Evaluation of Cow-Side Meters to Determine Somatic Cell Count in Individual Cow Quarter and Bulk-Tank Milk Samples
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Experimental Design
2.2. Individual Quarter and BTM Sampling
2.3. SCC Analyses
2.4. Sample Size Determination
2.5. Statistical Analysis
3. Results and Discussion
3.1. Performance of Meters on Individual Quarter Milk Samples
3.2. Performance of Meters on BTM Samples
3.3. Meter Measurement Performance Comparison
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- USDA. Dairy 2014. Milk Quality, Milking Procedures, and Mastitis on U.S. Dairies, 2014; USDA, Animal and Plant Health Inspection Service, Veterinary Services, National Animal Health Monitoring System: Fort Collins, CO, USA, 2014.
- Pantoja, J.C.F.; Hulland, C.; Ruegg, P.L. Dynamics of somatic cell counts and intramammary infections across the dry period. Prev. Vet. Med. 2009, 90, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Østerås, O.; Sandvik, L.; Aursjo, J.; Gjul, G.G.; Jorstad, A. Assessment of strategy in selective dry cow therapy for mastitis control. J. Vet. Med. B 1991, 38, 513–522. [Google Scholar] [CrossRef]
- Robert, A.; Seegers, H.; Bareille, N. Incidence of intramammary infections during the dry period with or without antibiotic treatment in dairy cows—A quantitative analysis of published data. Vet. Res. 2006, 37, 25–48. [Google Scholar] [CrossRef] [Green Version]
- Hommels, N.M.C.; Ferreira, F.C.; van den Borne, B.H.P.; Hogeveen, H. Antibiotic use and potential economic impact of implementing selective dry cow therapy in large US dairies. J. Dairy Sci. 2021, 104, 8931–8946. [Google Scholar] [CrossRef] [PubMed]
- Hillerton, J.E.; Berry, E.A. A Review: Treating mastitis in the cow—A tradition or an archaism. J. Appl. Microbiol. 2005, 98, 1250–1255. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.M.; Bailey, T.L. Understanding the Basics of Mastitis; University of Virginia: Charlottesville, VA, USA, 2009; pp. 223–404. [Google Scholar]
- Rodrigues, A.C.O.; Cassoli, L.D.; Machado, P.F.; Ruegg, P.L. Short communication: Evaluation of an on-farm test to estimate somatic cell count. J. Dairy Sci. 2009, 92, 990–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viguier, C.; Arora, S.; Gilmartin, N.; Welbeck, K.; O’Kennedy, R. Mastitis detection: Current trends and future perspectives. Trends Biotechnol. 2009, 27, 486–493. [Google Scholar] [CrossRef]
- Adkins, P.R.F.; Middleton, J.R. Methods for Diagnosing Mastitis. Vet. Clin. N. Am. Food Anim. Pract. 2018, 34, 479–491. [Google Scholar] [CrossRef]
- Albrechtsen, M.; Duse, A.T.; Bennedsgaard, T.W.; Klaas, I.C. Use of in-line measurements of somatic cell count to evaluate treatment efficacy of subclinical bovine Staphylococcus aureus mastitis. In Udder Health and Communication; Wageningen Academic Publishers: Wageningen, The Netherlands, 2012; pp. 309–315. [Google Scholar] [CrossRef]
- Enger, B.D.; Nickerson, S.C.; Akers, R.M.; Moraes, L.E.; Crutchfield, C.E. Use of commercial somatic cell counters to quantify somatic cells in non-lactating bovine mammary gland secretions. Prev. Vet. Med. 2020, 174, 104775. [Google Scholar] [CrossRef]
