Transcriptome Sequencing Reveals That Intact Expression of the Chicken Endogenous Retrovirus chERV3 In Vitro Can Possibly Block the Key Innate Immune Pathway
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Construction of the chERV3 Full-Length Reverse Cloning Vector
2.2. Cells and Transfection
2.3. ELISA
2.4. Sample Collection
2.5. Library Preparation for Transcriptome Sequencing
2.6. Quality Control and Mapping
2.7. Quantification of Gene Expression Level
2.8. Differential Expression Analysis
2.9. GO and KEGG Enrichment Analysis of Differentially Expressed Genes
2.10. Gene Set Enrichment Analysis (GSEA)
2.11. Validation of DEGs Using qPCR
2.12. Statistical Analysis
2.13. Raw Data Information
3. Results
3.1. Construction of the chERV3 Full-Length Reverse Cloning Vector
3.2. chERV3 Is Able to Release p27 Antigen
3.3. Sequence Data Quality Statistic
3.4. Differential Gene Expression Identification after puc57-chERV3 Transfection in CEFs
3.5. GO Annotation of DEGs after puc57-chERV3 Transfection in CEFs
3.6. RNA-seq Data Matched the qPCR Data
3.7. Pathway Analysis of DEGs after puc57-chERV3 Transfected in CEF Cells
3.8. chERV3 Is Able to Induce Downregulation of the Toll-like Receptor Signaling Pathway
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johnson, W.E. Origins and evolutionary consequences of ancient endogenous retroviruses. Nat. Rev. Microbiol. 2019, 17, 355–370. [Google Scholar] [CrossRef] [PubMed]
- Mason, A.S.; Miedzinska, K.; Kebede, A.; Bamidele, O.; Al-Jumaili, A.S.; Dessie, T.; Hanotte, O.; Smith, J. Diversity of endogenous avian leukosis virus subgroup E (ALVE) insertions in indigenous chickens. Genet. Sel. Evol. 2020, 52, 29. [Google Scholar] [CrossRef] [PubMed]
- Sacco, M.A.; Flannery, D.M.; Howes, K.; Venugopal, K. Avian endogenous retrovirus EAV-HP shares regions of identity with avian leukosis virus subgroup J and the avian retrotransposon ART-CH. J. Virol. 2000, 74, 1296–1306. [Google Scholar] [CrossRef] [PubMed]
- Imakawa, K.; Kusama, K.; Kaneko-Ishino, T.; Nakagawa, S.; Kitao, K.; Miyazawa, T.; Ishino, F. Endogenous Retroviruses and Placental Evolution, Development, and Diversity. Cells 2022, 11, 2458. [Google Scholar] [CrossRef] [PubMed]
- Alcazer, V.; Bonaventura, P.; Depil, S. Human Endogenous Retroviruses (HERVs): Shaping the Innate Immune Response in Cancers. Cancers 2020, 12, 610. [Google Scholar] [CrossRef]
- Prudhomme, S.; Bonnaud, B.; Mallet, F. Endogenous retroviruses and animal reproduction. Cytogenet. Genome Res. 2005, 110, 353–364. [Google Scholar] [CrossRef]
- Colmegna, I.; Garry, R.F. Role of endogenous retroviruses in autoimmune diseases. Infect. Dis. Clin. North Am. 2006, 20, 913–929. [Google Scholar] [CrossRef]
- Katzourakis, A.; Aswad, A. Evolution: Endogenous Viruses Provide Shortcuts in Antiviral Immunity. Curr. Biol. 2016, 26, R427–R429. [Google Scholar] [CrossRef]
- Leroy, V.; Kihara, M.; Baudino, L.; Brighouse, G.; Evans, L.H.; Izui, S. Sgp3 and TLR7 stimulation differentially alter the expression profile of modified polytropic retroviruses implicated in murine systemic lupus. J. Autoimmun. 2012, 38, 361–368. [Google Scholar] [CrossRef]
