Efficacy of Dietary Supplementation with Zinc-Chromium Mixture, Organic Selenium, or Their Combinations on Growth Performance, Carcass Traits, and Blood Profiles of Broilers under Heat Stress Conditions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chicks and Management
2.2. Mortality Rate and Growth Parameters
2.3. Carcass Traits
2.4. Haematological and Biochemical Measurements
2.5. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Carcass Traits
3.3. Haematological Characteristics
3.4. Serum Blood Biochemistry
3.5. Thyroid Hormones
3.6. Serum Antioxidant Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alagawany, M.; Elnesr, S.S.; Farag, M.R.; Tiwari, R.; Yatoo, M.I.; Karthik, K.; Dhama, K. Nutritional significance of amino acids, vitamins and minerals as nutraceuticals in poultry production and health–A comprehensive review. Vet. Q. 2021, 41, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Batool, F.; Bilal, R.M.; Hassan, F.U.; Nasir, T.A.; Rafeeque, M.; Elnesr, S.S.; Alagawany, M. An updated review on behavior of domestic quail with reference to the negative effect of heat stress. Anim. Biotechnol. 2021, 34, 424–437. [Google Scholar] [CrossRef] [PubMed]
- Awad, E.A.; Zulkifli, I.; Soleimani, A.F.; Law, F.L.; Ramiah, S.K.; Mohamed-Yousif, I.M.; Hussein, E.A.; Khalil, E.S. Response of broilers to reduced-protein diets under heat stress conditions. World’s Poult. Sci. J. 2019, 75, 583–598. [Google Scholar] [CrossRef]
- Wang, G.; Li, X.; Zhou, Y.; Feng, J.; Zhang, M. Effects of heat stress on gut-microbial metabolites, gastrointestinal peptides, glycolipid metabolism, and performance of broilers. Animals 2021, 11, 1286. [Google Scholar] [CrossRef]
- Alagawany, M.; Elnesr, S.S.; Farag, M.R.; Abd El-Hack, M.E.; Barkat, R.A.; Gabr, A.A.; Dhama, K. Potential role of important nutraceuticals in poultry performance and health-A comprehensive review. Res. Vet. Sci. 2021, 137, 9–29. [Google Scholar] [CrossRef]
- Tsiplakou, E.; Pitino, R.; Manuelian, C.L.; Simoni, M.; Mitsiopoulou, C.; De Marchi, M.; Righi, F. Plant feed additives as natural alternatives to the use of synthetic antioxidant vitamins in livestock animal products yield, quality, and oxidative status: A review. Antioxidants 2021, 10, 780. [Google Scholar] [CrossRef]
- Elnesr, S.S.; Abdel-Razik, A.R.H.; Elwan, H.A. Impact of humate substances and Bacillus subtilis PB6 on thyroid activity and histomorphometry, iron profile and blood haematology of quail. J. Anim. Physiol. Anim. Nutr. 2022, 106, 110–117. [Google Scholar] [CrossRef]
- Toson, E.; Abd El Latif, M.; Mohamed, A.; Gazwi, H.S.S.; Saleh, M.; Kokoszynski, D.; Elnesr, S.S.; Hozzein, W.N.; Wadaan, M.A.M.; Elwan, H. Efficacy of licorice extract on the growth performance, carcass characteristics, blood indices and antioxidants capacity in broilers. Anim. Int. J. Anim. Biosci. 2023, 17, 100696. [Google Scholar] [CrossRef]
- Piray, A.; Foroutanifar, S. Chromium supplementation on the growth performance, carcass traits, blood constituents, and immune competence of broiler chickens under heat stress: A systematic review and dose–response meta-analysis. Biol. Trace Elem. Res. 2021, 200, 2876–2888. [Google Scholar] [CrossRef]
- Ozdemir, O.; Tuzcu, M.; Sahin, N.; Orhan, C.; Tuzcu, Z.; Sahin, K. Organic chromium modifies the expression of orexin and glucose transporters of ovarian in heat-stressed laying hens. Cell. Mol. Biol. 2017, 63, 93–98. [Google Scholar] [CrossRef]
