Polymorphisms in Pattern Recognition Receptor Genes Are Associated with Respiratory Disease Severity in Pig Farms
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Pig Populations
2.2. Sampling
2.3. Assessment of Lesions
2.4. Production-Related Trait Measurement
2.5. Genotyping
2.6. Statistical Analysis
3. Results
3.1. Trait Evaluation
3.2. Trait–PRR Polymorphism Associations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, H.; Zhang, Z.; Xie, X.; Liu, B.; Wei, Y.; Gan, Y.; Yuan, T.; Ni, B.; Wang, J.; Zhang, L.; et al. Paracellular pathway-mediated Mycoplasma hyopneumoniae migration across porcine airway epithelial barrier under air-liquid interface conditions. Infect. Immun. 2020, 88, e00470-20. [Google Scholar] [CrossRef] [PubMed]
- Losinger, W.C. Economic impacts of reduced pork production associated with the diagnosis of Actinobacillus pleuropneumoniae on grower/finisher swine operations in the United States. Prev. Vet. Med. 2005, 68, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Bossé, J.T.; Janson, H.; Sheehan, B.J.; Beddek, A.J.; Rycroft, A.N.; Kroll, J.S.; Langford, P.R. Actinobacillus pleuropneumoniae: Pathobiology and pathogenesis of infection. Microbes Infect. 2002, 4, 225–235. [Google Scholar] [CrossRef]
- Ferraz, M.E.S.; Almeida, H.M.S.; Storino, G.Y.; Sonálio, K.; Souza, M.R.; Moura, C.A.A.; Costa, W.M.T.; Lunardi, L.; Linhares, D.C.L.; de Oliveira, L.G. Lung consolidation caused by Mycoplasma hyopneumoniae has a negative effect on productive performance and economic revenue in finishing pigs. Prev. Vet. Med. 2020, 182, 105091. [Google Scholar] [CrossRef]
- Sánchez, P.; Pallarés, F.J.; Gómez, M.A.; Bernabé, A.; Gómez, S.; Seva, J. Importance of the knowledge of pathological processes for risk-based inspection in pig slaughterhouses (Study of 2002 to 2016). Asian-Australas. J. Anim. Sci. 2018, 31, 1818–1827. [Google Scholar] [CrossRef] [Green Version]
- Skevaki, C.; Pararas, M.; Kostelidou, K.; Tsakris, A.; Routsias, J.G. Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious diseases. Clin. Exp. Immunol. 2015, 180, 165–177. [Google Scholar] [CrossRef] [Green Version]
- Uenishi, H.; Shinkai, H.; Morozumi, T.; Muneta, Y. Genomic survey of polymorphisms in pattern recognition receptors and their possible relationship to infections in pigs. Vet. Immunol. Immunopathol. 2012, 148, 69–73. [Google Scholar] [CrossRef]
- Uenishi, H.; Shinkai, H. Porcine Toll-like receptors: The front line of pathogen monitoring and possible implications for disease resistance. Dev. Comp. Immunol. 2009, 33, 353–361. [Google Scholar] [CrossRef]
- Shinkai, H.; Suzuki, R.; Akiba, M.; Okumura, N.; Uenishi, H. Porcine Toll-like receptors: Recognition of Salmonella enterica serovar Choleraesuis and influence of polymorphisms. Mol. Immunol. 2011, 48, 1114–1120. [Google Scholar] [CrossRef]
