Cryopreservation and Transfer of Sheep Embryos Recovered at Different Stages of Development and Cryopreserved Using Different Techniques
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Cryopreservation of Embryos
2.3. Thawing Procedures
2.4. Embryo Transfer
2.5. Diagnosis of Pregnancy
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choudhary, K.K.; Kavya, K.M.; Jerome, A.; Sharma, R.K. Advances in reproductive biotechnologies. Vet. World 2016, 9, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Mamontova, T.V.; Selionova, M.I.; Aibazov, A.-M. Sexual activity and semen production in rams of the Charolais and Ile-de-France breeds in different seasons. Agric. Biol. 2021, 56, 752–762. [Google Scholar] [CrossRef]
- Cognié, Y.; Baril, G.; Poulin, N.; Mermillod, P. Current status of embryo technologies in sheep and goat. Current status of embryo technologies in sheep and goat. Theriogenology 2003, 59, 171–188. [Google Scholar] [CrossRef]
- Moore, S.G.; Hasler, J.F. A 100-Year Review: Reproductive technologies in dairy science. J. Dairy Sci. 2017, 100, 10314–10331. [Google Scholar] [CrossRef] [Green Version]
- Paramio, M.T.; Izquierdo, D. Current status of In Vitro Embryo production in sheep and goats. Reprod. Don. Anim. 2014, 49, 37–48. [Google Scholar] [CrossRef] [Green Version]
- Aibazov, A.-M.M.; Mamontova, T.V.; Serdyukov, I.G.; Gubakhanov, M.A. Results and Prospects of Using Assisted Reproductive Technologies in Reproduction of Small Ruminants. Sheep Goats Wool 2022, 2, 8–14. [Google Scholar] [CrossRef]
- King, C.A.F.; Osborn, D.; Gruppen, C.G. Multiple ovulation and embryo transfer in sheep: Effects of embryo developmental stage and quality on viability in vivo under farm conditions. Aust. Vet. J. 2022, 100, 451–458. [Google Scholar] [CrossRef]
- Kaur, P.; Swarankar, M.L.; Maheshwari, M.; Acharya, V. A comparative study between cleavage stage embryo transfer at day 3 and blastocyst stage transfer at day 5 in in-vitro fertilization/intra-cytoplasmic sperm injection on clinical pregnancy rate. J. Hum. Reprod. Sci. 2014, 7, 194–197. [Google Scholar] [CrossRef]
- Shelton, J.N. Factors affecting viability of fresh and frozen-thawed sheep demi-embryos. Theriogenology 1992, 37, 713–721. [Google Scholar] [CrossRef]
- Baril, G.; Traldi, A.L.; Cognié, Y.; Leboeuf, B.; Beckers, J.F.; Mermillod, P. Successful direct transfer of vitrified sheep embryos. Theriogenology 2001, 56, 299–305. [Google Scholar] [CrossRef]
- Garcia-Garcia, R.M.; Gonzalez-Bulnes, A.; Domínguez, V.; Veiga-Lopez, A.; Cocero, M.J. Survival of frozen-thawed sheep embryos cryopreserved at cleavage stages. Cryobiology 2006, 52, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Green, R.E.; Santos, B.F.S.; Sicherle, C.C.; Landim-Alvarenga, F.C.; Bicudo, S.D. Viability of OPS vitrified sheep embryos after direct transfer. Reprod. Domest. Anim. 2009, 44, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Bhat, M.H.; Sharma, V.; Khan, F.A.; Naykoo, N.A.; Yaqoob, S.H.; Ruby, M.K.H.; Fazili, M.R.; Ganai, N.A.; Shah, R.A. Comparison of slow freezing and vitrification on ovine immature oocytes. Cryo Lett. 2014, 35, 77–82. [Google Scholar]
- Martinez, A.G.; Matkovic, M. Cryopreservation of ovine embryos: Slow freezing and vitrification. Theriogenology 1998, 49, 1039–1049. [Google Scholar] [CrossRef]
- Moawad, A.D. Cryopreservation of Ovine Oocytes. Ph.D. Thesis, Division of Animal Sciences School of Business, University of Nothingam, Nothingam, UK, 2010; p. 222. Available online: http://reprints.nottingham.ac.uk/27948/1/537660.pdf (accessed on 6 March 2023).