- De Grande, A.; Leleu, S.; Delezie, E.; Rapp, C.; De Smet, S.; Goossens, E.; Ducatelle, R. Dietary zinc source impacts intestinal morphology and oxidative stress in young broilers. Poult. Sci. 2020, 99, 441–453. [Google Scholar] [CrossRef]
- Rouhalamini, S.M.; Salarmoini, M.; Asadi-Karam, G.H. Effect of zinc sulfate and organic chromium supplementation on the performance, meat quality and immune response of Japanese quails under heat stress conditions. Poult. Sci. J. 2014, 2, 165–181. [Google Scholar] [CrossRef]
- Alkhtib, A.; Scholey, D.; Carter, N.; Cave, G.W.; Hanafy, B.I.; Kempster, S.R.; Burton, E.J. Bioavailability of methionine-coated zinc nanoparticles as a dietary supplement leads to improved performance and bone strength in broiler chicken production. Animals 2020, 10, 1482. [Google Scholar] [CrossRef]
- Wickramasuriya, S.S.; Park, I.; Lee, Y.; Lillehoj, H.S. Effect of Dietary Organic Selenium on Growth Performance, Gut Health, and Coccidiosis Response in Broiler Chickens. Animals 2023, 13, 1560. [Google Scholar] [CrossRef]
- Alagawany, M.; Qattan, S.Y.; Attia, Y.A.; El-Saadony, M.T.; Elnesr, S.S.; Mahmoud, M.A.; Reda, F.M. Use of chemical nano-selenium as an antibacterial and antifungal agent in quail diets and its effect on growth, carcasses, antioxidant, immunity and caecal microbes. Animals 2021, 11, 3027. [Google Scholar] [CrossRef]
- Woods, S.L.; Rose, S.P.; Whiting, I.M.; Yovchev, D.G.; Ionescu, C.; Blanchard, A.; Pirgozliev, V. The effect of selenium source on the oxidative status and performance of broilers reared at standard and high ambient temperatures. Br. Poult. Sci. 2021, 62, 235–243. [Google Scholar] [CrossRef]
- Bao, Y.M.; Choct, M. Trace mineral nutrition for broiler chickens and prospects of application of organically complexed trace minerals: A review. Anim. Prod. Sci. 2009, 49, 269–282. [Google Scholar] [CrossRef]
- Ognik, K.; Drażbo, A.; Stępniowska, A.; Kozłowski, K.; Listos, P.; Jankowski, J. The effect of chromium nanoparticles and chromium picolinate in broiler chicken diet on the performance, redox status and tissue histology. Anim. Feed Sci. Technol. 2020, 259, 114326. [Google Scholar] [CrossRef]
- Zaghari, M.; Pouraghaali, S.; Zhandi, M.; Abbasi, M. Effect of monovalent copper oxide and potentiated zinc oxide on growth performance and gut morphology of broiler chickens challenged with coccidiosis. Biol. Trace Elem. Res. 2023, 201, 2524–2535. [Google Scholar] [CrossRef]
- Nabi, F.; Arain, M.A.; Hassan, F.; Umar, M.; Rajput, N.; Alagawany, M.; Liu, J. Nutraceutical role of selenium nanoparticles in poultry nutrition: A review. World’s Poult. Sci. J. 2020, 76, 459–471. [Google Scholar] [CrossRef]
- Rao, S.V.; Prakash, B.; Raju, M.V.L.N.; Panda, A.K.; Kumari, R.K.; Reddy, E. Effect of supplementing organic forms of zinc, selenium and chromium on performance, antioxidant and immune responses in broiler chicken reared in tropical summer. Biol. Trace Elem. Res. 2016, 172, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.; Mishra, A.; Singh, A.P.; Singh, A.K. Effect of chelated and inorganic zinc, selenium and chromium on antioxidant status, biochemical and production parameters in broiler. Indian J. Anim. Res. 2021, 55, 52–59. [Google Scholar] [CrossRef]
