Black Soldier Fly Larva Oil in Diets with Roughage to Concentrate Ratios on Fermentation Characteristics, Degradability, and Methane Generation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Black Soldier Fly Larvae Oil Preparation and Design
2.2. Animals and Rumen Fluid Inoculum
2.3. Fermentation Substrates In Vitro
2.4. Measurements and Chemical Analysis
2.5. Statistical Analysis
3. Result
3.1. Nutritional Composition of Diet
3.2. Kinetics of Gas Production
3.3. In Vitro Ruminal Fermentation and CH4 Concentration
3.4. In Vitro Degradability
3.5. Ruminal Volatile Fatty Acid Concentration
4. Discussion
4.1. Production of Gas and Kinetics
4.2. In Vitro Ruminal Fermentation and CH4 Concentration
4.3. In Vitro Degradability
4.4. Ruminal Volatile Fatty Acid Concentration
5. Conclusions and Recommendation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olivier, J.G.J.; Peters, J.A.H.W. Trends in Global CO2 and Total Greenhouse Gas Emissions: 2019 Report; PBL Neth Environ Assess Agency: Hague, The Netherlands, 2020; p. 70. [Google Scholar]
- Eugène, M.; Sauvant, D.; Noziere, P.; Viallard, D.; Oueslati, K.; Lherm, M.; Mathias, E.; Doreau, M. A new Tier 3 method to calculate methane emission inventory for ruminants. J. Environ. Manag. 2019, 231, 982–988. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef] [PubMed]
- Gunun, P.; Wanapat, M.; Anantasook, N.; Cherdthong, A. Effects of condensed tannins in Mao (Antidesma thwaitesianum Muell. Arg.) seed meal on rumen fermentation characteristics and nitrogen utilization in goats. Asian-Australas. J. Anim. Sci. 2016, 29, 1111–1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmquist, D.; Jenkins, T. A 100-Year Review: Fat feeding of dairy cows. J. Dairy Sci. 2017, 100, 10061–10077. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Hess, P.; Williams, S.; Jacobs, J.; Hannah, M.; Beauchemin, K.; Eckard, R.; Wales, W.; Morris, G.; Moate, P. Effect of dietary fat supplementation on methane emissions from dairy cows fed wheat or corn. J. Dairy Sci. 2019, 102, 2714–2723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haque, M.N. Dietary manipulation: A sustainable way to mitigate methane emissions from ruminants. J. Anim. Sci. Technol. 2018, 60, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.; Lee, S.-S. Advanced estimation and mitigation strategies: A cumulative approach to enteric methane abatement from ruminants. J. Anim. Sci. Technol. 2019, 61, 122. [Google Scholar] [CrossRef] [Green Version]
- Beck, M.; Thompson, L.; Williams, G.; Place, S.; Gunter, S.; Reuter, R. Fat supplements differing in physical form improve performance but divergently influence methane emissions of grazing beef cattle. Anim. Feed Sci. Technol. 2019, 254, 114210. [Google Scholar] [CrossRef]
- Drehmel, O.; Brown-Brandl, T.; Judy, J.; Fernando, S.C.; Miller, P.S.; Hales, K.; Kononoff, P.J. The influence of fat and hemicellulose on methane production and energy utilization in lactating Jersey cattle. J. Dairy Sci. 2018, 101, 7892–7906. [Google Scholar] [CrossRef]