- Ferré, L.; Kjelland, M.; Stmbech, L.; Hyttel, P.; Mermillod, P.; Ross, P. Recent advances in bovine in vitro embryo production: Reproductive biotechnology history and methods. Animal 2020, 14, 991–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAOSTAT. 2021. Available online: http://www.fao.org/faostat/en/#data/QL (accessed on 31 March 2021).
- Balasundaram, B.; Thiruvenkadan, A.K.; Murali, N.; Muralidharan, J.; Cauveri, D.; Peters, S.O. Genetic Parameters of Growth Traits and Quantitative Genetic Metrics for Selection and Conservation of Mecheri Sheep of Tamil Nadu. Animals 2023, 13, 454. [Google Scholar] [CrossRef]
- Bates, A.L.; McGrath, S.R.; Allworth, M.B.; Robertson, S.M.; Refshauge, G. A Cross-Sectional Study of Commercial Ewe Management Practices for Different Sheep Breeds across Southern Australia. Animals 2023, 13, 388. [Google Scholar] [CrossRef]
- Gibbons, A.E.; Fernandez, J.; Bruno-Galarraga, M.M.; Spinelli, M.V.; Cueto, M.I. Technical recommendations for artificial insemination in sheep. Anim. Reprod. 2019, 16, 803–809. [Google Scholar] [CrossRef] [Green Version]
- Dias, J.H.; Gonçalves, J.D.; Arrais, A.M.; Batista, R.I.T.P.; Souza-Fabjan, J.M.G.; Bastos, R.; Siqueira, L.G.B.; Oliveira, M.E.F.; Fonseca, J.F. Single dose of 300 IU hCG in the early luteal phase in superovulated ewes: Effects on corpora lutea,. progesterone profile, and embryo recovery. Anim. Reprod. Sci. 2022, 247, 107101. [Google Scholar] [CrossRef]
- Dias, J.H.; Vergani, G.B.; Gonçalves, J.D.; Oliveira, T.A.; Penitente-Filho, J.M.; Pereira, V.S.A.; Esteves, S.N.; Garcia, A.R.; Batista, R.I.T.P.; Oliveira, M.E.F.; et al. Different doses of pFSH. are effective to promote follicular growth, superovulatory response, and embryo yield in White Dorper ewes. Small Rumin. Res. 2023, 220, 106914. [Google Scholar] [CrossRef]
- Anakkul, N.; Suwimonteerabutr, J.; Tharasanit, T.; Panyaboriban, S.; Khunmanee, S.; Thanomsuksinchai, N.; Techakumphu, M. Production of black goat using laparoscopic artificial insemination and embryo transfer. Thai J. Vet. Med. 2013, 43, 259–263. [Google Scholar]
- Dias, J.H.; Gonçalves, J.D.; Arrais, A.M.; Souza-Fabjan, J.M.G.; Bastos, R.; Batista, R.I.T.P.; Siqueira, L.G.B.; Oliveira, M.E.F.; Fonseca, J.F. Effects of different doses of estradiol benzoate used in a cervical relaxation protocol on the. success of non- surgical embryo recovery and luteal function in superovulated ewes. Domest. Anim. Endocrinol. 2022, 82, 106751. [Google Scholar] [CrossRef] [PubMed]
- Figueira, L.M.; Alves, N.G.; Souza-Fabjan, J.M.G.; Oliveira, M.E.F.; Lima, R.R.; Souza, G.N.; Fonseca, J.F. Preovulatory follicular dynamics, ovulatory response and embryo yield in Lacaune ewes. subjected to synchronous estrus induction protocols and non-surgical embryo recovery. Theriogenology 2020, 145, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Garcia, R.M.; Gonzalez-Bulnes, A.; Dominguez, V.; Veiga-Lopez, A.; Cocero, M.J. Culture of early stage ovine embryos to blastocyst enhances survival rate after cryopreservation. Theriogenology 2005, 63, 2233–2242. [Google Scholar] [CrossRef] [PubMed]