- Ghasemi, H.A.; Hajkhodadadi, I.; Hafizi, M.; Taherpour, K.; Nazaran, M.H. Effect of advanced chelate technology based trace minerals on growth performance, mineral digestibility, tibia characteristics, and antioxidant status in broiler chickens. Nutr. Metab. 2020, 17, 94. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.K.; Mishra, A.; Singh, A.P.; Patel, P.; Sheikh, A.A.; Chandraker, T.R.; Vandre, R. Effects of different concentration of organic and inorganic trace minerals (zinc, selenium, and chromium) supplementation on expression of chTLR4 gene and humoral immune response in broilers. Vet. World 2021, 14, 1093. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.S.A.; Lozovskiy, A.R.; Ali, A.M.A. Nutritional strategies to alleviate heat stress effects through feed restrictions and feed additives (vitamins and minerals) in broilers under summer conditions. J. Anim. Behav. Biometeorol. 2019, 7, 123–131. [Google Scholar] [CrossRef]
- Mohamed, A.S.A.; Toson, E.M.A. Effect of dietary organic selenium on productive performance of broiler chickens under summer conditions. Egypt. Poult. Sci. 2022, 42, 465–481. [Google Scholar] [CrossRef]
- Aviagen. Ross 308: Broiler Nutrition Specification; Aviagen: Huntsville, AL, USA, 2019. [Google Scholar]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Aviagen. Ross 308 Management Handbook; Aviagen: Huntsville, AL, USA, 2019. [Google Scholar]
- Marković, R.; Ćirić, J.; Drljačić, A.; Šefer, D.; Jovanović, I.; Jovanović, D.; Starčević, M. The effects of dietary Selenium-yeast level on glutathione peroxidase activity, tissue Selenium content, growth performance, and carcass and meat quality of broilers. Poult. Sci. 2018, 97, 2861–2870. [Google Scholar] [CrossRef]
- Ramiah, S.K.; Awad, E.A.; Mookiah, S.; Idrus, Z. Effects of zinc oxide nanoparticles on growth performance and concentrations of malondialdehyde, zinc in tissues, and corticosterone in broiler chickens under heat stress conditions. Poult. Sci. 2019, 98, 3828–3838. [Google Scholar] [CrossRef]
- Echeverry, H.; Yitbarek, A.; Munyaka, P.; Alizadeh, M.; Cleaver, A.; Camelo-Jaimes, G.; Rodriguez-Lecompte, J.C. Organic trace mineral supplementation enhances local and systemic innate immune responses and modulates oxidative stress in broiler chickens. Poult. Sci. 2016, 95, 518–527. [Google Scholar] [CrossRef]
- Jain, A.K.; Mishra, A.; Caesar, D.D.; Shakkarpude, J.; Mourya, A.; Baghel, R.P.S.; Sharma, R.K. Can different concentration of chelated and inorganic trace minerals (Zn, Se and Cr) be an effective supplement for better production performance and carcass traits in broilers? J. Entomol. Zool. Stud. 2020, 8, 197–204. [Google Scholar]
- Faa, G.; Nurchi, V.M.; Ravarino, A.; Fanni, D.; Nemolato, S.; Gerosa, C.; Eyken, P.V.; Geboes, K. Zinc in gastrointestinal and liver disease. Coord. Chem. Rev. 2008, 252, 1257–1269. [Google Scholar] [CrossRef]
- Alwaleed, E.A.; El-Sheekh, M.; Abdel-Daim, M.M.; Saber, H. Effects of Spirulina platensis and Amphora coffeaeformis as dietary supplements on blood biochemical parameters, intestinal microbial population, and productive performance in broiler chickens. Environ. Sci. Pollut. Res. 2021, 28, 1801–1811. [Google Scholar] [CrossRef]
- Abdallah, A.G.; El-Husseiny, O.M.; Abdel-Latif, K.O. Influence of some dietary organic mineral supplementations. Int. J. Poult. Sci. 2009, 8, 291–298. [Google Scholar] [CrossRef] [Green Version]