- Roulois, D.; Loo, Y.H.; Singhania, R.; Wang, Y.; Danesh, A.; Shen, S.Y.; Han, H.; Liang, G.; Jones, P.A.; Pugh, T.J.; et al. DNA-Demethylating Agents Target Colorectal Cancer Cells by Inducing Viral Mimicry by Endogenous Transcripts. Cell 2015, 162, 961–973. [Google Scholar] [CrossRef]
- Stoltz, K.P.; Jondle, C.N.; Pulakanti, K.; Sylvester, P.A.; Urrutia, R.; Rao, S.; Tarakanova, V.L. Tumor suppressor Interferon Regulatory Factor 1 selectively blocks expression of endogenous retrovirus. Virology 2019, 526, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Rajagopalan, D.; Tirado-Magallanes, R.; Bhatia, S.S.; Teo, W.S.; Sian, S.; Hora, S.; Lee, K.K.; Zhang, Y.; Jadhav, S.P.; Wu, Y.; et al. TIP60 represses activation of endogenous retroviral elements. Nucleic Acids Res. 2018, 46, 9456–9470. [Google Scholar] [CrossRef] [PubMed]
- Dai, M.; Xie, T.; Feng, M.; Zhang, X. Endogenous retroviruses transcriptomes in response to four avian pathogenic microorgaisms infection in chicken. Genomics 2022, 114, 110371. [Google Scholar] [CrossRef]
- Chen, S.; Hu, X.; Cui, I.H.; Wu, S.; Dou, C.; Liu, Y.; Sun, Z.; Xue, S.; Geng, T.; Liu, Z.; et al. An endogenous retroviral element exerts an antiviral innate immune function via the derived lncRNA lnc-ALVE1-AS1. Antivir. Res. 2019, 170, 104571. [Google Scholar] [CrossRef]
- Luo, H.; Hu, X.; Wu, H.; Zaib, G.; Chai, W.; Cui, H. Activation of lnc-ALVE1-AS1 inhibited ALV-J replication through triggering the TLR3 pathway in chicken macrophage like cell line. Vet. Res. Commun. 2022, 47, 431–433. [Google Scholar] [CrossRef]
- Wang, T.; Zeng, J.; Lowe, C.B.; Sellers, R.G.; Salama, S.R.; Yang, M.; Burgess, S.M.; Brachmann, R.K.; Haussler, D. Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53. Proc. Natl. Acad. Sci. USA 2007, 104, 18613–18618. [Google Scholar] [CrossRef]
- Mommert, M.; Tabone, O.; Oriol, G.; Cerrato, E.; Guichard, A.; Naville, M.; Fournier, P.; Volff, J.-N.; Pachot, A.; Monneret, G.; et al. LTR-retrotransposon transcriptome modulation in response to endotoxin-induced stress in PBMCs. Bmc Genomics 2018, 19, 522. [Google Scholar] [CrossRef]
- Zhang, J.; Crumpacker, C. HIV UTR, LTR, and Epigenetic Immunity. Viruses 2022, 14, 1084. [Google Scholar] [CrossRef]
- Criscione, S.W.; Zhang, Y.; Thompson, W.; Sedivy, J.M.; Neretti, N. Transcriptional landscape of repetitive elements in normal and cancer human cells. Bmc Genomics 2014, 15, 583. [Google Scholar] [CrossRef]
- Thompson, P.J.; Macfarlan, T.S.; Lorincz, M.C. Long Terminal Repeats: From Parasitic Elements to Building Blocks of the Transcriptional Regulatory Repertoire. Mol. Cell 2016, 62, 766–776. [Google Scholar] [CrossRef]
- Manghera, M.; Douville, R.N. Endogenous retrovirus-K promoter: A landing strip for inflammatory transcription factors? Retrovirology 2013, 10, 16. [Google Scholar] [CrossRef] [PubMed]
