Can the Inclusion of a Vegetable Biocholine Additive in Pig Feed Contaminated with Aflatoxin Reduce Toxicological Impacts on Animal Health and Performance?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Product VB
2.2. Aflatoxin Production and Analysis
2.3. Animals and Experimental Design
2.4. Growth Performance
2.5. Sample Collection
2.6. Hemogram
2.7. Serum Biochemical Indices
2.8. Oxidizing and Antioxidant Status
2.9. Organ Weight and Histopathology
2.10. Statistical Analyses
3. Results
3.1. Biocholine
3.2. Growth Performance
3.3. Serum Biochemical Indices
3.4. Hemogram
3.5. Serum, Blood, and Tissue Antioxidant Responses
3.6. Carcass Yield and Liver and Spleen Weight
3.7. Histopathology
3.8. Mycotoxin Analysis in Feed
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Analyte | MRM Transition | Dwell Time (s) | Cone Voltage (V) | Collision Energy (eV) |
---|---|---|---|---|
Aflatoxin B1 | 313.2 > 285.2 | 0.01 | 50 | 23 |
313.2 > 241.2 | 40 | |||
Aflatoxin B2 | 315.2 > 287.2 | 0.01 | 50 | 26 |
315.2 > 259.2 | 28 | |||
Aflatoxin G1 | 329.2 > 243.2 | 0.01 | 40 | 25 |
392.2 > 283.2 | 25 | |||
Aflatoxin G2 | 331.2 > 245.2 | 0.01 | 45 | 30 |
331.2 > 257.2 | 30 |
References
- Alvarenga, A.L.N.; Chiarini-Garcia, H.; Cardeal, P.C.; Moreira, L.P.; Foxcroft, G.R.; Fontes, D.O.; Almeida, F.R.C.L. Intra-uterine growth retardation affects birthweight and postnatal development in pigs, impairing muscle accretion, duodenal mucosa morphology and carcass traits. Reprod. Fertil. Dev. 2013, 25, 387–395. [Google Scholar] [CrossRef]
- Eulalio, D.K.; Rodrigues, M.P.; Serafim, A.R.S.; Leitão, D.F.G.M.; Keller, K.M. Contaminação por micotoxinas em matérias-primas e rações destinadas à suinocultura de minas gerais. In Congresso Abraves; Associação Brasileira de Veterinários Especialistas em Suínos: Concórdia, Brazil, 2015; pp. 218–220. [Google Scholar]
- Kummer, R.; Gonçalves, M.A.D.; Lippke, R.T.; Marques, B.M.F.; Mores, T.J. Fatores que influenciam o desempenho dos leitões na fase de creche. Acta Sci. Vet. 2009, 37, 195–209. [Google Scholar]
- Girolami, F.; Barbarossa, A.; Badino, P.; Ghadiri, S.; Cavallini, D.; Zaghini, A.; Nebbia, C. Effects of Turmeric Powder on Aflatoxin M1 and Aflatoxicol Excretion in Milk from Dairy Cows Exposed to Aflatoxin B1 at the EU Maximum Tolerable Levels. Toxins 2022, 14, 430. [Google Scholar] [CrossRef]
- Dilkin, P. Micotoxicose suína: Aspectos preventivos, clínicos e patológicos. Biológico 2002, 64, 187–191. [Google Scholar]
- Schell, T.C.; Lindemann, M.D.; Kornegay, E.T.; Blodgett, D.J.; Doerr, J.A. Effectiveness of different types of clay for reducing the detrimental effects of aflatoxin-contaminated diets on performance and serum profiles of weanling pigs. J. Anim. Sci. 1993, 71, 1226–1231. [Google Scholar] [CrossRef]
- Sharma, R.P. Immunotoxicity of mycotoxins. J. Dairy Sci. 1993, 76, 892–897. [Google Scholar] [CrossRef]