- Baloch, Z.; Yasmeen, N.; Pasha, T.N.; Ahmad, A.; Taj, M.K.; Khosa, A.N.; Marghazani, I.B.; Bangulzai, N.; Ahmad, I.; Hua, Y.S. Effect of replacing inorganic with organic trace minerals on growth performance, carcass characteristics and chemical composition of broiler thigh meat. Afr. J. Agric. Res. 2017, 12, 1570–1575. [Google Scholar] [CrossRef] [Green Version]
- Yaqoob, M.U.; Wang, G.; Sun, W.; Pei, X.; Liu, L.; Tao, W.; Pelletier, W. Effects of inorganic trace minerals replaced by complexed glycinates on reproductive performance, blood profiles, and antioxidant status in broiler breeders. Poult. Sci. 2020, 99, 2718–2726. [Google Scholar] [CrossRef]
- Edens, F.W.; Parkhurst, C.R.; Havenstein, G.B.; Sefton, A.E. Housing and selenium influences on feathering in broilers. J. Appl. Poult. Res. 2001, 10, 128–134. [Google Scholar] [CrossRef]
- Sahin, K.; Sahin, N.; Kucuk, O.; Hayirli, A.; Prasad, A.S. Role of dietary zinc in heat-stressed poultry: A review. Poult. Sci. 2009, 88, 2176–2183. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, L.; Li, J.; Gao, F.; Zhou, G. Hydrogen peroxide-induced change in meat quality of the breast muscle of broilers is mediated by ROS generation, apoptosis, and autophagy in the NF-κB signal pathway. J. Agric. Food Chem. 2017, 65, 3986–3994. [Google Scholar] [CrossRef]
- Norain, T.M.; Ismail, I.B.; Abdoun, K.A.; Al-Haidary, A.A. Dietary inclusion of chromium to improve growth performance and immune-competence of broilers under heat stress. Ital. J. Anim. Sci. 2013, 12, e92. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, J.; Xiao, F.; Lloyd, K.; Lin, X. Effects of supplemental chromium source and concentration on growth performance, carcass traits, and meat quality of broilers under heat stress conditions. Biol. Trace Elem. Res. 2016, 170, 216–223. [Google Scholar] [CrossRef]
- Baltić, M.Ž.; Starčević, M.D.; Bašić, M.; Zenunović, A.; Ivanović, J.; Marković, R.; Glamočlija, N. Effects of dietary selenium-yeast concentrations on growth performance and carcass composition of ducks. Anim. Prod. Sci. 2016, 57, 1731–1737. [Google Scholar] [CrossRef]
- Khatun, A.; Chowdhury, S.D.; Roy, B.C.; Dey, B.; Haque, A.; Chandran, B. Comparative effects of inorganic and three forms of organic trace minerals on growth performance, carcass traits, immunity, and profitability of broilers. J. Adv. Vet. Anim. Res. 2019, 6, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Vouldoukis, I.; Lacan, D.; Kamate, C.; Coste, P.; Calenda, A.; Mazier, D.; Dugas, B. Antioxidant and anti-inflammatory properties of a Cucumis melo LC. extract rich in superoxide dismutase activity. J. Ethnopharmacol. 2004, 94, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Aksu, D.S.; Aksu, T.; Ozsoy, B. The effects of lower supplementation levels of organically complexed minerals (zinc, copper and manganese) versus inorganic forms on hematological and biochemical parameters in broilers. Kafkas Univ. Vet Fak. Derg. 2010, 16, 553–559. [Google Scholar] [CrossRef]
- Saleh, A.A.; Ragab, M.M.; Ahmed, E.A.; Abudabos, A.M.; Ebeid, T.A. Effect of dietary zinc-methionine supplementation on growth performance, nutrient utilization, antioxidative properties and immune response in broiler chickens under high ambient temperature. J. Appl. Anim. Res. 2018, 46, 820–827. [Google Scholar] [CrossRef] [Green Version]