- Polat, B.; Colak, A.; Cengiz, M.; Yanmaz, L.E.; Oral, H.; Bastan, A.; Kaya, S.; Hayirli, A. Sensitivity and specificity of infrared thermography in detection of subclinical mastitis in dairy cows. J. Dairy Sci. 2010, 93, 3525–3532. [Google Scholar] [CrossRef] [Green Version]
- Kandeel, S.A.; Megahed, A.A.; Ebeid, M.H.; Constable, P.D. Evaluation of 3 esterase tests for the diagnosis of subclinical mastitis at dry-off and freshening in dairy cattle. J. Dairy Sci. 2019, 102, 1402–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norberg, E.; Hogeveen, H.; Korsgaard, I.R.; Friggens, N.C.; Sloth, K.H.M.N.; Løvendahl, P. Electrical conductivity of milk: Ability to predict mastitis status. J. Dairy Sci. 2004, 87, 1099–1107. [Google Scholar] [CrossRef] [Green Version]
- Kandeel, S.A.; Megahed, A.A.; Constable, P.D. Evaluation of hand-held sodium, potassium, calcium, and electrical conductivity meters for diagnosing subclinical mastitis and intramammary infection in dairy cattle. J. Vet. Intern. Med. 2019, 33, 2343–2353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipkens, Z.; Piepers, S.; DeVisscher, A.; De Viegher, S. Evaluation of test-day milk somatic cell count information to predict intramammary infection with major pathogens in dairy cattle at drying off. J. Dairy Sci. 2019, 102, 4309–4321. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.F.; Plassmann, P. Digital infrared thermal imaging of human skin. IEEE Eng. Med. Biol. 2002, 21, 41–48. [Google Scholar] [CrossRef]
- Lago, A.; Rhoda, D.; Cook, N.B. Treatment decisions and clinical mastitis cure rates monitoring using DHIA SCC data. American Assoc. Bov. Pract. Conf. Proc. 2004, 37, 187–189. [Google Scholar] [CrossRef]
- de Haas, Y.; Barkema, H.W.; Veerkamp, R.F. The effect of pathogen-specific clinical mastitis on the lactation curve for somatic cell count. J. Dairy Sci. 2002, 85, 1314–1323. [Google Scholar] [CrossRef]
- Jenkins, D.G.; Quintana-Ascensio, P.F. A solution to minimum sample size for regressions. PLoS ONE 2020, 15, e0229345. [Google Scholar] [CrossRef] [Green Version]
- National Mastitis Council. Guidelines on Normal and Abnormal Raw Milk Based on SCC and Signs of Clinical Mastitis; National Mastitis Council: New Prague, MN, USA, 2001; Available online: https://www.nmconline.org/wp-content/uploads/2016/09/Guidelines-on-Normal-and-Abnormal-Raw-Milk.pdf (accessed on 7 September 2022).
- Kandeel, S.A.; Megahed, A.A.; Ebeid, M.H.; Constable, P.D. Ability of milk pH to predict subclinical mastitis and intramammary infection in quarters from lactating dairy cattle. J. Dairy Sci. 2019, 102, 1417–1427. [Google Scholar] [CrossRef] [Green Version]
- Colak, A.; Polat, B.; Okumus, Z.; Kaya, M.; Yanmaz, L.E.; Hayirlit, A. Short Communication: Early Detection of Mastitis using Infrared Thermography in Dairy Cows. J. Dairy Sci. 2008, 91, 4244–4248. [Google Scholar] [CrossRef] [Green Version]
- SAS Institute Inc. SAS/ACCESS® 9.4 Interface to ADABAS: Reference; SAS Institute Inc.: Cary, NC, USA, 2014. [Google Scholar]
- Bibby, J.; Toutenburg, H. Prediction and Improved Estimation in Linear Models; Wiley: London, UK, 1977. [Google Scholar]
- MedCalc Software Ltd. Diagnostic Test Evaluation Calculator. Version 20.027. Available online: https://www.medcalc.org/calc/diagnostice_test.php (accessed on 28 February 2022).