- Patra, A.K. The effect of dietary fats on methane emissions, and its other effects on digestibility, rumen fermentation and lactation performance in cattle: A meta-analysis. Livest. Sci. 2013, 155, 244–254. [Google Scholar] [CrossRef]
- Meneguz, M.; Schiavone, A.; Gai, F.; Dama, A.; Lussiana, C.; Renna, M.; Gasco, L. Effect of rearing substrate on growth performance, waste reduction efficiency and chemical composition of black soldier fly (Hermetia illucens) larvae. J. Sci. Food Agric. 2018, 98, 5776–5784. [Google Scholar] [CrossRef]
- Ahmed, E.; Fukuma, N.; Hanada, M.; Nishida, T. Insects as novel ruminant feed and a potential mitigation strategy for methane emissions. Animals 2021, 11, 2648. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.; Tran, G.; Heuzé, V.; Ankers, P. State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- Belforti, M.; Gai, F.; Lussiana, C.; Renna, M.; Malfatto, V.; Rotolo, L.; De Marco, M.; Dabbou, S.; Schiavone, A.; Zoccarato, I. Tenebrio molitor meal in rainbow trout (Oncorhynchus mykiss) diets: Effects on animal performance, nutrient digestibility and chemical composition of fillets. Ital. J. Anim. Sci. 2015, 14, 4170. [Google Scholar] [CrossRef] [Green Version]
- Spranghers, T.; Ottoboni, M.; Klootwijk, C.; Ovyn, A.; Deboosere, S.; De Meulenaer, B.; Michiels, J.; Eeckhout, M.; De Clercq, P.; De Smet, S. Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J. Sci. Food Agric. 2017, 97, 2594–2600. [Google Scholar] [CrossRef] [PubMed]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1998; Volume 2. [Google Scholar]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- So, S.; Cherdthong, A.; Wanapat, M. Growth performances, nutrient digestibility, ruminal fermentation and energy partition of Thai native steers fed exclusive rice straw and fermented sugarcane bagasse with Lactobacillus, cellulase and molasses. J. Anim. Physiol. Anim. Nutr. 2022, 106, 45–54. [Google Scholar] [CrossRef]
- Yamamoto-Osaki, T.; Kamiya, S.; Sawamura, S.; Kai, M.; Ozawa, A. Growth inhibition of Clostridium difficile by intestinal flora of infant faeces in continuous flow culture. J. Med. Microbiol. 1994, 40, 179–187. [Google Scholar] [CrossRef]
- Fawcett, J.; Scott, J. A rapid and precise method for the determination of urea. J. Clin. Pathol. 1960, 13, 156–159. [Google Scholar] [CrossRef] [Green Version]
- Galyean, M. Laboratory Procedure in Animal Nutrition Research; Department of Animal and Life Science New Mexico State University: Las Cruces, NM, USA, 1989; Volume 188. [Google Scholar]
- Tilley, J.; Terry, D.R. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Schofield, P. Gas production methods. Chapter 10. In Farm Animal Metabolism and Nutrition; D’Mello, J.P.F., Ed.; CABI Publishing: Ithaca, NY, USA, 2000; pp. 209–232. [Google Scholar]
- Statistical Analysis Systems. SAS/STAT User’s Guide: Version 6.12, 4th ed.; SAS Inc.: Cary, NC, USA, 1996. [Google Scholar]