- Shirazi, A.; Soleimani, M.; Karimi, M.; Nazari, H.; Ahmadi, E.; Heidari, B. Vitrification of in vitro produced ovine embryos at various developmental stages using two methods. Cryobiology 2010, 60, 204–210. [Google Scholar] [CrossRef]
- Ayaseh, M.; Mirzaei, A.; Boostani, A.; Mehrvarz, M. The effect of prostaglandin and gonadotrophins (GnRH and hCG) injection combined with the ram effect on progesterone concentrations and reproductive performance of Karakul ewes during the non-breeding season. Vet. Med. Sci. 2021, 7, 148–155. [Google Scholar] [CrossRef]
- Bergstein-Galan, T.G.; Weiss, R.R.; Kozicki, L.E. Effect of semen and donor factors on multiple ovulation and embryo transfer (MOET) in sheep. Reprod. Domest. Anim. 2019, 54, 401–407. [Google Scholar] [CrossRef]
- Ciornei, S.G.; Drugociu, D.; Ciornei, L.; Rosca, P. Ovarian response to P4-PGF-FSH treatment in Suffolk sheep and P4-PGF-PMSG synchronization in cross-bred ewes, for IVD and ET protocol. Vet. Med. Sci. 2022, 8, 726–734. [Google Scholar] [CrossRef]
- Aybazov, M.M.; Mamontova, T.V. Cryoresistance of Goat Embryos Depending on the Stage of Development. Collection of Scientific Papers of the Stavropol Scientific Research Institute of Animal Husbandry and Feed Production. 2013, Volume 3, pp. 14–17. Available online: https://cyberleninka.ru/article/n/kriorezistentnost-embrionov-koz-v-zavisimosti-ot-stadii-razvitiya (accessed on 17 May 2023).
- Abbeel, E.V.; Steirteghem, A.V. Zona pellucida damage to human embryos after cryopreservation and the consequences for their blastomere survival and in vitro viability. Hum. Reprod. 2000, 15, 373–378. [Google Scholar] [CrossRef] [Green Version]
- Brair, V.L.; Maia, A.L.R.S.; Correia, L.F.L.; Barbosa, N.O.; Santos, J.D.R.; Brandão, F.Z.; Fonseca, J.F.; Batista, R.I.T.P.; Souza-Fabjan, J.M.G. Gene expression patterns of in vivo-derived sheep blastocysts is more affected by vitrification than. slow freezing technique. Cryobiology 2020, 95, 110–115. [Google Scholar] [CrossRef]
- Son, W.Y.; Tan, S.L. Comparison between slow freezing and vitrification for human embryo. Expert Rev. Med. Devices 2009, 6, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youngs, C.R. Cryopreservation of preimplantation embryos of cattle, sheep, and goats. J. Vis. Exp. 2011, 54, e2764. [Google Scholar]
- Oliveira, C.S.; da Silva Feuchard, V.L.; de Freitas, C.; da Silva Rosa, P.M.; dos Reis Camargo, A.J.; Saraiva, N.Z. In-straw warming protocol improves survival of vitrified embryos and allows direct transfer in cattle. Cryobiology 2020, 97, 222e5. [Google Scholar] [CrossRef] [PubMed]
- Paramio, M.T.; Soto-Heras, S.; Izquierdo, D. Reproductive technologies in goats. Chapter 4. Reprod. Technol. Anim. 2020, 55e66. [Google Scholar] [CrossRef]
- Van, N.K.; Huong, V.T.T.; Au, H.T.; Lan, P.D. Influence of cryopreservation and developmental stages of embryos on Saanen goat embryos during cold storage in Vietnam. J. Anim. Husb. Sci. Tech. 2021, 268, 35e9. Available online: https://hoichannuoi.vn/uploads/files/Tap%20chi%20KHKT/TAPCHICHANNUOI%20THANG%208_2021%20268-%C4%91%C3%A3%20n%C3%A9n.pdf (accessed on 7 March 2023).