- Arif, M.; Hussain, I.; Mahmood, M.A.; Abd El-Hack, M.E.; Swelum, A.A.; Alagawany, M.; Komany, A. Effect of varying levels of chromium propionate on growth performance and blood biochemistry of broilers. Animals 2019, 9, 935. [Google Scholar] [CrossRef] [Green Version]
- El-Demerdash, F.M. Antioxidant effect of vitamin E and selenium on lipid peroxidation, enzyme activities and biochemical parameters in rats exposed to aluminium. J. Trace Elem. Med. Biol. 2004, 18, 113–121. [Google Scholar] [CrossRef]
- Saracila, M.; Panaite, T.D.; Mironeasa, S.; Untea, A.E. Dietary supplementation of some antioxidants as attenuators of heat stress on chicken meat characteristics. Agriculture 2021, 11, 638. [Google Scholar] [CrossRef]
- Hassan, F.; Mobarez, S.; Mohamed, M.; Attia, Y.; Mekawy, A.; Mahrose, K. Zinc and/or selenium enriched spirulina as antioxidants in growing rabbit diets to alleviate the deleterious impacts of heat stress during summer season. Animals 2021, 11, 756. [Google Scholar] [CrossRef]
- Ali, N.K.; Al-Hassani, D.H. Temperature and some blood traits response to organic and inorganic selenium added to the broiler diet reared at high temperatures. Iraqi J. Agric. Sci. 2020, 51, 734–743. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Zhan, X. Effects of different dl-selenomethionine and sodium selenite levels on growth performance, immune functions and serum thyroid hormones concentrations in broilers. J. Anim. Physiol. Anim. Nutr. 2015, 100, 431–439. [Google Scholar] [CrossRef]
- Vlaicu, P.A.; Untea, A.E.; Turcu, R.P.; Saracila, M.; Panaite, T.D.; Cornescu, G.M. Nutritional composition and bioactive compounds of basil, thyme and sage plant additives and their functionality on broiler thigh meat quality. Foods 2022, 11, 1105. [Google Scholar] [CrossRef]
Ingredient (g/kg) | Starter (7–21 d) | Finisher (22–35 d) |
---|---|---|
Yellow corn | 566.5 | 610.0 |
Soybean meal, 44% crude protein | 264.0 | 219.0 |
Corn gluten meal | 100.0 | 100.0 |
Sunflower oil | 28.5 | 32.0 |
Dicalcium phosphate | 21.0 | 20.0 |
Sodium chloride | 3.0 | 3.0 |
Limestone | 13.0 | 12.5 |
Dl-methionine b | 1.0 | 0.5 |
Vitamin-mineral premix a | 3.0 | 3.0 |
Analytical composition | ||
Dry matter (DM) | 918.9 | 917.8 |
Crude protein (CP) | 227.3 | 208.4 |
Crude fiber (CF) | 29.7 | 33.1 |
Ether extract (EE) | 62.4 | 78.1 |
Calculated composition | ||
Metabolizable energy (MJ/kg) | 13.01 | 13.33 |
Calcium | 10.04 | 9.9 |
Available phosphorus | 5.2 | 4.5 |
Methionine + Cystine | 9.0 | 8.0 |
Zinc (Zn, mg/kg) | 51.10 | 50.17 |
Selenium (Se, mg/kg) | 0.22 | 0.21 |
Chromium (Cr, mg/kg) | 0.04 | 0.04 |
Treatments | Feed Additives, mg/kg Diet | ||
---|---|---|---|
Zn a (mg/kg Diet) | Cr b (mg/kg Diet) | Se c (mg/kg Diet) | |
T1 (control) | - | - | - |
T2 (Zn-Cr) | 100 | 1.5 | - |
T3 (LSe) * | - | - | 0.6 |
T4 (HSe) ** | - | - | 0.9 |
T5 (Zn-Cr-LSe) | 100 | 1.5 | 0.6 |
T6 (Zn-Cr-HSe) | 100 | 1.5 | 0.9 |
Parameter | Period (Days) | |||
---|---|---|---|---|
8–14 | 15–21 | 22–28 | 28–35 | |
Ambient temperature, °C | 31.82 | 31.69 | 30.45 | 30.21 |
Ambient temperature (12:00–16:00), °C | 33.41 | 33.72 | 32.16 | 31.53 |
Relative Humidity (RH), % | 70.57 | 69.81 | 67.64 | 67.91 |
Treatments | Live Body Weight, (g), Live BW | Body Weight Gain, (g), BWG | Feed Consumption, (g), FC | Feed Conversion Ratio, FCR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
7 | 21 | 35 | 8–21 | 22–35 | 8–35 | 8–21 | 22–35 | 8–35 | 8–21 | 22–35 | 8–35 | |