- Flores-Santiago, E.d.J.; González-Garduño, R.; Vaquera-Huerta, H.; Calzada-Marín, J.M.; Cadena-Villegas, S.; Arceo-Castillo, J.I.; Vázquez-Mendoza, P.; Ku-Vera, J.C. Reduction of enteric methane emissions in heifers fed tropical grass-based rations supplemented with palm oil. Fermentation 2022, 8, 349. [Google Scholar] [CrossRef]
- Thao, N.T.; Wanapat, M.; Kang, S.; Cherdthong, A. effects of supplementation of eucalyptus (E. camaldulensis) leaf meal on feed intake and rumen fermentation efficiency in swamp buffaloes. Asian-Australas. J. Anim. Sci. 2015, 28, 951–957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kongmun, P.; Wanapat, M.; Pakdee, P.; Navanukraw, C. Effect of coconut oil and garlic powder on in vitro fermentation using gas production technique. Livest. Sci. 2010, 127, 38–44. [Google Scholar] [CrossRef]
- Kang, S.; Wanapat, M.; Phesatcha, K.; Norrapoke, T.; Foiklang, S.; Ampapon, T.; Phesatcha, B. Using krabok (Irvingia malayana) seed oil and Flemingia macrophylla leaf meal as a rumen enhancer in an in vitro gas production system. Anim. Prod. Sci. 2016, 57, 327–333. [Google Scholar] [CrossRef]
- Prachumchai, R.; Cherdthong, A.; Wanapat, M. Screening of cyanide-utilizing bacteria from rumen and in vitro evaluation of fresh cassava root utilization with pellet containing high sulfur diet. Vet. Sci. 2021, 8, 10. [Google Scholar] [CrossRef]
- Ramos, S.C.; Jeong, C.D.; Mamuad, L.L.; Kim, S.H.; Kang, S.H.; Kim, E.T.; Cho, Y.I.; Lee, S.S.; Lee, S.S. Diet transition from high-forage to high-concentrate alters rumen bacterial community composition, epithelial transcriptomes and ruminal fermentation parameters in dairy cows. Animals 2021, 11, 838. [Google Scholar] [CrossRef]
- Prachumchai, R.; Cherdthong, A.; Wanapat, M.; So, S.; Polyorach, S. Fresh cassava root replacing cassava chip could enhance milk production of lactating dairy cows fed diets based on high sulfur-containing pellet. Sci. Rep. 2022, 12, 3809. [Google Scholar] [CrossRef] [PubMed]
- Calabrò, S.; Tudisco, R.; Balestrieri, A.; Piccolo, G.; Infascelli, F.; Cutrignelli, M.I. Fermentation characteristics of different grain legumes cultivars with the in vitro gas production technique. Ital. J. Anim. Sci. 2009, 8, 280. [Google Scholar] [CrossRef] [Green Version]
- Cherdthong, A.; Prachumchai, R.; Supapong, C.; Khonkhaeng, B.; Wanapat, M.; Foiklang, S.; Milintawisamai, N.; Gunun, N.; Gunun, P.; Chanjula, P. Inclusion of yeast waste as a protein source to replace soybean meal in concentrate mixture on ruminal fermentation and gas kinetics using in vitro gas production technique. Anim. Prod. Sci. 2018, 59, 1682–1688. [Google Scholar] [CrossRef]
- Castillejos, L.; Calsamiglia, S.; Martín-Tereso, J.; Ter Wijlen, H. In vitro evaluation of effects of ten essential oils at three doses on ruminal fermentation of high concentrate feedlot-type diets. Anim. Feed Sci. Technol. 2008, 145, 259–270. [Google Scholar] [CrossRef]
- Castillejos, L.; Calsamiglia, S.; Ferret, A.; Losa, R. Effects of dose and adaptation time of a specific blend of essential oil compounds on rumen fermentation. Anim. Feed Sci. Technol. 2007, 132, 186–201. [Google Scholar] [CrossRef]