- Garza, D.; Camacho, M.; Gauly, M.; Holtz, W. Transfer of caprine blastocysts vitrified by the open pulled straw (OPS) or the solid surface procedure and warmed in sucrose-free medium. Small Rumin. Res. 2018, 165, 111–114. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, X.; Li, X. GnRH administration after estrus induction protocol decreases the pregnancy rate of recipient ewes following transfer of frozen-thawed embryos. Small Rumin. Res. 2022, 217, 106849. [Google Scholar] [CrossRef]
- Romão, R.; Marques, C.; Bettencourt, E.; Pereira, R. Cryopreservation of Sheep Produced Embryos—Current and Future Perspectives. In Insights from Animal Reproduction; InTech: Houston, TX, USA, 2016; Available online: https://www.intechopen.com/chapters/49791 (accessed on 6 March 2023). [CrossRef] [Green Version]
- Dattena, M.; Accardo, C.; Pilichi, S.; Isachenko, V.; Mara, L.; Chessa, B.; Cappai, P. Comparison of different vitrification protocols on viability after transfer of ovine blastocysts in vitro produced and in vivo derived. Theriogenology 2004, 62, 481–493. [Google Scholar] [CrossRef]
- Khunmanee, S.; Tharasanit, T.; Suwimonteerabutr, J.; Panyaboriban, S.; Techakumphu, M.; Swangchan-Uthai, T. On-farm lambing outcomes after transfer of vitrified and slow frozen embryos. Anim. Reprod. Sci. 2020, 216, 106467. [Google Scholar] [CrossRef]
- Dos Santos-Neto, P.C.; Cuadro, F.; Barrera, N.; Crispo, M.; Menchaca, A. Embryo survival and birth rate after minimum volume vitrification or slow freezing of in vivo and in vitro produced ovine embryos. Cryobiology 2017, 78, 8–14. [Google Scholar] [CrossRef]
- Bhat, M.H.; Sharma, V.; Khan, F.A.; Naykoo, N.A.; Yaqoob, S.H.; Vajta, G.; Khan, H.M.; Fazili, M.R.; Ganai, N.A.; Shah, R.A. Open pulled straw vitrification and slow freezing of sheep IVF embryos using different cryoprotectants. Reprod. Fertil. Dev. 2015, 27, 1175–1180. [Google Scholar] [CrossRef] [PubMed]
- Dhali, A.; Kolte, A.P.; Mishra, A.; Roy, S.C.; Bhatta, R. Cryopreservation of oocytes and embryos: Current status and opportunities. In Infertility, Assisted Reproductive Technologies and Hormone Assays; Dhastagir, S.S., Ed.; E-Publishing Inc.: London, UK, 2019; p. 49e64. [Google Scholar]
- Alkan, K.K.; Alkan, H.; Kaymaz, M.; Izgur, I.H. Multiple ovulation and embryo transfer during the breeding season in Angora goats: A comparison of fresh and vitrified-thawed embryo transfer. Vet. Res. Forum 2020, 12, 143–148. [Google Scholar] [CrossRef]
- Fonseca, J.F.; Batista, R.I.T.P.; Souza-Fabjan, J.M.G.; Oliveira, M.E.F.; Brandão, F.Z.; Viana, J.H.M. Freezing goat embryos at different developmental stages and quality using ethylene glycol and a slow cooling rate. Arq. Brasil. Med. Vet. Zootec. 2018, 70, 1489–1496. [Google Scholar] [CrossRef]