- Mallmann, C.; Dilkin, P. Mycotoxins and Mycotoxicosis in Swine; Special Nutrients; Kansas State University: Miami, FL, USA, 2011; pp. 80–81. [Google Scholar]
- Liu, B.H.; Yu, F.Y.; Chan, M.H.; Yang, Y.L. The effects of mycotoxins, fumonisin B1 and aflatoxin B1, on primary swine alveolar macrophages. Toxicol. Appl. Pharmacol. 2002, 180, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Santurio, J.M. Micotoxinas e micotoxicoses nos suínos. Acta Sci. Vet. 2007, 35, S1–S8. [Google Scholar]
- Meissonnier, G.M.; Laffitte, J.; Loiseau, N.; Benoit, E.; Raymond, I.; Pinton, P.; Galtier, P. Selective impairment of drug-metabolizing enzymes in pig liver during subchronic dietary exposure to aflatoxin B1. Food Chem. Toxicol. 2007, 45, 2145–2154. [Google Scholar] [CrossRef]
- Souza, C.F.; Baldissera, M.D.; Baldisserotto, B.; Petrolli, T.G.; Da Glória, E.M.; Zanette, R.A.; Da Silva, A.S. Dietary vegetable choline improves hepatic health of Nile tilapia (Oreochromis niloticus) fed aflatoxin-contaminated diet. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2020, 227, 108614. [Google Scholar] [CrossRef]
- Dazuk, V.; Boiago, M.M.; da Rosa, G.; Alba, D.F.; Souza, C.F.; Baldissera, M.D.; Da Silva, A.S. Vegetable biocholine as a hepatoprotectant in laying hens fed with diet contaminated with aflatoxin B1. World Mycotoxin J. 2021, 14, 367–377. [Google Scholar] [CrossRef]
- Kupke, I.R.; Zeugner, S. Quantitative high-performance thin-layer chromatography of lipids in plasma and liver homogenates after direct application of 0.5-microliter samples to the silica-gel layer. J. Chromatogr. 1978, 146, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Rostagno, H.S.; Albino, L.F.T.; Donzele, J.L.; Gomes, P.C.; De Oliveira, R.F.; Lopes, D.C.; Ferreira, A.S.; de Barreto, S.L.T. Composição de alimentos e exigências nutricionais. In Tabelas brasileiras Para Aves e Suínos; Universidade Federal de Viçosa: Viçosa, Brazil, 2017. [Google Scholar]
- Lucas, A.M.; Jamroz, C. Atlas of Avian Hematology; US Department of Agriculture: Washington, DC, USA, 1961; p. 271.
- Mannervik, B.; Guthenberg, C. Glutathione transferase (human placenta). Methods Enzymol. 1981, 77, 231–235. [Google Scholar] [PubMed]
- Marklund, S.; Marklund, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 1974, 47, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine, 4th ed.; Oxford University Press: New York, NY, USA, 2007. [Google Scholar]
- Miranda, K.M.; Espey, M.G.; Wink, D.A. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 2001, 5, 62–71. [Google Scholar] [CrossRef]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1978, 95, 351–358. [Google Scholar] [CrossRef]
- Jentzsch, A.M.; Bachmann, H.; Fürst, P.; Biesalski, H.K. Improved analysis of malondialdehyde in human body fluids. Free Radic. Biol. Med. 1996, 20, 251–256. [Google Scholar] [CrossRef]