(A) Effect of Zn-Cr mixture | ||||||||||||
Without Zn-Cr | 152.70 | 827.09 b | 1824.43 b | 674.39 b | 997.34 b | 1671.73 b | 1089.04 | 2074.80 | 3163.84 | 1.62 b | 2.09 b | 1.90 b |
With Zn-Cr | 155.48 | 913.30 a | 1967.67 a | 757.82 a | 1054.36 a | 1812.19 a | 1097.80 | 2022.76 | 3120.56 | 1.45 a | 1.92 a | 1.72 a |
SEM | 2.73 | 12.72 | 12.01 | 10.63 | 8.90 | 10.23 | 10.87 | 19.41 | 16.68 | 0.02 | 0.02 | 0.01 |
p-value | 0.4814 | 0.0001 | <0.0001 | <0.0001 | 0.0003 | <0.0001 | 0.5756 | 0.0742 | 0.0831 | <0.0001 | <0.0001 | <0.0001 |
(B) Effect of organic Se levels | ||||||||||||
Without Se | 151.74 | 852.82 | 1822.80 b | 701.08 | 969.98 b | 1671.06 b | 1094.55 | 2044.26 | 3138.81 | 1.57 | 2.12 a | 1.89 a |
With LSe ≠ | 153.46 | 873.01 | 1921.85 a | 719.55 | 1048.85 a | 1768.40 a | 1079.75 | 2048.16 | 3127.91 | 1.51 | 1.96 b | 1.77 b |
With HSe ≠≠ | 157.08 | 884.77 | 1943.49 a | 727.69 | 1058.72 a | 1786.41 a | 1105.96 | 2053.92 | 3159.89 | 1.53 | 1.94 b | 1.77 b |
SEM | 3.34 | 15.58 | 14.71 | 13.01 | 10.90 | 12.53 | 13.31 | 23.78 | 20.42 | 0.02 | 0.02 | 0.02 |
p-value | 0.5268 | 0.3619 | <0.0001 | 0.3550 | <0.0001 | <0.0001 | 0.3962 | 0.9591 | 0.5421 | 0.1926 | <0.0001 | 0.0001 |
(A × B) Effect of interaction between Zn-Cr mixture and organic Se levels | ||||||||||||
T1 | 149.91 | 807.77 c | 1714.22 d | 657.86 b | 906.45 c | 1564.31 e | 1080.06 | 2056.16 | 3136.22 | 1.65 a | 2.27 a | 2.01 a |
T2 | 153.57 | 897.87 ab | 1931.38 ab | 744.30 a | 1033.51 ab | 1777.81 bc | 1109.04 | 2032.36 | 3141.40 | 1.49 b | 1.97 bc | 1.77 c |
T3 | 152.63 | 832.50 bc | 1853.64 c | 679.87 b | 1021.14 b | 1701.01 d | 1086.53 | 2062.48 | 3149.01 | 1.60 a | 2.02 b | 1.85 b |
T4 | 155.57 | 841.01 bc | 1905.44 bc | 685.44 b | 1064.43 ab | 1749.87 cd | 1100.52 | 2105.78 | 3206.30 | 1.61 a | 1.98 bc | 1.83 bc |
T5 | 154.28 | 913.51 a | 1990.07 a | 759.23 a | 1076.56 a | 1835.79 a | 1072.96 | 2033.85 | 3106.81 | 1.42 b | 1.89 c | 1.69 d |
T6 | 158.59 | 928.53 a | 1981.55 a | 769.94 a | 1053.02 ab | 1822.96 ab | 1111.40 | 2002.08 | 3113.48 | 1.45 b | 1.90 c | 1.71 cd |
SEM | 4.73 | 22.03 | 20.81 | 18.41 | 15.42 | 17.72 | 18.82 | 33.63 | 28.88 | 0.03 | 0.03 | 0.02 |
p-value | 0.8569 | 0.0046 | <0.0001 | 0.0012 | <0.0001 | <0.0001 | 0.6220 | 0.3992 | 0.2382 | 0.0002 | <0.0001 | <0.0001 |
Treatments | Body Weight, g | (g/100 g of Live Body Weight) | |||||
---|---|---|---|---|---|---|---|
Carcass Yield | Gizzard | Liver | Heart | Abdominal Fat | Spleen | ||
(A) Effect of Zn-Cr mixture | |||||||
Without Zn-Cr | 1815.42 b | 70.08 b | 1.82 b | 2.04 b | 0.53 b | 1.93 a | 0.11 |
With Zn-Cr | 1996.58 a | 72.30 a | 2.00 a | 2.33 a | 0.59 a | 1.61 b | 0.12 |
SEM | 14.11 | 0.11 | 0.04 | 0.03 | 0.02 | 0.03 | 0.01 |
p-value | <0.0001 | <0.0001 | 0.0078 | <0.0001 | 0.0102 | <0.0001 | 0.4426 |
(B) Effect of organic Se levels | |||||||
Without Se | 1820.66 b | 70.94 b | 1.92 | 2.11 | 0.55 | 1.82 | 0.11 |
With LSe ≠ | 1941.11 a | 71.42 a | 1.95 | 2.25 | 0.57 | 1.73 | 0.11 |
With HSe ≠≠ | 1956.21 a | 71.22 ab | 1.86 | 2.21 | 0.56 | 1.77 | 0.11 |
SEM | 17.28 | 0.14 | 0.05 | 0.04 | 0.02 | 0.04 | 0.01 |
p-value | <0.0001 | 0.0745 | 0.4707 | 0.0646 | 0.7044 | 0.2610 | 0.9799 |
(A × B) Effect of interaction between Zn-Cr mixture and organic Se levels | |||||||
T1 | 1704.28 d | 69.84 b | 1.80 | 1.89 c | 0.51 | 2.01 a | 0.10 |
T2 | 1937.05 b | 72.03 a | 2.04 | 2.32 a | 0.58 | 1.63 b | 0.12 |