- Sargeant, J.M.; Leslie, D.E.; Shirley, J.E. Sensitivity and specificity of somatic cell count and California mastitis test for identifying intramammary infection in early lactation. J. Dairy Sci. 2001, 84, 2018–2024. [Google Scholar] [CrossRef] [PubMed]
- Kristula, A.; Galligan, D.T.; Curtis, C.R.; Bartholomew, R.C. Evaluation of a Dairy Herd Improvement Association test to report chronic intramammary infections in dairy cattle. Prev. Vet. Med. 1992, 14, 251–258. [Google Scholar] [CrossRef]
- Zucali, M.; Bava, L.; Sandrucci, A.; Tamburini, A.; Piccinini, R.; Dapra, V.; Tonni, M.; Zecconi, A. Milk flow pattern. Somatic cell count and teat apex score in primiparous dairy cows at the beginning of lactation. Ital. J. Anim. Sci. 2009, 8, 103–111. Available online: https://www.tandfonline.com/loi/tjas20 (accessed on 8 October 2022). [CrossRef] [Green Version]
- Chaiyotwittayakun, A.; Aiumlamai, S.; Srisupa, S. Alternative method for determination of milk somatic cell count in dairy cows. In Proceedings of the 15th Congress of FAVA—OIE Joint Symposium on Emerging Diseases, Bangkok, Thailand, 27–30 October 2008. [Google Scholar]
Dairy Sampled 1 | Total Cows Milking | Average DIM | DIM at Dry-Off | Average Parity | 305 ME kg | SCC × 1000 | Milk Fat % | Milk Protein % | Times Milked |
---|---|---|---|---|---|---|---|---|---|
1 | 1471 | 197 | 335 | 1.9 | 14,300 | 281 | 5.72 | 3.45 | 2 |
2 | 4000 | 190 | 340 | 2.4 | 14,700 | 551 | 5.32 | 3.57 | 3 |
3 | 2500 | 143 | 340 | 2.3 | 11,800 | 546 | 4.13 | 3.82 | 2 |
4 2 | 2732 | 318 | 430 | 2.1 | 2 |
Dairy Sampled 1 | Pen Type 2 | Season Sampled | Average DSLT (SD) 3 | Average Parity (SD) | Average DIM at Dry-Off (SD) | Average DCC (SD) 4 | Average SCC × 1000 (SD) | Times Sampled | Quarters Sampled |
---|---|---|---|---|---|---|---|---|---|
1 | DL | Fall | 15 (8) | 1.9 (1.3) | 287 (31) | 224 (1) | 282 (499) | 7:00 AM | 160 |
2 | FS | Winter | 2.0 (1.1) | 233 (57) | 233 (7) | 551 (967) | 8:00 AM | 176 | |
3 | DL | Summer | 85 (9) | 1.8 (1.0) | 337 (75) | 236 (2) | 546 (1129) | 7:30 AM | 162 |
4 | FS | Summer | 1.7 (1.1) | 336 (93) | 203 (1) | 337 (646) | 7:00 AM | 160 |
Descriptive Statistics 1 | DSCC 2 | RT-10 | PC 3 | CMT | ECM | HC | IR5 | PSCC 4 n = 40 |
---|---|---|---|---|---|---|---|---|
Observed mean, SCC × 1000 | 432 | 432 | 432 | 432 | 432 | 432 | 432 | 282 |
Predicted mean 5, SCC × 1000 | 432 | 432 | 250 | 400 | 573 | 435 | 432 | 281 |
Observed SD, SCC × 1000 | 859 | 859 | 859 | 859 | 859 | 859 | 859 | 316 |