- Southern, L.L.; Brown, D.R.; Werner, D.D.; Fox, M.C. Excess supplemental choline for swine. J. Anim. Sci. 1986, 62, 992–996. [Google Scholar] [CrossRef]
- Derilo, Y.L.; Balnave, D. The choline and sulphur amino acid requirements of broiler chickens fed on semi-purified diets. Br. Poult. Sci. 1980, 21, 479–487. [Google Scholar] [CrossRef]
- Alba, D.F.; Favaretto, J.A.; Marcon, H.; Saldanha, T.F.; Leal, K.W.; Campigoto, G.; Souza, C.F.; Baldissera, M.D.; Bianchi, A.E.; Vedovatto, M.; et al. Vegetable biocholine supplementation in pre-and postpartum Lacaune sheep: Effects on animal health, milk production and quality. Small Rumin. Res. 2020, 190, 106165. [Google Scholar] [CrossRef]
- Baldissera, M.D.; Souza, C.F.; Baldisserotto, B.; Zimmer, F.; Paiano, D.; Petrolli, T.G.; Da Silva, A.S. Vegetable choline improves growth performance, energetic metabolism, and antioxidant capacity of fingerling Nile tilapia (Oreochromis niloticus). Aquaculture 2019, 501, 224–229. [Google Scholar] [CrossRef]
- Leal, K.W.; Alba, D.F.; Cunha, M.G.; Marcon, H.; Oliveira, F.C.; Wagner, R.; Dilva, A.D.; Lopes, T.F.; De Jesus, L.S.B.; Schetinger, M.R.C.; et al. Effects of biocholine powder supplementation in ewe lambs: Growth, rumen fermentation, antioxidant status, and metabolism. Biotechnol. Rep. 2021, 29, e00580. [Google Scholar] [CrossRef] [PubMed]
- Cullen, J.M.; Newberne, P.M. Hepatotoxicidade aguda de aflatoxinas. In A Toxicologia Das Aflatoxinas; Academic Press: Cambridge, MA, USA, 1994; pp. 3–26. [Google Scholar]
- Zain, M.E. Impact of mycotoxins on humans and animals. J. Saudi Chem. Soc. 2011, 15, 129–144. [Google Scholar] [CrossRef]
- González, F.H.D. Introdução à Bioquímica Clínica Veterinária, 2nd ed.; UFRGS: Porto Alegre, Brazil, 2006; p. 360. [Google Scholar]
- Alves-Bezerra, M.; Cohen, D.E. Triglyceride Metabolism in the Liver. Compr. Physiol. 2017, 8, 1–8. [Google Scholar] [CrossRef]
- Tung, H.-T.; Donaldson, W.E.; Hamilton, P.B. Altered lipid transport during aflatoxicosis. Toxicol. Appl. Pharmacol. 1972, 22, 97–104. [Google Scholar] [CrossRef]
- Muller, L.K.F.; Paiano, D.; Gugel, J.; Lorenzetti, W.R.; Santurio, J.M.; De Tavernari, C.F.; Da Gloria, E.M.; Baldissera, M.D.; Da Silva, A.S. Post-weaning piglets fed with different levels of fungal mycotoxins and spray-dried porcine plasma have improved weight gain, feed intake and reduced diarrhea incidence. Microb. Pathog. 2018, 117, 259–264. [Google Scholar] [CrossRef]
- Murphy, K. Imunobiologia de Janeway-8; Artmed Editora: Porto Alegre, Brazil, 2014. [Google Scholar]
- Migliorini, M.J.; Da Silva, A.S.; Santurio, J.M.; Bottari, N.B.; Gebert, R.R.; Reis, J.H.; Boiago, M.M. The Protective effects of an adsorbent against oxidative stress in quails fed aflatoxin-contaminated diet. Acta. Sci. Vet. 2017, 45, 1–7. [Google Scholar] [CrossRef]
- Santurio, J.M. Micotoxinas e micotoxicoses na avicultura. Braz. J. Poult. Sci. 2000, 2, 1–12. [Google Scholar] [CrossRef]