- Ueda, K.; Ferlay, A.; Chabrot, J.; Loor, J.; Chilliard, Y.; Doreau, M. Effect of linseed oil supplementation on ruminal digestion in dairy cows fed diets with different forage: Concentrate ratios. J. Dairy Sci. 2003, 86, 3999–4007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumoto, M.; Kobayashi, T.; Itabashi, H. Effects of the absence of rumen ciliate protozoa on urinary allantoin excretion in goats. Anim. Sci. Technol. 1991, 62, 939–946. [Google Scholar]
- Beauchemin, K.; McGinn, S.; Benchaar, C.; Holtshausen, L. Crushed sunflower, flax, or canola seeds in lactating dairy cow diets: Effects on methane production, rumen fermentation, and milk production. J. Dairy Sci. 2009, 92, 2118–2127. [Google Scholar] [CrossRef]
- Machmüller, A. Medium-chain fatty acids and their potential to reduce methanogenesis in domestic ruminants. Agric. Ecosyst. Environ. 2006, 112, 107–114. [Google Scholar] [CrossRef]
- Phesatcha, K.; Phesatcha, B.; Wanapat, M.; Cherdthong, A. The effect of yeast and roughage concentrate ratio on ruminal pH and protozoal population in Thai native beef cattle. Animals 2021, 12, 53. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wang, C.; Huasai, S.; Chen, A. Effects of dietary forage to concentrate ratio on nutrient digestibility, ruminal fermentation and rumen bacterial composition in Angus cows. Sci. Rep. 2021, 11, 17023. [Google Scholar] [CrossRef] [PubMed]
- Musco, N.; Tudisco, R.; Grossi, M.; Mastellone, V.; Morittu, V.M.; Pero, M.E.; Wanapat, M.; Trinchese, G.; Cavaliere, G.; Mollica, M.P.; et al. Effect of a high forage : concentrate ratio on milk yield, blood parameters and oxidative status in lactating cows. Anim. Prod. Sci. 2020, 60, 1531–1538. [Google Scholar] [CrossRef]
- Arcos-Álvarez, D.N.; Aguilar-Urquizo, E.; Sanginés-García, J.R.; Chay-Canul, A.J.; Molina-Botero, I.; Tzec-Gamboa, M.; Vargas-Bello-Pérez, E.; Piñeiro-Vázquez, Á.T. Effect of adding extra virgin olive oil to hair sheep lambs’ diets on productive performance, ruminal fermentation kinetics and rumen ciliate protozoa. Animals 2022, 12, 2588. [Google Scholar] [CrossRef]
- van Cleef, F.D.O.S.; Ezequiel, J.M.B.; D’Aurea, A.P.; Almeida, M.T.C.; Perez, H.L.; van Cleef, E.H.C.B. Feeding behavior, nutrient digestibility, feedlot performance, carcass traits, and meat characteristics of crossbred lambs fed high levels of yellow grease or soybean oil. Small Rumin. Res. 2016, 137, 151–156. [Google Scholar] [CrossRef] [Green Version]
- Sutton, J.; Knight, R.; McAllan, A.; Smith, R. Digestion and synthesis in the rumen of sheep given diets supplemented with free and protected oils. Br. J. Nutr. 1983, 49, 419–432. [Google Scholar] [CrossRef]
- Supapong, C.; Cherdthong, A.; Seankamsorn, A.; Khonkhaeng, B.; Wanapat, M.; Uriyapongson, S.; Gunun, N.; Gunun, P.; Chanjula, P.; Polyorach, S. In vitro fermentation, digestibility and methane production as influenced by Delonix regia seed meal containing tannins and saponins. J. Anim. Feed Sci. 2017, 26, 123–130. [Google Scholar] [CrossRef]