Stage of Embryos | Freezing Method | Quality of Frozen-Thawed Embryos | |||||||
---|---|---|---|---|---|---|---|---|---|
Normal | Degenerated | Lysed | Damaged zona pellucida | ||||||
n | % | n | % | n | % | n | % | ||
2–8 cell embryos | slow freezing | 8/10 | 80.0 | 1/10 | 10.0 | 1/10 | 10.0 | - | - |
vitrification | 7/10 | 70.0 | - | - | - | - | 3/10 | 30.0 | |
Morula/ blastocyst stage | slow freezing | 9/11 | 81.8 | - | - | - | - | 2/11 | 18.2 |
vitrification | 10/11 | 90.9 | - | - | - | - | 1/11 | 9.1 |
Mean ± SEM | |||||||
---|---|---|---|---|---|---|---|
Stage of Frozen-Thawed Embryos | Stage of Fresh Embryos | ||||||
2−8 Cells | Morulae and Blastocysts | 2−8 Cells | Morulae and Blastocysts | ||||
Slow Freezing | Vitrification | Slow Freezing | Vitrification | ||||
Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 | ||
Number of recipients | 12 | 12 | 12 | 12 | 12 | 12 | |
Number of embryos transferred | 24 | 24 | 24 | 24 | 24 | 24 | |
Pregnancy rate at 35 days | number | 5 | 6 | 6 | 6 | 8 | 9 |
% | 41.7 | 50.0 | 50.0 | 50.0 | 66.7 | 75.0 | |
Number of offspring | 7 | 7 | 8 | 7 | 10 | 12 | |
Sex of lambs, ♂/♀ | 3/4 | 4/3 | 5/3 | 3/4 | 4/6 | 6/6 | |
Embryo survival rate, % | 29.17 | 29.17 | 33.33 | 29.17 | 41.67 | 50.00 | |
Body weight of lambs, kg | at birth | 3.08 ± 0.44 | 2.72 ± 0.35 | 3.15 ± 0.49 | 2.91 ± 0.51 | 3.12 ± 0.67 | 2.93 ± 0.55 |
1 months | 9.12 ± 0.96 | 8.88 ± 1.04 | 9.42 ± 1.12 | 8.36 ± 0.90 | 9.56 ± 1.15 | 8.74 ± 1.41 | |
2 months | 17.67 ± 1.44 | 18.56 ± 1.56 | 18.98 ± 1.72 | 17.79 ± 1.88 | 19.12 ± 1.38 | 18.56 ± 1.77 | |
4 months | 33.43 ± 2.12 | 32.56 ± 2.31 | 34.40 ± 2.89 | 33.76 ± 2.41 | 35.23 ± 2.57 | 34.87 ± 2.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selionova, M.I.; Aibazov, M.M.; Zharkova, E.K. Cryopreservation and Transfer of Sheep Embryos Recovered at Different Stages of Development and Cryopreserved Using Different Techniques. Animals 2023, 13, 2361. https://doi.org/10.3390/ani13142361
Selionova MI, Aibazov MM, Zharkova EK. Cryopreservation and Transfer of Sheep Embryos Recovered at Different Stages of Development and Cryopreserved Using Different Techniques. Animals. 2023; 13(14):2361. https://doi.org/10.3390/ani13142361
Chicago/Turabian StyleSelionova, Marina I., Magomet M. Aibazov, and Ekaterina K. Zharkova. 2023. "Cryopreservation and Transfer of Sheep Embryos Recovered at Different Stages of Development and Cryopreserved Using Different Techniques" Animals 13, no. 14: 2361. https://doi.org/10.3390/ani13142361
APA StyleSelionova, M. I., Aibazov, M. M., & Zharkova, E. K. (2023). Cryopreservation and Transfer of Sheep Embryos Recovered at Different Stages of Development and Cryopreserved Using Different Techniques. Animals, 13(14), 2361. https://doi.org/10.3390/ani13142361