- Shane, S.M. Economic issues associated with aflatoxins. In The Toxicology of Aflatoxins; Academic Press: Cambridge, MA, USA, 1994; pp. 513–527. [Google Scholar]
Items, (g/kg as Feed Base) | Pre-Initial I | Pre-Initial II | Initial I |
---|---|---|---|
Ground corn, 7.8% CP | 400 | 500 | 650 |
Soybean meal, 46% CP | 100 | 250 | 300 |
Pre-initial base mix I 1 | 500 | - | - |
Pre-initial base mix II 2 | - | 250 | - |
Initial base mix I 3 | - | - | 50 |
Calculated composition, (as feed base) | |||
Crude protein (g/kg) | 202 | 203 | 199 |
Metabolizable energy (Mcal/kg) | 3.52 | 3.43 | 3.36 |
Calcium (g/kg) | 6.80 | 7.02 | 7.01 |
Available phosphorus (g/kg) | 3.39 | 3.56 | 3.38 |
Digestible lysine (g/kg) | 14.5 | 13.5 | 12.8 |
Digestible methionine (g/kg) | 5.85 | 5.14 | 4.78 |
Digestible threonine (g/kg) | 1.16 | 1.08 | 1.02 |
Treatments 2 | SEM | p-Values 3 | ||||||
---|---|---|---|---|---|---|---|---|
Variables 1 | Afla0VB0 | Afla500VB0 | Afla0VB800 | Afla500VB800 | Afla × VB | Afla | VB | |
DWG, kg | ||||||||
d 1 to 10 | 0.172 a | 0.130 b | 0.156 ab | 0.180 a | 0.01 | <0.01 | 0.40 | 0.16 |
d 1 to 20 | 0.335 a | 0.281 b | 0.293 ab | 0.306 ab | 0.01 | 0.05 | 0.29 | 0.64 |
d 1 to 30 | 0.410 a | 0.332 b | 0.353 b | 0.360 b | 0.02 | 0.03 | 0.05 | 0.43 |
d 11 to 20 | 0.497 | 0.432 | 0.430 | 0.431 | 0.03 | 0.28 | 0.30 | 0.28 |
d 21 to 30 | 0.536 a | 0.416 b | 0.453 b | 0.451 b | 0.02 | 0.02 | 0.01 | 0.30 |
d 31 to 41 | 0.651 | 0.639 | 0.535 | 0.633 | 0.04 | 0.21 | 0.32 | 0.17 |
d 1 to 41 | 0.468 a | 0.397 b | 0.392 b | 0.423 ab | 0.03 | 0.01 | 0.01 | 0.12 |
DFI, kg | ||||||||
d 1 to 10 | 0.295 a | 0.245 b | 0.258 ab | 0.293 a | 0.02 | 0.04 | 0.71 | 0.77 |
d 1 to 20 | 0.465 | 0.408 | 0.412 | 0.437 | 0.03 | 0.14 | 0.56 | 0.65 |
d 1 to 30 | 0.662 a | 0.583 b | 0.553 b | 0.580 b | 0.04 | 0.05 | 0.22 | 0.39 |
d 11 to 20 | 0.633 | 0.572 | 0.558 | 0.583 | 0.04 | 0.27 | 0.63 | 0.41 |
d 21 to 30 | 0.998 a | 0.760 b | 0.795 b | 0.815 b | 0.07 | 0.05 | 0.13 | 0.30 |
d 31 to 41 | 1.181 a | 1.050 b | 1.017 b | 1.072 ab | 0.06 | 0.07 | 0.49 | 0.21 |
d 1 to 41 | 0.801 a | 0.708 b | 0.677 b | 0.712 b | 0.05 | 0.05 | 0.12 | 0.36 |
FCR | ||||||||
d 1 to 10 | 1.703 | 1.915 | 1.683 | 1.645 | 0.10 | 0.23 | 0.40 | 0.17 |
d 1 to 20 | 1.383 | 1.472 | 1.402 | 1.437 | 0.06 | 0.63 | 0.28 | 0.88 |
d 1 to 30 | 1.605 | 1.627 | 1.570 | 1.611 | 0.06 | 0.87 | 0.59 | 0.67 |
d 11 to 20 | 1.273 | 1.345 | 1.301 | 1.357 | 0.06 | 0.88 | 0.29 | 0.74 |
d 21 to 30 | 1.835 | 1.818 | 1.762 | 1.818 | 0.10 | 0.73 | 0.85 | 0.73 |
d 31 to 41 | 1.820 | 1.673 | 1.932 | 1.707 | 0.09 | 0.68 | 0.06 | 0.45 |
d 1 to 41 | 1711 | 1.783 | 1.727 | 1.683 | 0.07 | 0.51 | 0.79 | 0.25 |
Treatments 2 | SEM | p-Values 3 | |||||
---|---|---|---|---|---|---|---|
Variables 1 | Afla0VB0 (n = 6) | Afla500VB0 (n = 6) | Afla0VB800 (n = 6) | Afla500VB800 (n = 6) | Afla× | VB× | |
Day | Day | ||||||