- Muneta, Y.; Arai, N.; Yakabe, Y.; Eguchi, M.; Shibahara, T.; Sakuma, A.; Shinkai, H.; Uenishi, H.; Hirose, K.; Akiba, M. In vivo effect of a TLR5 SNP (C1205T) on Salmonella enterica serovar Typhimurium infection in weaned, specific pathogen-free Landrace piglets. Microbiol. Immunol. 2018, 62, 380–387. [Google Scholar] [CrossRef]
- Shinkai, H.; Matsumoto, T.; Toki, D.; Okumura, N.; Terada, K.; Uenishi, H. Porcine NOD1 polymorphisms with impaired ligand recognition and their distribution in pig populations. Mol. Immunol. 2015, 63, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Ainslie-Garcia, M.H.; Farzan, A.; Jafarikia, M.; Lillie, B.N. Single nucleotide variants in innate immune genes associated with Salmonella shedding and colonization in swine on commercial farms. Vet. Microbiol. 2018, 219, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Jozaki, K.; Shinkai, H.; Tanaka-Matsuda, M.; Morozumi, T.; Matsumoto, T.; Toki, D.; Okumura, N.; Eguchi-Ogawa, T.; Kojima-Shibata, C.; Kadowaki, H.; et al. Influence of polymorphisms in porcine NOD2 on ligand recognition. Mol. Immunol. 2009, 47, 247–252. [Google Scholar] [CrossRef]
- Suzuki, K.; Shinkai, H.; Yoshioka, G.; Matsumoto, T.; Tanaka, J.; Hayashi, N.; Kitazawa, H.; Uenishi, H. NOD2 genotypes affect the symptoms and mortality in the porcine circovirus 2-spreading pig population. Genes 2021, 12, 1424. [Google Scholar] [CrossRef] [PubMed]
- Tohno, M.; Shinkai, H.; Toki, D.; Okumura, N.; Tajima, K.; Uenishi, H. Identification of the Q969R gain-of-function polymorphism in the gene encoding porcine NLRP3 and its distribution in pigs of Asian and European origin. Immunogenetics 2016, 68, 693–701. [Google Scholar] [CrossRef]
- Shinkai, H.; Terada, K.; Toki, D.; Tohno, M.; Uenishi, H. Q969R polymorphism in NLRP3 is associated with immune responses to vaccination against bacterial infections in pigs. Anim. Sci. J. 2018, 89, 1043–1050. [Google Scholar] [CrossRef] [PubMed]
- National Agriculture and Food Research Organization. Japanese Feeding Standard for Swine; Japan Livestock Inductry Association: Tokyo, Japan, 2013. [Google Scholar]
- Goodwin, R.F.; Whittlestone, P. Enzootic pneumonia of pigs: Immunization attempts inoculating Mycoplasma suipneumoniae antigen by various routes and with different adjuvants. Br. Vet. J. 1973, 129, 456–464. [Google Scholar] [CrossRef]
- Djordjevic, S.P.; Eamens, G.J.; Romalis, L.F.; Nicholls, P.J.; Taylor, V.; Chin, J. Serum and mucosal antibody responses and protection in pigs vaccinated against Mycoplasma hyopneumoniae with vaccines containing a denatured membrane antigen pool and adjuvant. Aust. Vet. J. 1997, 75, 504–511. [Google Scholar] [CrossRef]
- Okamura, T.; Onodera, W.; Tayama, T.; Kadowaki, H.; Kojima-Shibata, C.; Suzuki, E.; Uemoto, Y.; Mikawa, S.; Hayashi, T.; Awata, T.; et al. A genome-wide scan for quantitative trait loci affecting respiratory disease and immune capacity in Landrace pigs. Anim. Genet. 2012, 43, 721–729. [Google Scholar] [CrossRef]