- Kovalskaya, E.; Buzdin, A.; Gogvadze, E.; Vinogradova, T.; Sverdlov, E. Functional human endogenous retroviral LTR transcription start sites are located between the R and U5 regions. Virology 2006, 346, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Stoye, J.P. Studies of endogenous retroviruses reveal a continuing evolutionary saga. Nat. Rev. Microbiol. 2012, 10, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Vargiu, L.; Rodriguez-Tome, P.; Sperber, G.O.; Cadeddu, M.; Grandi, N.; Blikstad, V.; Tramontano, E.; Blomberg, J. Classification and characterization of human endogenous retroviruses; mosaic forms are common. Retrovirology 2016, 13, 7. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Davis, B.W.; Jern, P.; Dorshorst, B.J.; Siegel, P.B.; Andersson, L. Characterization of the endogenous retrovirus insertion in CYP19A1 associated with henny feathering in chicken. Mob. DNA 2019, 10, 38. [Google Scholar] [CrossRef] [PubMed]
- Beyer, U.; Kronung, S.K.; Leha, A.; Walter, L.; Dobbelstein, M. Comprehensive identification of genes driven by ERV9-LTRs reveals TNFRSF10B as a re-activatable mediator of testicular cancer cell death. Cell Death Differ. 2016, 23, 64–75. [Google Scholar] [CrossRef]
- Chen, J.Q.; Szodoray, P.; Zeher, M. Toll-Like Receptor Pathways in Autoimmune Diseases. Clin. Rev. Allergy Immunol. 2016, 50, 1–17. [Google Scholar] [CrossRef]
- Li, A.; Chen, H.; Lin, M.; Zhang, C.; Tang, E.; Peng, J.; Wei, Q.; Li, H.; Yin, L. PIK3C2G copy number is associated with clinical outcomes of colorectal cancer patients treated with oxaliplatin. Int. J. Clin. Exp. Med. 2015, 8, 1137–1143. [Google Scholar]
- Semba, S.; Itoh, N.; Ito, M.; Youssef, E.M.; Harada, M.; Moriya, T.; Kimura, W.; Yamakawa, M. Down-regulation of PIK3CG, a catalytic subunit of phosphatidylinositol 3-OH kinase, by CpG hypermethylation in human colorectal carcinoma. Clin. Cancer Res. 2002, 8, 3824–3831. [Google Scholar]
- Chiu, E.S.; VandeWoude, S. Endogenous Retroviruses Drive Resistance and Promotion of Exogenous Retroviral Homologs. Annu. Rev. Anim. Biosci. 2021, 9, 225–248. [Google Scholar] [CrossRef]
- Grandi, N.; Tramontano, E. Human Endogenous Retroviruses Are Ancient Acquired Elements Still Shaping Innate Immune Responses. Front. Immunol. 2018, 9, 2039. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.K.; Guo, M.; Du, W.L.; Yin, Y.J.; Wang, L.; Lu, H.Z.; Zhang, T.; Diao, L. Identification and expression analysis of endogenous retroviruses in Lioyang black chicken. Genom. Appl. Biol. 2018, 37, 3371–3377. [Google Scholar]
- Sasaki, T.; Knyazev, P.G.; Clout, N.J.; Cheburkin, Y.; Gohring, W.; Ullrich, A.; Timpl, R.; Hohenester, E. Structural basis for Gas6-Axl signalling. EMBO J. 2006, 25, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Axelrod, H.; Pienta, K.J. Axl as a mediator of cellular growth and survival. Oncotarget 2014, 5, 8818–8852. [Google Scholar] [CrossRef]
- Mo, G.; Fu, H.; Hu, B.; Zhang, Q.; Xian, M.; Zhang, Z.; Lin, L.; Shi, M.; Nie, Q.; Zhang, X. SOCS3 Promotes ALV-J Virus Replication via Inhibiting JAK2/STAT3 Phosphorylation During Infection. Front. Cell Infect. Microbiol. 2021, 11, 748795. [Google Scholar] [CrossRef]
- Xie, T.; Feng, M.; Zhang, X.; Li, X.; Mo, G.; Shi, M.; Zhang, X. Chicken CH25H inhibits ALV-J replication by promoting cellular autophagy. Front. Immunol. 2023, 14, 1093289. [Google Scholar] [CrossRef]
- Thaiss, C.A.; Levy, M.; Itav, S.; Elinav, E. Integration of Innate Immune Signaling. Trends Immunol. 2016, 37, 84–101. [Google Scholar] [CrossRef]