T3 | 1840.45 c | 70.22 b | 1.86 | 2.11 b | 0.54 | 1.89 a | 0.11 |
T4 | 1901.53 cb | 70.18 b | 1.79 | 2.12 b | 0.53 | 1.91 a | 0.11 |
T5 | 2041.78 a | 72.62 a | 2.04 | 2.39 a | 0.60 | 1.57 b | 0.12 |
T6 | 2010.90 a | 72.27 a | 1.93 | 2.29 a | 0.59 | 1.63 b | 0.11 |
SEM | 24.43 | 0.20 | 0.08 | 0.06 | 0.03 | 0.05 | 0.01 |
p-value | <0.0001 | <0.0001 | 0.0992 | <0.0001 | 0.1643 | <0.0001 | 0.9632 |
Treatments | Red Blood Cells, RBC (106/mm3) | White Blood Cells, WBC (104/mm3) | Haemoglobin, Hb (g/dL) | Packed Cell Volume, PCV (%) |
---|---|---|---|---|
(A) Effect of Zn-Cr mixture | ||||
Without Zn-Cr | 2.68 b | 3.38 | 8.55 b | 29.61 b |
With Zn-Cr | 3.08 a | 3.51 | 9.29 a | 32.09 a |
SEM | 0.05 | 0.05 | 0.14 | 0.34 |
p-value | <0.0001 | 0.1086 | 0.0018 | <0.0001 |
(B) Effect of organic Se levels | ||||
Without Se | 2.83 | 3.40 | 8.59 | 30.76 |
With LSe ≠ | 2.87 | 3.39 | 9.12 | 30.69 |
With HSe ≠≠ | 2.94 | 3.53 | 9.06 | 31.10 |
SEM | 0.07 | 0.07 | 0.18 | 0.41 |
p-value | 0.5338 | 0.3240 | 0.0893 | 0.7473 |
(A × B) Effect of interaction between Zn-Cr mixture and organic Se levels | ||||
T1 | 2.56 b | 3.27 | 8.11 b | 29.51 b |
T2 | 3.11 a | 3.54 | 9.06 a | 32.01 a |
T3 | 2.63 b | 3.37 | 8.82 ab | 29.28 b |
T4 | 2.85 ab | 3.49 | 8.73 ab | 30.03 b |
T5 | 3.10 a | 3.42 | 9.43 a | 32.09 a |
T6 | 3.03 a | 3.57 | 9.39 a | 32.18 a |
SEM | 0.09 | 0.09 | 0.25 | 0.58 |
p-value | 0.0011 | 0.2879 | 0.0145 | 0.0026 |
Treatments | g/dL | mg/dL | U/L | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Total Protein | Albumin | Glucose | Triglycerides | Total Cholesterol | HDL-Cholesterol | LDL-Cholesterol | Creatinine | Uric Acid | ALT | AST | |
(A) Effect of Zn-Cr mixture | |||||||||||
Without Zn-Cr | 3.67 b | 1.84 b | 185.77 a | 185.77 a | 149.32 a | 39.84 b | 99.39 a | 0.54 a | 7.89 a | 5.36 | 229.71 |
With Zn-Cr | 4.03 a | 2.06 a | 153.33 b | 153.33 b | 135.86 b | 42.91 a | 81.05 b | 0.45 b | 6.26 b | 5.28 | 225.30 |
SEM | 0.03 | 0.02 | 2.93 | 2.93 | 1.88 | 0.66 | 1.25 | 0.01 | 0.06 | 0.05 | 1.80 |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0040 | <0.0001 | 0.0004 | <0.0001 | 0.2712 | 0.1416 |
(B) Effect of organic Se levels | |||||||||||
Without Se | 3.85 | 1.99 | 175.30 | 174.10 a | 144.76 | 40.30 | 94.73 a | 0.51 | 7.32 a | 228.27 | 5.33 |
With LSe ≠ | 3.86 | 1.94 | 168.39 | 163.51 b | 138.01 | 41.65 | 86.58 b | 0.49 | 6.97 b | 227.10 | 5.35 |
With HSe ≠≠ | 3.84 | 1.92 | 164.96 | 172.73 a | 145.00 | 42.18 | 89.35 b | 0.49 | 6.95 b | 227.90 | 5.28 |
SEM | 0.04 | 0.03 | 3.59 | 2.96 | 2.31 | 0.81 | 1.53 | 0.02 | 0.08 | 2.21 | 0.06 |
p-value | 0.9558 | 0.2571 | 0.1453 | 0.0424 | 0.0771 | 0.2607 | 0.0047 | 0.7412 | 0.0045 | 0.7213 | 0.9291 |
(A × B) Effect of interaction between Zn-Cr mixture and organic Se levels | |||||||||||
T1 | 3.70 b | 1.85 cb | 195.56 a | 190.29 a | 156.63 a | 39.56 b | 109.45 a | 0.55 a | 8.08 a | 230.42 | 5.40 |
T2 | 4.01 a | 2.12 a | 155.05 c | 157.92 b | 132.89 c | 41.03 b | 80.01 d | 0.46 bc | 6.55 c | 226.12 | 5.26 |
T3 | 3.62 b | 1.79 c | 186.79 ab | 178.70 a | 145.81 b | 40.41 b | 96.83 b | 0.52 ab | 7.95 ab | 230.03 | 5.41 |
T4 | 3.69 b | 1.89 cb | 174.96 b | 185.76 a | 145.50 b | 39.54 b | 91.88 cb | 0.55 a | 7.64 b | 228.68 | 5.28 |
T5 | 4.09 a | 2.09 a | 150.00 c | 148.32 b | 130.21 c | 42.88 ab | 76.32 d | 0.46 bc | 5.99 d | 224.16 | 5.29 |