- Fraile, L.; Alegre, A.; López-Jiménez, R.; Nofrarías, M.; Segalés, J. Risk factors associated with pleuritis and cranio-ventral pulmonary consolidation in slaughter-aged pigs. Vet. J. 2010, 184, 326–333. [Google Scholar] [CrossRef]
- Merialdi, G.; Dottori, M.; Bonilauri, P.; Luppi, A.; Gozio, S.; Pozzi, P.; Spaggiari, B.; Martelli, P. Survey of pleuritis and pulmonary lesions in pigs at abattoir with a focus on the extent of the condition and herd risk factors. Vet. J. 2012, 193, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Sibila, M.; Aragón, V.; Fraile, L.; Segalés, J. Comparison of four lung scoring systems for the assessment of the pathological outcomes derived from Actinobacillus pleuropneumoniae experimental infections. BMC Vet. Res. 2014, 10, 165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nickerson, D.A.; Tobe, V.O.; Taylor, S.L. PolyPhred: Automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing. Nucleic Acids Res. 1997, 25, 2745–2751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, D.; Abajian, C.; Green, P. Consed: A graphical tool for sequence finishing. Genome Res. 1998, 8, 195–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ewing, B.; Green, P. Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Res. 1998, 8, 186–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ewing, B.; Hillier, L.; Wendl, M.C.; Green, P. Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res. 1998, 8, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Groenen, M.A.; Archibald, A.L.; Uenishi, H.; Tuggle, C.K.; Takeuchi, Y.; Rothschild, M.F.; Rogel-Gaillard, C.; Park, C.; Milan, D.; Megens, H.J.; et al. Analyses of pig genomes provide insight into porcine demography and evolution. Nature 2012, 491, 393–398. [Google Scholar] [CrossRef] [Green Version]
- Kojima-Shibata, C.; Shinkai, H.; Morozumi, T.; Jozaki, K.; Toki, D.; Matsumoto, T.; Kadowaki, H.; Suzuki, E.; Uenishi, H. Differences in distribution of single nucleotide polymorphisms among intracellular pattern recognition receptors in pigs. Immunogenetics 2009, 61, 153–160. [Google Scholar] [CrossRef]
- Muneta, Y.; Minagawa, Y.; Kusumoto, M.; Shinkai, H.; Uenishi, H.; Splichal, I. Allele-specific primer polymerase chain reaction for a single nucleotide polymorphism (C1205T) of swine toll-like receptor 5 and comparison of the allelic frequency among several pig breeds in Japan and the Czech Republic. Microbiol. Immunol. 2012, 56, 385–391. [Google Scholar] [CrossRef]
- Shinkai, H.; Tanaka, M.; Morozumi, T.; Eguchi-Ogawa, T.; Okumura, N.; Muneta, Y.; Awata, T.; Uenishi, H. Biased distribution of single nucleotide polymorphisms (SNPs) in porcine Toll-like receptor 1 (TLR1), TLR2, TLR4, TLR5, and TLR6 genes. Immunogenetics 2006, 58, 324–330. [Google Scholar] [CrossRef]
