhiqiang Fu, Jinming Liu, and et al. 2023. "Diagnostic Efficacy of Plasma-Based Real-Time PCR for Schistosomiasis Japonica in Mice before and after Treatment with Praziquantel" Animals 13, no. 19: 3068. https://doi.org/10.3390/ani13193068
APA StyleChen, C., Zhou, X., Guo, Q., Lv, C., Tang, Y., Guo, Q., Chen, Y., Zhou, K., Fu, Z., Liu, J., Lin, J., Hong, Y., & Chen, J.-H. (2023). Diagnostic Efficacy of Plasma-Based Real-Time PCR for Schistosomiasis Japonica in Mice before and after Treatment with Praziquantel. Animals, 13(19), 3068. https://doi.org/10.3390/ani13193068