ALT (U/L) | <0.01 | 0.15 | |||||
d 1 | 17.45 | 19.36 | 17.38 | 18.95 | 1.61 | ||
d 10 | 21.26 | 21.57 | 21.45 | 21.39 | 1.62 | ||
d 20 | 26.76 b | 35.74 a | 33.45 | 29.05 | 1.62 | ||
d 30 | 27.43 b | 42.57 a | 37.95 | 32.05 | 1.62 | ||
d 40 | 32.26 | 34.24 | 36.45 | 30.05 | 1.62 | ||
AST (U/L) | <0.01 | 0.23 | |||||
d 1 | 38.14 | 35.74 | 36.45 | 38.10 | 2.47 | ||
d 10 | 44.12 | 43.54 | 44.22 | 43.45 | 2.66 | ||
d 20 | 39.96 b | 56.38 a | 47.72 | 48.61 | 2.66 | ||
d 30 | 41.96 b | 64.88 a | 58.72 | 48.11 | 2.66 | ||
d 40 | 41.79 b | 53.21 a | 49.22 | 45.78 | 2.66 | ||
Total protein (mg/dL) | 0.87 | 0.02 | |||||
d 1 | 5.10 | 4.72 | 5.29 | 4.23 | 0.33 | ||
d 10 | 5.08 | 4.70 | 5.58 a | 4.20 b | 0.33 | ||
d 20 | 6.44 | 6.07 | 6.39 | 6.13 | 0.24 | ||
d 30 | 6.03 | 5.88 | 5.86 | 6.06 | 0.24 | ||
d 40 | 6.22 | 6.28 | 6.27 | 6.23 | 0.24 | ||
Albumin (mg/dL) | 0.28 | 0.38 | |||||
d 1 | 3.00 | 2.82 | 2.77 | 3.05 | 0.18 | ||
d 10 | 2.99 | 2.83 | 2.78 | 3.05 | 0.18 | ||
d 20 | 2.80 | 2.98 | 2.86 | 2.92 | 0.13 | ||
d 30 | 3.13 | 3.43 | 3.41 | 3.16 | 0.13 | ||
d 40 | 2.71 | 3.05 | 2.88 | 2.88 | 0.13 | ||
Globulin (mg/dL) | 0.95 | <0.01 | |||||
d 1 | 2.03 | 1.83 | 1.83 | 1.02 | 0.36 | ||
d 10 | 2.01 | 1.82 | 2.83 a | 1.01 b | 0.35 | ||
d 20 | 3.64 | 3.09 | 3.53 | 3.20 | 0.26 | ||
d 30 | 2.90 | 2.45 | 2.45 | 2.90 | 0.26 | ||
d 40 | 3.51 | 3.23 | 3.39 | 3.35 | 0.26 | ||
Cholesterol (mg/dL) | 0.55 | 0.65 | |||||
d 1 | 66.32 | 72.81 | 66.84 | 72.29 | 4.80 | ||
d 10 | 66.44 | 72.58 | 66.90 | 72.12 | 4.77 | ||
d 20 | 57.75 | 57.92 | 56.92 | 58.75 | 3.46 | ||
d 30 | 56.92 | 53.00 | 55.93 | 54.00 | 3.46 | ||
d 40 | 68.00 | 67.75 | 70.58 | 65.17 | 3.46 | ||
Triglycerides (mg/dL) | <0.01 | <0.01 | |||||
d 1 | 150.98 | 105.27 | 151.35 | 103.90 | 17.81 | ||
d 10 | 200.98 a | 105.27 b | 202.35 a | 103.90 b | 17.81 | ||
d 20 | 48.39 | 54.44 | 52.93 | 59.90 | 17.81 | ||
d 30 | 66.23 | 111.27 | 65.93 | 111.56 | 17.81 | ||
d 40 | 56.06 | 55.11 | 56.93 | 54.23 | 17.81 |
Treatments 1 | SEM | p-Values 2 | |||||
---|---|---|---|---|---|---|---|
Variables | Afla0VB0 (n = 6) | Afla500VB0 (n = 6) | Afla0VB800 (n = 6) | Afla500VB800 (n = 6) | Afla× | VB× | |
Day | Day | ||||||
Erythrocytes (×106 µL) | 0.77 | 0.82 | |||||
d 1 | 6.68 | 6.8 | 6.68 | 6.8 | 0.39 | ||
d 10 | 6.67 | 6.78 | 6.67 | 6.78 | 0.39 | ||
d 20 | 6.019 | 6.62 | 6.019 | 6.62 | 0.27 | ||
d 30 | 5.49 | 5.52 | 5.49 | 5.52 | 0.27 | ||
d 40 | 6.37 | 6.26 | 6.37 | 6.26 | 0.27 | ||
Hematocrit (%) | <0.01 | 0.84 | |||||
d 1 | 38.02 | 37.91 | 39.01 | 38.37 | 1.26 | ||
d 10 | 38.74 | 36.51 | 38.74 | 36.51 | 1.25 | ||
d 20 | 36.41 b | 41.43 a | 36.41 b | 41.43 a | 1.25 | ||
d 30 | 36.91 b | 43.59 a | 36.91 b | 43.59 a | 1.25 | ||
d 40 | 33.69 | 34.48 | 33.69 | 34.48 | 1.25 | ||
Hemoglobin (g/dL) | 0.52 | 0.96 | |||||
d 1 | 10.7 | 10.64 | 10.7 | 10.64 | 0.47 | ||
d 10 | 10.76 | 10.6 | 10.76 | 10.6 | 0.46 | ||
d 20 | 8.46 | 8.8 | 8.46 | 8.8 | 0.33 | ||