- Cherdthong, A.; Prachumchai, R.; Wanapat, M. In vitro evaluations of pellets containing Delonix regia seed meal for ruminants. Trop. Anim. Health Prod. 2019, 51, 2003–2010. [Google Scholar] [CrossRef] [PubMed]
- Costa, D.; Quigley, S.; Isherwood, P.; McLennan, S.; Sun, X.; Gibbs, S.; Poppi, D. The inclusion of low quantities of lipids in the diet of ruminants fed low quality forages has little effect on rumen function. Anim. Feed Sci. Technol. 2017, 234, 20–28. [Google Scholar] [CrossRef]
- Mapato, C.; Wanapat, M.; Cherdthong, A. Effects of urea treatment of straw and dietary level of vegetable oil on lactating dairy cows. Trop. Anim. Health Prod. 2010, 42, 1635–1642. [Google Scholar] [CrossRef] [PubMed]
Item | BSFO 0% | BSFO 2% | BSFO 4% | BSFO 6% | Rice Straw |
---|---|---|---|---|---|
Ingredients, % DM | |||||
Cassava chips | 41.0 | 40.0 | 40.0 | 39.0 | |
Corn meal | 15.0 | 14.0 | 14.0 | 14.0 | |
Rice bran | 10.0 | 10.0 | 9.0 | 9.0 | |
Soybean meal (SBM) | 7.0 | 7.0 | 7.0 | 7.0 | |
Dried brewers’ grains | 11.0 | 11.0 | 10.5 | 10.0 | |
Palm kernel meal | 11.0 | 11.0 | 10.4 | 9.8 | |
Black soldier fly oil (BSFO) 1 | 0.0 | 2.0 | 4.0 | 6.0 | |
Vitamin and mineral premix 2 | 1.0 | 1.0 | 1.0 | 1.0 | |
Urea | 1.0 | 1.0 | 1.1 | 1.2 | |
Sodium chloride | 1.0 | 1.0 | 1.0 | 1.0 | |
Molasses | 2.0 | 2.0 | 2.0 | 2.0 | |
Chemical composition | |||||
Dry matter, % | 88.39 | 88.34 | 88.59 | 88.11 | 88.57 |
Organic matter, % DM | 94.57 | 94.77 | 95.05 | 95.14 | 89.56 |
Crude protein, % DM | 15.21 | 15.45 | 15.05 | 15.05 | 2.54 |
Ether extract, % DM | 2.05 | 4.02 | 6.03 | 7.96 | 0.56 |
Neutral detergent fiber, % DM | 21.23 | 22.48 | 21.61 | 19.90 | 72.89 |
Acid detergent fiber, % DM | 13.36 | 14.33 | 13.33 | 12.37 | 50.14 |
Gross energy (MJ) | 16.98 | 17.44 | 17.51 | 17.67 | 14.67 |
Treatment | R:C Ratio | BSFO (%) | Gas Kinetics (mL/0.5 g) | Cumulative Gas (mL/g DM Basis) | ||
---|---|---|---|---|---|---|
b | c | L | ||||
T1 | 60:40 | 0 | 134.47 a | 0.03 | 0.333 | 126.57 b |
T2 | 60:40 | 2 | 132.83 ab | 0.03 | 0.467 | 124.60 bc |
T3 | 60:40 | 4 | 134.60 a | 0.03 | 0.367 | 126.12 b |
T4 | 60:40 | 6 | 129.17 bc | 0.03 | 0.367 | 120.00 c |
T5 | 40:60 | 0 | 135.33 a | 0.13 | 0.533 | 132.11 a |
T6 | 40:60 | 2 | 128.37 c | 0.04 | 0.533 | 124.56 bc |
T7 | 40:60 | 4 | 123.13 d | 0.04 | 0.433 | 119.83 c |
T8 | 40:60 | 6 | 117.75 e | 0.04 | 0.650 | 114.26 d |
SEM | 1.359 | 0.032 | 0.072 | 1.510 | ||
Main effects | ||||||
R:C Ratio | 60:40 | 132.77 a | 0.03 | 0.54 b | 124.32 | |
40:60 | 126.15 b | 0.06 | 0.38 a | 122.69 | ||
BSFO (%) | 0 | 134.90 a | 0.08 | 0.51 | 129.34 a | |
2 | 130.60 b | 0.03 | 0.50 | 124.58 b | ||
4 | 128.87 b | 0.03 | 0.43 | 122.97 b | ||
6 | 123.46 c | 0.03 | 0.40 | 117.13 c | ||
Significance of main effect and interaction | ||||||
R:C Ratio | <0.01 | 0.1826 | <0.01 | 0.1457 | ||
BSFO (%) | <0.01 | 0.3875 | 0.3982 | <0.01 | ||
Interaction | <0.01 | 0.4100 | 0.3842 | <0.01 |