- Honda, K.; Ohba, Y.; Yanai, H.; Negishi, H.; Mizutani, T.; Takaoka, A.; Taya, C.; Taniguchi, T. Spatiotemporal regulation of MyD88-IRF-7 signalling for robust type-I interferon induction. Nature 2005, 434, 1035–1040. [Google Scholar] [CrossRef]
- Ghosh, S.; Dass, J. Study of pathway cross-talk interactions with NF-kappaB leading to its activation via ubiquitination or phosphorylation: A brief review. Gene 2016, 584, 97–109. [Google Scholar] [CrossRef]
- Jin, B.; Sun, T.; Yu, X.H.; Yang, Y.X.; Yeo, A.E. The effects of TLR activation on T-cell development and differentiation. Clin. Dev. Immunol. 2012, 2012, 836485. [Google Scholar] [CrossRef]
- Liongue, C.; O’Sullivan, L.A.; Trengove, M.C.; Ward, A.C. Evolution of JAK-STAT pathway components: Mechanisms and role in immune system development. PLoS ONE 2012, 7, e32777. [Google Scholar] [CrossRef]
- Park, H.J.; Kim, J.E.; Lee, J.Y.; Cho, B.K.; Lee, W.J.; Kim, T.; Yoon, D.; Cho, D. Increased expression of IL-18 in cutaneous graft-versus-host disease. Immunol. Lett. 2004, 95, 57–61. [Google Scholar] [CrossRef]
- de Oliveira, R.; Cordeiro, J.; Vitoriano, B.F.; de Lima, M.M.; Sampaio, L.R.; de Paula, B.D.; Magalhaes, S.; Pinheiro, R.F. ERVs-TLR3-IRF axis is linked to myelodysplastic syndrome pathogenesis. Med. Oncol. 2021, 38, 27. [Google Scholar] [CrossRef]
- Taniguchi, T.; Ogasawara, K.; Takaoka, A.; Tanaka, N. IRF family of transcription factors as regulators of host defense. Annu. Rev. Immunol. 2001, 19, 623–655. [Google Scholar] [CrossRef]
- Ning, S.; Pagano, J.S.; Barber, G.N. IRF7: Activation, regulation, modification and function. Genes. Immun. 2011, 12, 399–414. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.B.; Liu, T.K.; Gui, J.F. Lineage-specific expansion of IFIT gene family: An insight into coevolution with IFN gene family. PLoS ONE 2013, 8, e66859. [Google Scholar] [CrossRef]
- Zhang, L.; Pagano, J.S. Interferon regulatory factor 7 is induced by Epstein-Barr virus latent membrane protein 1. J. Virol. 2000, 74, 1061–1068. [Google Scholar] [CrossRef]
- Resovi, A.; Pinessi, D.; Chiorino, G.; Taraboletti, G. Current understanding of the thrombospondin-1 interactome. Matrix Biol. 2014, 37, 83–91. [Google Scholar] [CrossRef]
- Lawler, P.R.; Lawler, J. Molecular basis for the regulation of angiogenesis by thrombospondin-1 and -2. Cold Spring Harb. Perspect. Med. 2012, 2, a6627. [Google Scholar] [CrossRef]
- Lopez-Dee, Z.; Pidcock, K.; Gutierrez, L.S. Thrombospondin-1: Multiple paths to inflammation. Mediat. Inflamm. 2011, 2011, 296069. [Google Scholar] [CrossRef]
- Roberts, D.D.; Miller, T.W.; Rogers, N.M.; Yao, M.; Isenberg, J.S. The matricellular protein thrombospondin-1 globally regulates cardiovascular function and responses to stress via CD47. Matrix Biol. 2012, 31, 162–169. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y. CD36 tango in cancer: Signaling pathways and functions. Theranostics 2019, 9, 4893–4908. [Google Scholar] [CrossRef]
- Ruan, C.; Meng, Y.; Song, H. CD36: An emerging therapeutic target for cancer and its molecular mechanisms. J. Cancer Res. Clin. Oncol. 2022, 148, 1551–1558. [Google Scholar] [CrossRef]