- Lee, S.I.; Jeong, C.G.; Ul Salam Mattoo, S.; Nazki, S.; Prasad Aganja, R.; Kim, S.C.; Khatun, A.; Oh, Y.; Noh, S.H.; Lee, S.M.; et al. Protective immunity induced by concurrent intradermal injection of porcine circovirus type 2 and Mycoplasma hyopneumoniae inactivated vaccines in pigs. Vaccine 2021, 39, 6691–6699. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.; Lee, J.; Chen, F.; Lee, W.; Wu, Y.; Hsuan, S.; Kuo, C.; Chang, Y.; Chen, T. Evaluation of lung scoring system and serological analysis of Actinobacillus pleuropneumoniae infection in pigs. Pak. Vet. J. 2017, 37, 340–344. [Google Scholar]
- Shinkai, H.; Arakawa, A.; Tanaka-Matsuda, M.; Ide-Okumura, H.; Terada, K.; Chikyu, M.; Kawarasaki, T.; Ando, A.; Uenishi, H. Genetic variability in swine leukocyte antigen class II and Toll-like receptors affects immune responses to vaccination for bacterial infections in pigs. Comp. Immunol. Microbiol. Infect. Dis. 2012, 35, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Negrete-Abascal, E.; Reyes, M.E.; García, R.M.; Vaca, S.; Girón, J.A.; García, O.; Zenteno, E.; De La Garza, M. Flagella and motility in Actinobacillus pleuropneumoniae. J. Bacteriol. 2003, 185, 664–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rycroft, A.N.; Garside, L.H. Actinobacillus species and their role in animal disease. Vet. J. 2000, 159, 18–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyata, M.; Hamaguchi, T. Prospects for the gliding mechanism of Mycoplasma mobile. Curr. Opin. Microbiol. 2016, 29, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Segovia, J.A.; Chang, T.H.; Winter, V.T.; Coalson, J.J.; Cagle, M.P.; Pandranki, L.; Bose, S.; Baseman, J.B.; Kannan, T.R. NLRP3 is a critical regulator of inflammation and innate immune cell response during Mycoplasma pneumoniae infection. Infect. Immun. 2018, 86, e00548-17. [Google Scholar] [CrossRef] [Green Version]
- Asai, T.; Okada, M.; Yokomizo, Y.; Sato, S.; Mori, Y. Suppressive effect of bronchoalveolar lavage fluid from pigs infected with Mycoplasma hyopneumoniae on chemiluminescence of porcine peripheral neutrophils. Vet. Immunol. Immunopathol. 1996, 51, 325–331. [Google Scholar] [CrossRef]
- Baskerville, A. Pneumonia of pigs: A review. N. Z. Vet. J. 1981, 29, 216–218. [Google Scholar] [CrossRef]
- Muneta, Y.; Uenishi, H.; Kikuma, R.; Yoshihara, K.; Shimoji, Y.; Yamamoto, R.; Hamashima, N.; Yokomizo, Y.; Mori, Y. Porcine TLR2 and TLR6: Identification and their involvement in Mycoplasma hyopneumoniae infection. J. Interferon Cytokine Res. 2003, 23, 583–590. [Google Scholar] [CrossRef]
- McGovern, D.P.; Hysi, P.; Ahmad, T.; van Heel, D.A.; Moffatt, M.F.; Carey, A.; Cookson, W.O.; Jewell, D.P. Association between a complex insertion/deletion polymorphism in NOD1 (CARD4) and susceptibility to inflammatory bowel disease. Hum. Mol. Genet. 2005, 14, 1245–1250. [Google Scholar] [CrossRef] [PubMed]