d 30 | 7.81 | 8.13 | 7.81 | 8.13 | 0.33 | ||
d 40 | 13.21 | 14.27 | 13.21 | 14.27 | 0.33 | ||
Leukocytes (×103/µL) | 0.52 | 0.96 | |||||
d 1 | 10.7 | 10.64 | 10.7 | 10.64 | 0.47 | ||
d 10 | 10.76 | 10.6 | 10.76 | 10.6 | 0.46 | ||
d 20 | 8.46 | 8.8 | 8.46 | 8.8 | 0.33 | ||
d 30 | 7.81 | 8.13 | 7.81 | 8.13 | 0.33 | ||
d 40 | 13.21 | 14.27 | 13.21 | 14.27 | 0.33 | ||
Neutrophils (×103/µL) | 0.05 | 0.60 | |||||
d 1 | 5.32 | 4.99 | 5.32 | 4.99 | 0.56 | ||
d 10 | 5.3 | 4.96 | 5.3 | 4.96 | 0.55 | ||
d 20 | 5.72 a | 4.61 b | 5.72 a | 4.61 b | 0.4 | ||
d 30 | 5.03 a | 3.81 b | 5.03 a | 3.81 b | 0.4 | ||
d 40 | 4.82 | 5.5 | 4.82 | 5.5 | 0.4 | ||
Lymphocytes (×103/µL) | 0.33 | 0.69 | |||||
d 1 | 4.11 | 4.71 | 4.11 | 4.71 | 0.65 | ||
d 10 | 4.06 | 4.62 | 4.06 | 4.62 | 0.64 | ||
d 20 | 8.36 | 7.04 | 8.36 | 7.04 | 0.46 | ||
d 30 | 7.07 | 6.77 | 7.07 | 6.77 | 0.46 | ||
d 40 | 4.82 | 4.76 | 4.82 | 4.76 | 0.46 | ||
Monocytes (×103/µL) | <0.01 | <0.01 | |||||
d 1 | 0.22 | 0.18 | 0.22 | 0.18 | 0.03 | ||
d 10 | 0.25 a | 0.18 b | 0.25 a | 0.18 b | 0.03 | ||
d 20 | 0.23 | 0.29 | 0.23 | 0.29 | 0.03 | ||
d 30 | 0.13 | 0.17 | 0.13 | 0.17 | 0.03 | ||
d 40 | 0.08 b | 0.14 a | 0.08 b | 0.14 a | 0.03 | ||
Eosinophils (×103/µL) | 0.12 | 0.27 | |||||
d 1 | 0.32 | 0.28 | 0.31 | 0.29 | 0.05 | ||
d 10 | 0.24 | 0.25 | 0.24 | 0.25 | 0.05 | ||
d 20 | 0.33 | 0.46 | 0.33 | 0.46 | 0.05 | ||
d 30 | 0.37 | 0.24 | 0.37 | 0.24 | 0.05 | ||
d 40 | 0.29 | 0.34 | 0.29 | 0.34 | 0.05 |
Treatments 2 | SEM | p-Values 3 | |||||
---|---|---|---|---|---|---|---|
Variables 1 | Afla0VB0 (n = 6) | Afla500VB0 (n = 6) | Afla0VB800 (n = 6) | Afla500VB800 (n = 6) | Afla× | VB× | |
Day | Day | ||||||
GST in serum (U GST/mg of protein) | 0.75 | 0.81 | |||||
d 1 | 79.7 | 76.4 | 83.3 | 72.9 | 30.4 | ||
d 10 | 88.4 | 83.8 | 86.9 | 85.3 | 16.7 | ||
d 20 | 106.3 | 110.4 | 104.5 | 112.1 | 15.5 | ||
d 30 | 115.8 | 106.2 | 107.4 | 114.6 | 15.5 | ||
d 40 | 214.3 | 235.1 | 235.1 | 214.3 | 15.5 | ||
SOD in blood (nmol SOD/mg of protein) | 0.76 | 0.73 | |||||
d 1 | 6.52 | 5.56 | 6.1 | 5.97 | 1.09 | ||
d 10 | 6.74 | 5.68 | 6.09 | 6.33 | 1.08 | ||
d 20 | 6.19 | 5.02 | 5.65 | 5.56 | 0.69 | ||
d 30 | 4.71 | 4.89 | 5.1 | 4.51 | 0.69 | ||
d 40 | 7.35 | 7.7 | 8.4 | 6.65 | 0.69 | ||
CAT in blood (nmol CAT/mg of protein) | 0.11 | 0.94 | |||||
d 1 | 18.9 | 12.6 | 16.2 | 15.3 | 2.7 | ||
d 10 | 15.6 | 18.8 | 16.1 | 18.3 | 2.69 | ||
d 20 | 20.2 | 20.8 | 19.8 | 21.2 | 2.69 | ||
d 30 | 14.5 | 17.1 | 15.3 | 16.3 | 2.69 | ||
d 40 | 14.2 | 14.9 | 15.3 | 13.8 | 2.69 | ||
NOx in serum (U NOx/mg of protein) | 0.13 | 0.88 | |||||
d 1 | 0.59 | 0.29 | 0.32 | 0.57 | 0.45 | ||
d 10 | 0.52 | 0.3 | 0.42 | 0.4 | 0.28 | ||
d 20 | 0.61 | 0.34 | 0.37 | 0.59 | 0.28 | ||
d 30 | 0.76 | 1.35 | 1.07 | 1.05 | 0.28 | ||
d 40 | 0.47 | 0.37 | 0.61 | 0.24 | 0.31 | ||
ROS in serum (U DCF/mg of protein) | 0.20 | 0.16 | |||||