Predicted SD, SCC × 1000 | 543 | 797 | 641 | 87 | 3203 | 38 | 0.240 | 139 |
Linear Regression 6 | ||||||||
Intercept | 178 | −28.8 | −79.3 | 570 | −749 | 0 | 431 | 186 |
Slope | 0.60 | 1.1 | 1.5 | −56 | 210 | 64 | 0.010 | 0.49 |
Mean Square Error (MSE) | 62,806 | 102,106 | 66,829 | 190,505 | 312,121 | 198,002 | 197,907 | 82,463 |
Coefficient of Determination (R2) | 0.40 | 0.86 | 0.56 | 0.010 | 0.080 | 0.0040 | 0.0 | 0.19 |
Mean Bias, % | −0.030 | 0.030 | 0.15 | −0.11 | −33 | −0.48 | 0.030 | 0.35 |
Mean Absolute Error (MAE) | 251 | 111 | 259 | 436 | 559 | 445 | 445 | 182 |
Mean Square Predicted Error (MSPE) | 442,154 | 101,685 | 326,367 | 729,200 | 10,986,013 | 733,223 | 736,542 | 78,341 |
Partition of MSPE, % | ||||||||
Error due to bias of prediction | 3 | 1 | 0 | 3 | 0 | 0 | 1 | 0 |
Error due to slope ≠ 1 | 23 | 4 | 14 | 82 | 50 | 92 | 99 | 61 |
Error due to random variation | 77 | 96 | 86 | 18 | 50 | 8 | 0 | 39 |
Diagnostic Test 1 | DSCC 2 | RT-10 | PC | CMT | ECM | HC | IR5 | PSCC 3 |
---|---|---|---|---|---|---|---|---|
SE, % | 92.5 | 91.5 | 74.0 | 97.6 | 86.4 | 26.8 | 0 | 67.2 |
95% CI | (88.9–95.3) | (84.7–94.4) | (69.1–78.7) | (95.2–99.0) | (82.0–90.1) | (21.8–32.2) | (0–1.24) | (54.3–78.4) |
SP, % | 90.1 | 90.4 | 89.7 | 16.3 | 33.9 | 69.2 | 100 | 74.5 |
95% CI | (86.5–93.0) | (86.9–93.2) | (85.7–92.9) | (12.6–20.5) | (29.0–39.0) | (64.1–73.9) | (0–0) | (64.7–82.8) |
Prevalence 4, % | 50.3 | 50.2 | 59.0 | 44.8 | 81.3 | 61.9 | 44.8 | 54.9 |
Accuracy, % | 91.2 | 90.9 | 81.2 | 52.7 | 57.5 | 50.2 | 55.2 | 71.6 |
LR+, % | 9.3 | 9.5 | 7.2 | 1.2 | 1.3 | 0.87 | 0 | 2.6 |
LR−, % | 0.080 | 0.090 | 0.29 | 0.15 | 0.40 | 1.1 | 1 | 0.44 |
PPV, % | 88.4 | 88.5 | 89.5 | 48.7 | 51.5 | 41.4 | 0 | 63.2 |
NPV, % | 93.7 | 92.9 | 74.4 | 89.4 | 75.5 | 53.8 | 55.2 | 77.7 |
Previously Published | ||||||||
SE, % | 82.0 | 82.0 | 81.0 | 57.4 | 43.5 | 83.0 | 95.6 | 86.0 |
SP, % | 86.0 | 86.0 | 78.0 | 72.3 | 92.9 | 29.0 | 93.6 | 50.0 |
References | [11] | [11] | [14] | [28] | [15] | [25] | [13] | [29] |
Descriptive Statistics 1 | DSCC 2 | RT-10 | PC 3 | ECM | HC |
---|---|---|---|---|---|
Observed mean, SCC × 1000 | 182 | 182 | 182 | 182 | 182 |
Predicted mean, SCC × 1000 | 182 | 182 | 100 | 182 | 182 |
Observed SD, SCC × 1000 | 70 | 70 | 70 | 70 | 70 |
Predicted SD, SCC × 1000 | 40 | 36 | 19 | 12 | 10 |
Linear Regression 4 | |||||
Intercept | 92.9 | 109 | 137 | 211 | −118 |
Slope | 0.40 | 0.31 | 0.26 | −7.1 | 41.5 |
Mean Square Error (MSE) | 1834 | 1983 | 2970 | 3408 | 3406 |