- Vijay-Kumar, M.; Aitken, J.D.; Carvalho, F.A.; Cullender, T.C.; Mwangi, S.; Srinivasan, S.; Sitaraman, S.V.; Knight, R.; Ley, R.E.; Gewirtz, A.T. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 2010, 328, 228–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hugot, J.P.; Chamaillard, M.; Zouali, H.; Lesage, S.; Cézard, J.P.; Belaiche, J.; Almer, S.; Tysk, C.; O’Morain, C.A.; Gassull, M.; et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 2001, 411, 599–603. [Google Scholar] [CrossRef] [PubMed]
- Ogura, Y.; Bonen, D.K.; Inohara, N.; Nicolae, D.L.; Chen, F.F.; Ramos, R.; Britton, H.; Moran, T.; Karaliuskas, R.; Duerr, R.H.; et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 2001, 411, 603–606. [Google Scholar] [CrossRef]
Trait | Unit | N | Mean ± SE | Positive/Negative Animals 1 | ||
---|---|---|---|---|---|---|
Sex (Male/Female) | ||||||
GW lung lesion score (log-transformed) | - | 180 106 | (99/81) (49/57) | 1.110 ± 0.050 1.797 ± 0.081 | 142/38 100/6 | |
SPES pleuritis score | - | 180 106 | (99/81) (49/57) | 0.294 ± 0.060 0.330 ± 0.069 | 29/151 26/80 | |
Backfat thickness (adjusted with carcass weight) | cm | 180 106 | (99/81) (49/57) | 2.259 ± 0.038 2.030 ± 0.035 | - | |
Intramuscular fat (IMF) | % | 171 106 | (95/76) (49/57) | 2.465 ± 0.020 2.596 ± 0.020 | - | |
Antibody | Mhp | - | 180 103 | (99/81) (48/55) | 0.111 ± 0.015 1.062 ± 0.042 | 8/172 98/5 |
App | - | 180 103 | (99/81) (48/55) | 8.186 ± 1.035 9.040 ± 2.341 | 2/178 6/97 |
Gene | SNP Position | Location on Pig Genome 1 | Allele 2 | Primer Sequences | |
---|---|---|---|---|---|
Chromosome | Position | ||||
NLRP3 | 2906 | 2 | 56,897,226 | A/G | 5′-CCAAGCTTGTTAATCTTGTGC-3′ 5′-AAGTGCAAATGAAGCCATCC-3′ |
NOD1 | 1922 | 18 | 42,478,230 | A/G | 5′-GTCCAAAGGCAAACAGAAACTC-3′ 5′-GAGAAGGTCTGGATGTTCCAAG-3′ |
2752 | 18 | 42,496,337 | A/G | 5′-CTGGTGGTCTCCAAACCATT-3′ 5′-TCCACATCTGCGAAACAGAG-3′ | |
NOD2 | 2197 | 6 | 34,157,241 | A/C | 5′-GGTGTCTGAGAAGGCTCTGC-3′ 5′-TTGCAGACGTTGAGACAAGG-3′ |
TLR5 | 1205 | 10 | 19,391,571 | T/C | 5′-TCTGGGTTTGGCTTCCATAA-3′ 5′-TCAGATGGCGAAAGACTCCT-3′ |
Traits | SPES | BF | IMF | Ab (Mhp) | Ab (App) |
---|---|---|---|---|---|
GW | 0.115 (0.052) | −0.066 (0.264) | 0.117 (0.052) | 0.483 (<0.001 ***) | 0.003 (0.956) |
SPES | −0.065 (0.272) | 0.124 (0.039 *) | 0.077 (0.195) | 0.134 (0.024 *) | |
BF | −0.048 (0.423) | −0.189 (0.001 **) | −0.106 (0.076) | ||
IMF | 0.263 (<0.001 ***) | 0.063 (0.299) | |||
Ab (Mhp) | 0.091 (0.127) |
Farm | NOD1 Haplotype 1 | NOD2-2197 | NLRP3-2906 | TLR5-1205 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
−/− | +/− | +/+ | AA | AC | CC | AA | AG | GG | CC | CT | TT | |
A | 62 | 117 | 1 | 69 | 107 | 4 | 142 | 38 | 0 | 158 | 22 | 0 |
B | 23 | 83 | 0 | 31 | 70 | 5 | 90 | 16 | 0 | 93 | 13 | 0 |
(A) Goodwin Lung Lesion Score (GW) | |||||||
Reference Group | Tested Group | Coefficient | SE | Confidence Interval (≥95%) | Hypothesis Test | ||
Lower | Upper | t | p | ||||
Farm (A) | B | 1.059 | 0.267 | 0.535 | 1.583 | 3.961 | <0.001 *** |