d 1 | 276.4 | 260.9 | 268.3 | 269 | 32.2 | ||
d 10 | 331.5 | 335.9 | 324.8 | 342.6 | 20.3 | ||
d 20 | 258.2 | 252.5 | 283.3 | 227.4 | 20.3 | ||
d 30 | 266.2 | 278.3 | 250.4 | 294.1 | 20.3 | ||
d 40 | 266.4 | 295.4 | 280.5 | 281.4 | 20.3 | ||
TBARS in serum (nmol MDA/mL) | 0.77 | 0.11 | |||||
d 1 | 20.1 | 21.3 | 19.4 | 22 | 1.4 | ||
d 10 | 11.6 | 10.5 | 11.3 | 10.9 | 1.62 | ||
d 20 | 13.2 | 11.3 | 12.5 | 12 | 1.4 | ||
d 30 | 9.95 | 9.79 | 9.31 | 10.4 | 1.4 | ||
d 40 | 9.15 | 9.27 | 8.92 | 11.5 | 1.4 |
Variables 1 | Combined Treatments 2 | SEM | p-Values 3 | |||||
---|---|---|---|---|---|---|---|---|
Afla0VB0 (n = 6) | Afla500VB0 (n = 6) | Afla0VB800 (n = 6) | Afla500VB800 (n = 6) | Afla × VB | Afla * | VB+ | ||
Liver | ||||||||
GST (U GST/mg of protein) | 2440 | 1522 | 2141 | 2022 | 292 | 0.10 | 0.05 | 0.75 |
NOx (U NOx/mg of protein) | 0.75 a | 0.52 b | 0.43 b | 0.70 a | 0.07 | <0.01 | 0.75 | 0.32 |
ROS (U DCF/mg of protein) | 647 b | 1426 a | 594 b | 726 b | 84.8 | <0.01 | <0.01 | <0.01 |
TBARS (nmol MDA/mL) | 53.0 b | 65.2 a | 44.1 b | 53.2 b | 4.31 | 0.04 | 0.03 | 0.03 |
Spleen | ||||||||
GST (U GST/mg of protein) | 987 | 942 | 380 | 443 | 115 | 0.65 | 0.94 | <0.01 |
NOx (U NOx/mg of protein) | 0.59 | 0.62 | 0.65 | 0.59 | 0.08 | 0.57 | 0.77 | 0.86 |
ROS (U DCF/mg of protein) | 802 a | 595 b | 772 a | 615 ab | 65.6 | 0.05 | 0.14 | 0.24 |
TBARS (nmol MDA/mL) | 48.0 a | 53.0 a | 47.2 a | 34.2 b | 4.61 | 0.05 | 0.41 | 0.05 |
Jejunum | ||||||||
GST (U GST/mg of protein) | 292 | 1029 | 519 | 926 | 156 | 0.32 | <0.01 | 0.70 |
NOx (U NOx/mg of protein) | 0.36 | 0.94 | 0.38 | 0.74 | 0.13 | 0.38 | <0.01 | 0.44 |
ROS (U DCF/mg of protein) | 456 | 1541 | 483 | 115 | 219 | 0.33 | <0.01 | 0.39 |
TBARS (nmol MDA/mL) | 16.7 | 18.1 | 15.3 | 16.9 | 2.01 | 0.95 | 0.47 | 0.56 |
Variable 3 | Blood | Liver | Spleen | Jejunum | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NOx | TBARS | ROS | GST | NOx | TBARS | ROS | GST | NOx | TBARS | ROS | GST | NOx | TBARS | ROS | GST | ||
Serum | NOx | - | 0.30 | 0.10 | 0.35 ** | −0.33 ** | −0.19 | −0.22 | −0.16 | 0.30 | 0.15 | −0.10 | −0.26 | −0.14 | −0.01 | 0.02 | 0.19 |
TBARS | - | −0.03 | 0.59 * | −0.36 ** | −0.09 | −0.20 | 0.60 * | 0.05 | −0.24 | −0.10 | −0.30 | −0.26 | −0.41 * | −0.13 | −0.08 | ||
ROS | - | 0.37 ** | −0.10 | −0.23 | −0.41 * | −0.10 | −0.18 | −0.40 * | −0.04 | −0.07 | −0.14 | −0.03 | −0.12 | −0.05 | |||
GST | - | −0.40 * | −0.15 | −0.22 | 0.18 | 0.04 | −0.43 * | −0.37 ** | −0.27 | −0.10 | −0.25 | 0.12 | 0.22 | ||||
Liver | NOx | - | 0.22 | −0.06 | 0.02 | −0.16 | 0.01 | 0.52 * | 0.02 | −0.07 | −0.01 | −0.07 | −0.06 | ||||
TBARS | - | 0.59 * | −0.10 | 0.21 | 0.19 | −0.06 | 0.08 | 0.55 * | 0.09 | 0.38 ** | 0.25 | ||||||
ROS | - | −0.25 | 0.13 | 0.33 | −0.10 | 0.23 | 0.50 * | 0.01 | 0.52 * | 0.40 * | |||||||
GST | - | −0.11 | −0.28 | 0.19 | 0.01 | −0.28 | −0.33 | −0.34 ** | −0.35 * | ||||||||