Treatment | R:C Ratio | BSFO (%) | pH | NH3-N (mg/dL) | Methane (mL/1 g Dry Matter Substrate) | Protozoa (×106 Cell/mL) | ||||
---|---|---|---|---|---|---|---|---|---|---|
4 h | 8 h | 4 h | 8 h | 4 h | 8 h | 4 h | 8 h | |||
T1 | 60:40 | 0 | 7.03 a | 6.94 | 19.84 b | 20.40 | 4.50 a | 9.45 b | 8.00 | 8.00 |
T2 | 60:40 | 2 | 6.97 bc | 6.94 | 19.14 b | 20.25 | 4.60 a | 8.65 bc | 4.00 | 4.00 |
T3 | 60:40 | 4 | 6.97 bc | 6.92 | 18.42 b | 17.53 | 2.45 c | 9.00 c | 3.00 | 6.00 |
T4 | 60:40 | 6 | 6.98 bc | 6.96 | 18.96 b | 17.01 | 3.30 b | 7.30 bcd | 3.00 | 4.00 |
T5 | 40:60 | 0 | 6.95 c | 6.89 | 22.41 a | 20.67 | 4.55 a | 11.70 a | 9.00 | 10.00 |
T6 | 40:60 | 2 | 6.97 bc | 6.87 | 21.95 a | 18.18 | 4.55 a | 7.30 bcd | 5.00 | 6.00 |
T7 | 40:60 | 4 | 7.00 abc | 6.88 | 21.52 a | 17.22 | 3.60 b | 6.30 d | 2.00 | 4.00 |
T8 | 40:60 | 6 | 7.02 abc | 6.87 | 18.96 b | 17.01 | 2.65 c | 6.40 d | 3.00 | 2.00 |
SEM | 0.016 | 0.015 | 0.389 | 0.582 | 0.279 | 0.659 | 1.061 | 1.173 | ||
Main effects | ||||||||||
R:C Ratio | 60:40 | 6.99 | 6.94 a | 19.19 b | 18.80 | 3.71 | 8.60 | 4.50 | 5.50 | |
40:60 | 6.98 | 6.88 b | 21.19 a | 18.20 | 3.84 | 7.93 | 4.75 | 5.50 | ||
BSFO (%) | 0 | 6.99 | 6.92 | 21.13 a | 20.51 a | 4.53 a | 10.58 a | 8.50 a | 9.00 a | |
2 | 6.97 | 6.91 | 20.54 a | 19.73 a | 4.58 a | 7.98 b | 4.50 b | 5.00 b | ||
4 | 6.98 | 6.90 | 20.28 a | 17.38 b | 3.03 b | 7.65 b | 2.50 b | 5.00 b | ||
6 | 7.00 | 6.92 | 18.91 b | 17.28 b | 2.98 b | 6.85 b | 3.00 b | 3.00 b | ||
Significance of main effect and interaction | ||||||||||
R:C Ratio | 0.6650 | <0.01 | <0.01 | 0.2025 | 0.3555 | 0.1855 | 0.7475 | 1.00 | ||
BSFO (%) | 0.2900 | 0.7099 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | ||
Interaction | <0.01 | 0.4157 | <0.01 | 0.591 | <0.01 | <0.05 | 0.7520 | 0.2018 |
Treatment | R:C Ratio | BSFO (%) | IVDMD (% DM) | IVOMD (% DM) | IVTD (% DM) | |||
---|---|---|---|---|---|---|---|---|
12 h | 24 h | 12 h | 24 h | 12 h | 24 h | |||
T1 | 60:40 | 0 | 31.08 | 37.34 | 39.90 bc | 45.69 | 73.39 | 79.59 b |
T2 | 60:40 | 2 | 29.63 | 36.39 | 38.29 dc | 44.40 | 73.45 | 79.48 b |
T3 | 60:40 | 4 | 28.59 | 37.09 | 37.26 d | 45.19 | 73.55 | 78.70 b |
T4 | 60:40 | 6 | 27.90 | 35.61 | 36.42 d | 43.52 | 74.14 | 76.51 c |
T5 | 40:60 | 0 | 35.00 | 45.74 | 41.93 ab | 52.27 | 83.72 | 84.75 a |
T6 | 40:60 | 2 | 34.10 | 45.24 | 40.85 ab | 51.79 | 83.81 | 84.16 a |
T7 | 40:60 | 4 | 35.14 | 45.49 | 42.12 ab | 51.80 | 84.12 | 84.26 a |
T8 | 40:60 | 6 | 35.74 | 43.46 | 43.00 a | 49.89 | 83.98 | 85.45 a |
SEM | 0.684 | 0.264 | 0.704 | 0.286 | 0.606 | 0.482 | ||
Main effects | ||||||||
R:C Ratio | 60:40 | 29.30 b | 36.61 b | 37.97 b | 44.70 b | 73.63 b | 78.57 b | |
40:60 | 35.12 a | 44.98 a | 41.97 a | 51.44 a | 83.93 a | 84.66 a | ||
BSFO (%) | 0 | 33.04 | 41.54 a | 40.92 | 48.98 a | 77.53 | 82.17 | |
2 | 31.12 | 40.82 b | 39.57 | 48.09 b | 78.63 | 81.82 | ||
4 | 31.87 | 41.29 ab | 39.69 | 48.49 ab | 78.83 | 81.48 | ||
6 | 31.82 | 39.53 c | 39.71 | 46.70 c | 79.06 | 80.98 | ||
Significance of main effect and interaction | ||||||||