Sex (Male) | Female | 0.018 | 0.088 | −0.155 | 0.191 | 0.206 | 0.837 |
NOD1 (−/−) | +/− | −0.019 | 0.097 | −0.210 | 0.172 | −0.195 | 0.845 |
NOD2-2197 (A/A) | A/C | −0.056 | 0.095 | −0.242 | 0.130 | −0.588 | 0.556 |
C/C | −0.195 | 0.260 | −0.705 | 0.314 | −0.752 | 0.452 | |
NLRP3-2906 (A/A) | A/G | −0.181 | 0.113 | −0.402 | 0.040 | −1.603 | 0.109 |
TLR5-1205 (C/C) | C/T | −0.132 | 0.135 | −0.397 | 0.133 | −0.975 | 0.329 |
Date | 0.002 | 0.002 | −0.001 | 0.005 | 1.481 | 0.139 | |
Intercept | −40.941 | 28.445 | −96.693 | 14.810 | −1.439 | 0.150 | |
(B) Pleuritis-lesion score (SPES) | |||||||
Reference Group | Tested Group | Coefficient | SE | Confidence interval (≥95%) | Hypothesis test | ||
Lower | Upper | t | p | ||||
Farm (A) | B | 1.110 | 0.273 | 0.575 | 1.645 | 4.068 | <0.001 *** |
Sex (Male) | Female | 0.022 | 0.090 | −0.155 | 0.198 | 0.242 | 0.809 |
NOD1 (−/−) | +/− | −0.028 | 0.099 | −0.223 | 0.167 | −0.280 | 0.779 |
NOD2-2197 (A/A) | A/C | −0.167 | 0.097 | −0.357 | 0.022 | −1.731 | 0.084 |
C/C | −0.436 | 0.265 | −0.956 | 0.083 | −1.646 | 0.100 | |
NLRP3-2906 (A/A) | A/G | −0.177 | 0.115 | −0.403 | 0.049 | −1.537 | 0.124 |
TLR5-1205 (C/C) | C/T | 0.279 | 0.138 | 0.009 | 0.550 | 2.025 | 0.043 * |
Date | 0.007 | 0.002 | 0.003 | 0.010 | 4.147 | <0.001 *** | |
Intercept | −119.964 | 29.020 | −176.842 | −63.086 | −4.134 | <0.001 *** | |
(C) Backfat thickness | |||||||
Reference Group | Tested Group | Coefficient | SE | Confidence interval (≥95%) | Hypothesis test | ||
Lower | Upper | t | p | ||||
Farm (A) | B | 0.123 | 0.165 | −0.199 | 0.446 | 0.748 | 0.454 |
Sex (Male) | Female | −0.092 | 0.054 | −0.198 | 0.015 | −1.689 | 0.091 |
NOD1 (−/−) | +/− | 0.046 | 0.060 | −0.071 | 0.163 | 0.768 | 0.443 |
NOD2-2197 (A/A) | A/C | 0.053 | 0.058 | −0.061 | 0.168 | 0.915 | 0.360 |
C/C | 0.033 | 0.160 | −0.280 | 0.347 | 0.210 | 0.834 | |
NLRP3-2906 (A/A) | A/G | 0.091 | 0.069 | −0.045 | 0.227 | 1.308 | 0.191 |
TLR5-1205 (C/C) | C/T | −0.036 | 0.083 | −0.199 | 0.127 | −0.432 | 0.666 |
Date | 0.002 | 0.001 | 0.000 | 0.004 | 2.272 | 0.023 * | |
Intercept | −37.559 | 17.505 | −71.869 | −3.250 | −2.146 | 0.032 * | |
(D) Intramuscular fat | |||||||
Reference Group | Tested Group | Coefficient | SE | Confidence interval (≥95%) | Hypothesis test | ||
Lower | Upper | t | p | ||||
Farm (A) | B | 0.058 | 0.088 | −0.114 | 0.231 | 0.663 | 0.507 |
Sex (Male) | Female | −0.019 | 0.029 | −0.077 | 0.038 | −0.661 | 0.509 |
NOD1 (−/−) | +/− | 0.097 | 0.033 | 0.033 | 0.161 | 2.965 | 0.003 ** |
NOD2-2197 (A/A) | A/C | −0.030 | 0.032 | −0.091 | 0.032 | −0.933 | 0.351 |
C/C | −0.049 | 0.085 | −0.216 | 0.119 | −0.569 | 0.569 | |
NLRP3-2906 (A/A) | A/G | −0.060 | 0.038 | −0.133 | 0.014 | −1.592 | 0.111 |
TLR5-1205 (C/C) | C/T | 0.081 | 0.045 | −0.008 | 0.169 | 1.791 | 0.073 |
Date | 0.000 | 0.001 | −0.001 | 0.001 | −0.744 | 0.457 | |
Intercept | 9.398 | 9.354 | −8.936 | 27.732 | 1.005 | 0.315 | |