Spleen | NOx | - | 0.11 | −0.10 | −0.24 | 0.28 | −0.16 | 0.03 | −0.03 | ||||||||
TBARS | - | 0.29 | 0.20 | −0.07 | 0.19 | 0.08 | 0.08 | ||||||||||
ROS | - | 0.33 | −0.19 | 0.04 | 0.02 | −0.02 | |||||||||||
GST | - | 0.11 | 0.41 * | 0.13 | −0.01 | ||||||||||||
Jejunum | NOx | - | 0.28 | 0.46 * | 0.36 * | ||||||||||||
TBARS | - | −0.01 | 0.02 | ||||||||||||||
ROS | - | 0.94 |
Variables | Treatments 1 | SEM | p-Values 2 | |||||
---|---|---|---|---|---|---|---|---|
Afla0VB0 (n = 6) | Afla500VB0 (n = 6) | Afla0VB800 (n = 6) | Afla500VB800 (n = 6) | Afla × | Afla | VB | ||
VB | ||||||||
Carcass yield (%) | 68.2 c | 69.8 bc | 71.1 a | 70.6 ab | 1.36 | 0.002 | 0.695 | 0.847 |
% liver weight by body weight | 2.36 b | 2.57 a | 2.37 b | 2.43 ab | 0.03 | 0.024 | 0.001 | 0.265 |
% spleen weight by body weight | 0.232 b | 0.221 b | 0.258 a | 0.223 b | 0.01 | <0.001 | 0.907 | <0.001 |
Jejunum fold (µm) | 1642.8 a | 1281.9 b | 1206.6 b | 1523.6 a | 67.7 | <0.001 | <0.001 | <0.001 |
Jejunum villi (µm) | 296.1 bc | 326.0 a | 274.0 c | 312.2 ab | 14 | 0.032 | 0.046 | 0.552 |
Jejunum crypt (µm) | 223.1 b | 256.1 a | 225.6 b | 250.0 a | 11.4 | 0.02 | 0.025 | 0.856 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dazuk, V.; Tarasconi, L.; Molosse, V.L.; Cécere, B.G.O.; Deolindo, G.L.; Strapazzon, J.V.; Bottari, N.B.; Bissacotti, B.F.; Schetinger, M.R.C.; Sareta, L.; et al. Can the Inclusion of a Vegetable Biocholine Additive in Pig Feed Contaminated with Aflatoxin Reduce Toxicological Impacts on Animal Health and Performance? Animals 2023, 13, 3010. https://doi.org/10.3390/ani13193010
Dazuk V, Tarasconi L, Molosse VL, Cécere BGO, Deolindo GL, Strapazzon JV, Bottari NB, Bissacotti BF, Schetinger MRC, Sareta L, et al. Can the Inclusion of a Vegetable Biocholine Additive in Pig Feed Contaminated with Aflatoxin Reduce Toxicological Impacts on Animal Health and Performance? Animals. 2023; 13(19):3010. https://doi.org/10.3390/ani13193010
Chicago/Turabian StyleDazuk, Vanessa, Lara Tarasconi, Vitor Luiz Molosse, Bruno Giorgio Oliveira Cécere, Guilherme Luiz Deolindo, João Vitor Strapazzon, Nathieli Bianchi Bottari, Bianca Fagan Bissacotti, Maria Rosa Chitolina Schetinger, Laércio Sareta, and et al. 2023. "Can the Inclusion of a Vegetable Biocholine Additive in Pig Feed Contaminated with Aflatoxin Reduce Toxicological Impacts on Animal Health and Performance?" Animals 13, no. 19: 3010. https://doi.org/10.3390/ani13193010
APA StyleDazuk, V., Tarasconi, L., Molosse, V. L., Cécere, B. G. O., Deolindo, G. L., Strapazzon, J. V., Bottari, N. B., Bissacotti, B. F., Schetinger, M. R. C., Sareta, L., Mendes, R. E., Vedovatto, M., Gloria, E. M., Paiano, D., Galli, G. M., & Da Silva, A. S. (2023). Can the Inclusion of a Vegetable Biocholine Additive in Pig Feed Contaminated with Aflatoxin Reduce Toxicological Impacts on Animal Health and Performance? Animals, 13(19), 3010. https://doi.org/10.3390/ani13193010