T6 | 4.00 a | 1.96 b | 154.95 c | 159.70 b | 144.50 b | 44.82 a | 86.82 c | 0.42 c | 6.25 cd | 227.11 | 5.29 |
SEM | 0.06 | 0.04 | 5.08 | 4.19 | 3.26 | 1.14 | 2.16 | 0.02 | 0.11 | 3.12 | 0.09 |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0002 | 0.0258 | <0.0001 | 0.0092 | <0.0001 | 0.7385 | 0.7009 |
Treatments | Triiodothyronine (T3), ng/mL) | Thyroxine (T4), ng/mL |
---|---|---|
(A) Effect of Zn-Cr mixture | ||
Without Zn-Cr | 2.01 b | 8.45 |
With Zn-Cr | 2.20 a | 8.88 |
SEM | 0.03 | 0.15 |
p-value | 0.0012 | 0.0544 |
(B) Effect of organic Se levels | ||
Without Se | 2.02 b | 8.35 |
With LSe ≠ | 2.18 a | 8.77 |
With HSe ≠≠ | 2.11 ab | 8.88 |
SEM | 0.07 | 0.18 |
p-value | 0.0390 | 0.1160 |
(A × B) Effect of interaction between Zn-Cr mixture and organic Se levels | ||
T1 | 1.97 b | 8.29 |
T2 | 2.07 b | 8.41 |
T3 | 1.98 b | 8.55 |
T4 | 2.09 b | 8.52 |
T5 | 2.39 a | 9.00 |
T6 | 2.14 b | 9.24 |
SEM | 0.06 | 0.25 |
p-value | 0.0011 | 0.1122 |
Treatments | Total Antioxidant Capacity (TAC), mM/L | Malondialdehyde (MDA), nmol/mL |
---|---|---|
(A) Effect of Zn-Cr mixture | ||
Without Zn-Cr | 0.61 b | 1.87 |
With Zn-Cr | 0.71 a | 1.72 |
SEM | 0.03 | 0.06 |
p-value | 0.0088 | 0.0657 |
(B) Effect of organic Se levels | ||
Without Se | 0.59 b | 1.99 a |
With LSe ≠ | 0.66 ab | 1.67 b |
With HSe ≠≠ | 0.73 a | 1.72 b |
SEM | 0.03 | 0.007 |
p-value | 0.0145 | 0.0083 |
(A × B) Effect of interaction between Zn-Cr mixture and organic Se levels | ||
T1 | 0.50 b | 3.23 a |
T2 | 0.69 a | 2.75 b |
T3 | 0.62 ab | 2.70 b |
T4 | 0.72 a | 2.68 b |
T5 | 0.71 a | 2.65 b |
T6 | 0.75 a | 2.76 b |
SEM | 0.04 | 0.10 |
p-value | 0.0077 | 0.0041 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, A.S.A.; Abd El Latif, M.A.; Hussein, E.A.M.; Toson, E.M.A.; Saleh, M.; Kokoszynski, D.; Elnesr, S.S.; Mohany, M.; Al-Rejaie, S.S.; Elwan, H. Efficacy of Dietary Supplementation with Zinc-Chromium Mixture, Organic Selenium, or Their Combinations on Growth Performance, Carcass Traits, and Blood Profiles of Broilers under Heat Stress Conditions. Animals 2023, 13, 2539. https://doi.org/10.3390/ani13152539
Mohamed ASA, Abd El Latif MA, Hussein EAM, Toson EMA, Saleh M, Kokoszynski D, Elnesr SS, Mohany M, Al-Rejaie SS, Elwan H. Efficacy of Dietary Supplementation with Zinc-Chromium Mixture, Organic Selenium, or Their Combinations on Growth Performance, Carcass Traits, and Blood Profiles of Broilers under Heat Stress Conditions. Animals. 2023; 13(15):2539. https://doi.org/10.3390/ani13152539
Chicago/Turabian StyleMohamed, Abdelhameed S. A., Maha A. Abd El Latif, Eman A. M. Hussein, Enas M. A. Toson, Mohamed Saleh, Dariusz Kokoszynski, Shaaban S. Elnesr, Mohamed Mohany, Salim S. Al-Rejaie, and Hamada Elwan. 2023. "Efficacy of Dietary Supplementation with Zinc-Chromium Mixture, Organic Selenium, or Their Combinations on Growth Performance, Carcass Traits, and Blood Profiles of Broilers under Heat Stress Conditions" Animals 13, no. 15: 2539. https://doi.org/10.3390/ani13152539
APA StyleMohamed, A. S. A., Abd El Latif, M. A., Hussein, E. A. M., Toson, E. M. A., Saleh, M., Kokoszynski, D., Elnesr, S. S., Mohany, M., Al-Rejaie, S. S., & Elwan, H. (2023). Efficacy of Dietary Supplementation with Zinc-Chromium Mixture, Organic Selenium, or Their Combinations on Growth Performance, Carcass Traits, and Blood Profiles of Broilers under Heat Stress Conditions. Animals, 13(15), 2539. https://doi.org/10.3390/ani13152539