(E) Mhp-specific antibodies | |||||||
Reference Group | Tested Group | Coefficient | SE | Confidence interval (≥95%) | Hypothesis test | ||
Lower | Upper | t | p | ||||
Farm (A) | B | 0.849 | 0.110 | 0.633 | 1.065 | 7.703 | <0.001 *** |
Sex (Male) | Female | 0.117 | 0.036 | 0.046 | 0.188 | 3.228 | 0.001 ** |
NOD1 (−/−) | +/− | −0.001 | 0.040 | −0.079 | 0.077 | −0.031 | 0.975 |
NOD2-2197 (A/A) | A/C | −0.054 | 0.039 | −0.131 | 0.022 | −1.394 | 0.163 |
C/C | −0.193 | 0.106 | −0.401 | 0.015 | −1.820 | 0.069 | |
NLRP3-2906 (A/A) | A/G | −0.064 | 0.046 | −0.155 | 0.027 | −1.371 | 0.170 |
TLR5-1205 (C/C) | C/T | 0.055 | 0.055 | −0.053 | 0.163 | 0.993 | 0.321 |
Date | −0.001 | 0.001 | −0.002 | 0.001 | −0.922 | 0.356 | |
Intercept | 10.867 | 11.668 | −12.001 | 33.736 | 0.931 | 0.352 | |
(F) App-specific antibodies | |||||||
Reference Group | Tested Group | Coefficient | SE | Confidence interval (≥95%) | Hypothesis test | ||
Lower | Upper | t | p | ||||
Farm (A) | B | 20.968 | 6.561 | 8.110 | 33.827 | 3.196 | 0.001 ** |
Sex (Male) | Female | −2.798 | 2.153 | −7.018 | 1.422 | −1.300 | 0.194 |
NOD1 (−/−) | +/− | 0.057 | 2.367 | −4.582 | 4.696 | 0.024 | 0.981 |
NOD2-2197 (A/A) | A/C | −1.809 | 2.317 | −6.351 | 2.732 | −0.781 | 0.435 |
C/C | −3.242 | 6.313 | −15.615 | 9.131 | −0.514 | 0.608 | |
NLRP3-2906 (A/A) | A/G | −4.934 | 2.765 | −10.355 | 0.486 | −1.784 | 0.074 |
TLR5-1205 (C/C) | C/T | 2.790 | 3.286 | −3.651 | 9.231 | 0.849 | 0.396 |
Date | 0.123 | 0.038 | 0.048 | 0.197 | 3.234 | 0.001 ** | |
Intercept | −2235.554 | 694.545 | −3596.838 | −874.270 | −3.219 | 0.001 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzuki, K.; Shinkai, H.; Yoshioka, G.; Matsumoto, T.; Takenouchi, T.; Tanaka, J.; Shimizu, M.; Kitazawa, H.; Uenishi, H. Polymorphisms in Pattern Recognition Receptor Genes Are Associated with Respiratory Disease Severity in Pig Farms. Animals 2022, 12, 3163. https://doi.org/10.3390/ani12223163
Suzuki K, Shinkai H, Yoshioka G, Matsumoto T, Takenouchi T, Tanaka J, Shimizu M, Kitazawa H, Uenishi H. Polymorphisms in Pattern Recognition Receptor Genes Are Associated with Respiratory Disease Severity in Pig Farms. Animals. 2022; 12(22):3163. https://doi.org/10.3390/ani12223163
Chicago/Turabian StyleSuzuki, Kasumi, Hiroki Shinkai, Gou Yoshioka, Toshimi Matsumoto, Takato Takenouchi, Junji Tanaka, Masanori Shimizu, Haruki Kitazawa, and Hirohide Uenishi. 2022. "Polymorphisms in Pattern Recognition Receptor Genes Are Associated with Respiratory Disease Severity in Pig Farms" Animals 12, no. 22: 3163. https://doi.org/10.3390/ani12223163
APA StyleSuzuki, K., Shinkai, H., Yoshioka, G., Matsumoto, T., Takenouchi, T., Tanaka, J., Shimizu, M., Kitazawa, H., & Uenishi, H. (2022). Polymorphisms in Pattern Recognition Receptor Genes Are Associated with Respiratory Disease Severity in Pig Farms. Animals, 12(22), 3163. https://doi.org/10.3390/ani12223163