Coefficient of Determination (R2) | 0.33 | 0.26 | 0.08 | 0.03 | 0.02 |
Mean Bias, % | −4.0 | −2.5 | 1.8 | −6.8 | 1.2 |
Mean Absolute Error (MAE) | 43 | 45 | 54 | 58 | 58 |
Mean Square Predicted Error (MSPE) | 3200 | 3546 | 4426 | 4663 | 4700 |
Partition of MSPE, % | |||||
Error due to bias of prediction, % | 2 | 6 | 3 | 3 | 1 |
Error due to slope ≠ 1, % | 27 | 32 | 57 | 72 | 75 |
Error due to random variation, % | 73 | 68 | 43 | 28 | 25 |
Diagnostic Test 1 | DSCC 2 | RT-10 | PC | ECM | HC |
---|---|---|---|---|---|
SE, % | 85.7 | 88.1 | 59.5 | 21.4 | 0 |
95% CI | (71.5–94.6) | (74.4–96.0) | (43.3–74.4) | (10.3–36.8) | (0.00–100) |
SP, % | 70.7 | 62.1 | 58.6 | 62.1 | 100 |
95% CI | (57.3–81.9) | (48.4–74.5) | (44.9–71.4) | (48.4–74.5) | (93.8–100) |
Prevalence 3, % | 59 | 64 | 66 | 64 | 42 |
Accuracy, % | 77 | 73 | 59 | 45 | 58 |
LR+, % | 2.9 | 2.3 | 1.4 | 0.56 | 0 |
LR−, % | 0.20 | 0.19 | 0.69 | 1.3 | 1.0 |
PPV, % | 68 | 63 | 51. | 29. | 0 |
NPV, % | 87 | 88 | 67 | 52 | 58 |
Combi 1 | DSCC | RT-10 | PC | CMT | ECM | HC | IR5 | |
---|---|---|---|---|---|---|---|---|
Meter cost 2, $ | 350,000 | 3497 | 1533 | 40 | 15 | 61 | 150 | 60 |
Cost per sample 3, $ | 1.00 | 2.10 | 2.10 | 1.01 | 0.04 | 0 | 0 | 0 |
Measurement time 4 | 7 s | 50 s | 60 s | 5 m | 10 s | 10 s | 30 s | 2 s |
Volume of milk sampled | 6 mL | 60 µL | 60 µL | 80 µL | 3 mL | 10 mL | 10 mL | 0 |
Sample environment | Lab | Both | Both | Lab | Cow-side | Lab | Lab | Cow-side |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacobsen, L.A.; Niesen, A.M.; Lucey, P.; Rossow, H.A. Evaluation of Cow-Side Meters to Determine Somatic Cell Count in Individual Cow Quarter and Bulk-Tank Milk Samples. Animals 2023, 13, 2169. https://doi.org/10.3390/ani13132169
Jacobsen LA, Niesen AM, Lucey P, Rossow HA. Evaluation of Cow-Side Meters to Determine Somatic Cell Count in Individual Cow Quarter and Bulk-Tank Milk Samples. Animals. 2023; 13(13):2169. https://doi.org/10.3390/ani13132169
Chicago/Turabian StyleJacobsen, Leslie A., Ashley M. Niesen, Padraig Lucey, and Heidi A. Rossow. 2023. "Evaluation of Cow-Side Meters to Determine Somatic Cell Count in Individual Cow Quarter and Bulk-Tank Milk Samples" Animals 13, no. 13: 2169. https://doi.org/10.3390/ani13132169
APA StyleJacobsen, L. A., Niesen, A. M., Lucey, P., & Rossow, H. A. (2023). Evaluation of Cow-Side Meters to Determine Somatic Cell Count in Individual Cow Quarter and Bulk-Tank Milk Samples. Animals, 13(13), 2169. https://doi.org/10.3390/ani13132169