Sample Name | Integrity | Raw Reads | Clean Reads | Clean Bases | Q20 | Total Mapped |
---|---|---|---|---|---|---|
NC 24 h1 | 8.2 | 43,381,886 | 41,480,772 | 6.22 G | 96.3 | 37,555,122 (90.54%) |
NC 24 h2 | 8.0 | 41,475,106 | 39,662,516 | 5.95 G | 96.37 | 35,908,741 (90.54%) |
NC 24 h3 | 8.5 | 42,085,432 | 40,226,640 | 6.03 G | 96.52 | 36,489,585 (90.71%) |
chERV3 24 h1 | 8.8 | 39,783,054 | 38,171,282 | 5.73 G | 96.45 | 34,848,123 (91.29%) |
chERV3 24 h2 | 8.9 | 42,270,748 | 40,115,088 | 6.02 G | 96.55 | 36,638,260 (91.33%) |
chERV3 24 h3 | 8.8 | 42,704,808 | 41,109,940 | 6.17 G | 96.53 | 37,783,087 (91.91%) |
NC 48 h1 | 6.3 | 41,127,206 | 39,467,128 | 5.92 G | 96.01 | 35,673,640 (90.39%) |
NC 48 h2 | 6.3 | 39,345,034 | 37,659,002 | 5.65 G | 96.56 | 34,450,841 (91.48%) |
NC 48 h3 | 5.8 | 41,363,842 | 39,521,786 | 5.93 G | 96.36 | 35,821,588 (90.64%) |
chERV3 48 h1 | 6.3 | 44,852,156 | 42,866,404 | 6.43 G | 96.03 | 37,141,238 (86.64%) |
chERV3 48 h2 | 8.0 | 39,628,688 | 37,820,374 | 5.67 G | 96.46 | 34,638,935 (91.59%) |
chERV3 48 h3 | 7.8 | 43,693,872 | 42,250,526 | 6.34 G | 96.65 | 38,766,627 (91.75%) |
Gene ID | Gene Name | 24 h FPKM | log2(Foldchange) | 48 h FPKM | log2(Foldchange) |
---|---|---|---|---|---|
ENSGALG00010006602 | GAS6 | 1369.68/80.27 | 4.10 | 1286.21/210.06 | 2.61 |
ENSGALG00010017131 | TLR3 | 1901.21/822.77 | 1.21 | ||
ENSGALG00010006155 | TNFRSF19 | 279.56/106.45 | 1.39 | ||
ENSGALG00010001897 | TLR7 | 112.44/42.96 | 1.39 | ||
ENSGALG00010008392 | CD36 | 41.77/5.97 | 2.81 | ||
ENSGALG00010021550 | MAP2K3 | 1603.22/6419.37 | −2.00 | 1526.74/3871.01 | −1.34 |
ENSGALG00010004987 | MAP3K8 | 147.50/1357.06 | −3.20 | 79.68/358.75 | −2.16 |
ENSGALG00010029295 | SOCS3 | 722.92/2295.62 | −1.67 | 535.77/1592.99 | −1.57 |
ENSGALG00010023847 | PIK3AP1 | 182.21/834.92 | −2.19 | 139.13/1993.38 | −3.84 |
ENSGALG00010022134 | CH25H | 130.51/1500.54 | −3.52 | 80.69/489.64 | −2.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Xie, T.; Li, X.; Feng, M.; Mo, G.; Zhang, Q.; Zhang, X. Transcriptome Sequencing Reveals That Intact Expression of the Chicken Endogenous Retrovirus chERV3 In Vitro Can Possibly Block the Key Innate Immune Pathway. Animals 2023, 13, 2720. https://doi.org/10.3390/ani13172720
Zhang X, Xie T, Li X, Feng M, Mo G, Zhang Q, Zhang X. Transcriptome Sequencing Reveals That Intact Expression of the Chicken Endogenous Retrovirus chERV3 In Vitro Can Possibly Block the Key Innate Immune Pathway. Animals. 2023; 13(17):2720. https://doi.org/10.3390/ani13172720
Chicago/Turabian StyleZhang, Xi, Tingting Xie, Xiaoqi Li, Min Feng, Guodong Mo, Qihong Zhang, and Xiquan Zhang. 2023. "Transcriptome Sequencing Reveals That Intact Expression of the Chicken Endogenous Retrovirus chERV3 In Vitro Can Possibly Block the Key Innate Immune Pathway" Animals 13, no. 17: 2720. https://doi.org/10.3390/ani13172720
APA StyleZhang, X., Xie, T., Li, X., Feng, M., Mo, G., Zhang, Q., & Zhang, X. (2023). Transcriptome Sequencing Reveals That Intact Expression of the Chicken Endogenous Retrovirus chERV3 In Vitro Can Possibly Block the Key Innate Immune Pathway. Animals, 13(17), 2720. https://doi.org/10.3390/ani13172720