R:C Ratio | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | ||
BSFO (%) | 0.2621 | <0.01 | 0.2605 | <0.01 | 0.1279 | 0.1256 | ||
Interaction | 0.0604 | 0.3689 | <0.05 | 0.3674 | 1.00 | <0.01 |
Treatment | R:C Ratio | BSFO (%) | Total VFAs (mmol/L) | Acetate (%) | Propionate (%) | Butyrate (%) | ||||
---|---|---|---|---|---|---|---|---|---|---|
4 h | 8 h | 4 h | 8 h | 4 h | 8 h | 4 h | 8 h | |||
T1 | 60:40 | 0 | 42.55 | 52.85 | 72.63 | 72.53 | 14.92 | 15.54 d | 12.45 | 11.93 ab |
T2 | 60:40 | 2 | 41.03 | 53.54 | 72.54 | 70.35 | 14.78 | 16.95 c | 12.68 | 12.70 a |
T3 | 60:40 | 4 | 42.77 | 51.69 | 72.76 | 69.30 | 14.86 | 17.95 bc | 12.68 | 12.76 a |
T4 | 60:40 | 6 | 41.80 | 53.97 | 72.31 | 70.07 | 15.12 | 18.38 b | 12.59 | 11.55 b |
T5 | 40:60 | 0 | 40.17 | 58.76 | 71.36 | 70.57 | 15.15 | 16.97 c | 13.22 | 12.46 ab |
T6 | 40:60 | 2 | 41.76 | 61.53 | 72.54 | 70.39 | 15.06 | 18.14 b | 12.67 | 11.47 b |
T7 | 40:60 | 4 | 41.99 | 62.49 | 72.04 | 67.36 | 15.19 | 21.10 a | 12.88 | 11.54 b |
T8 | 40:60 | 6 | 40.30 | 61.55 | 72.26 | 67.63 | 15.03 | 20.67 a | 12.83 | 11.71 ab |
SEM | 1.235 | 2.105 | 0.455 | 0.547 | 0.303 | 0.350 | 0.234 | 0.336 | ||
Main effects | ||||||||||
R:C ratio | 60:40 | 41.99 | 53.01 b | 72.56 | 70.56 a | 14.92 | 17.20 b | 12.61 | 12.23 | |
40:60 | 41.13 | 61.08 a | 72.05 | 68.99 b | 15.10 | 19.22 a | 12.90 | 11.79 | ||
BSFO (%) | 0 | 41.36 | 55.80 | 71.87 | 71.55 a | 15.03 | 16.26 c | 12.91 | 12.19 | |
2 | 41.39 | 57.54 | 72.54 | 70.37 b | 14.92 | 17.55 b | 12.68 | 12.09 | ||
4 | 42.46 | 57.09 | 72.40 | 68.33 c | 14.99 | 19.52 a | 12.80 | 12.15 | ||
6 | 41.20 | 57.76 | 72.29 | 68.85 c | 15.09 | 19.52 a | 12.74 | 11.63 | ||
Significance of main effect and interaction | ||||||||||
R:C ratio | 0.3886 | <0.01 | 0.1459 | <0.01 | 0.4556 | <0.01 | 0.1308 | 0.0823 | ||
BSFO (%) | 0.7822 | 0.7920 | 0.5599 | <0.01 | 0.9584 | <0.01 | 0.8077 | 0.3391 | ||
Interaction | 0.7184 | 0.7098 | 0.5835 | 0.1481 | 0.9066 | <0.05 | 0.5100 | <0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prachumchai, R.; Cherdthong, A. Black Soldier Fly Larva Oil in Diets with Roughage to Concentrate Ratios on Fermentation Characteristics, Degradability, and Methane Generation. Animals 2023, 13, 2416. https://doi.org/10.3390/ani13152416
Prachumchai R, Cherdthong A. Black Soldier Fly Larva Oil in Diets with Roughage to Concentrate Ratios on Fermentation Characteristics, Degradability, and Methane Generation. Animals. 2023; 13(15):2416. https://doi.org/10.3390/ani13152416
Chicago/Turabian StylePrachumchai, Rittikeard, and Anusorn Cherdthong. 2023. "Black Soldier Fly Larva Oil in Diets with Roughage to Concentrate Ratios on Fermentation Characteristics, Degradability, and Methane Generation" Animals 13, no. 15: 2416. https://doi.org/10.3390/ani13152416
APA StylePrachumchai, R., & Cherdthong, A. (2023). Black Soldier Fly Larva Oil in Diets with Roughage to Concentrate Ratios on Fermentation Characteristics, Degradability, and Methane Generation. Animals, 13(15), 2416. https://doi.org/10.3390/ani13152416