The Effect of Using Bovine Colostrum and Probiotics on Performance, Egg Traits, Blood Biochemical and Antioxidant Status of Laying Japanese Quails
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Treatment, and Management
2.2. Feed Analysis
2.3. Sample and Data Collection
2.4. Statistical Analysis
- i: colostrum consumption level.
- j: probiotics consumption level.
- k: number of repetitions (k= 1, …,4).
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mottet, A.; Tempio, G. Global poultry production: Current state and future outlook and challenges. World’s Poult. Sci. J. 2017, 73, 245–256. [Google Scholar] [CrossRef] [Green Version]
- Astill, J.; Dara, R.A.; Fraser, E.D.G.; Roberts, B.; Sharif, S. Smart poultry management: Smart sensors, big data, and the internet of things. Comput. Electron. Agric. 2020, 170, 105291. [Google Scholar] [CrossRef]
- Achilonu, M.; Shale, K.; Arthur, G.; Naidoo, K.; Mbatha, M. Phytochemical Benefits of Agroresidues as Alternative Nutritive Dietary Resource for Pig and Poultry Farming. J. Chem. 2018, 2018, 1035071. [Google Scholar] [CrossRef] [Green Version]
- Akdemir, F.; Bayril, T.; Baran, M.S.; Yildiz, A.S.; Kahraman, M.; Orhan, C.; Sahin, K. The effect of dietary colostrum powder on performance, carcass yields and serum lipid peroxidation levels in Japanese quails (Coturnix coturnix japonica). J. Appl. Anim. Res. 2018, 46, 39–43. [Google Scholar] [CrossRef] [Green Version]
- Pashtetsky, V.; Ostapchuk, P.; Il’yazov, R.; Zubochenko, D.; Kuevda, T. Use of antioxidants in poultry farming (review). IOP Conf. Ser. Earth Environ. Sci. 2019, 341, 012042. [Google Scholar] [CrossRef]
- Surai, P.F. Antioxidants in Poultry Nutrition and Reproduction: An Update. Antioxidants 2020, 9, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lukanov, H.; Pavlova, I. Domestication changes in Japanese quail (Coturnix japonica): A review. World’s Poult. Sci. J. 2020, 76, 787–801. [Google Scholar] [CrossRef]
- Narinc, D.; Aygun, A.; Karaman, E.; Aksoy, T. Egg shell quality in Japanese quail: Characteristics, heritabilities and genetic and phenotypic relationships. Animal 2015, 9, 1091–1096. [Google Scholar] [CrossRef] [Green Version]
- Roth, N.; Käsbohrer, A.; Mayrhofer, S.; Zitz, U.; Hofacre, C.; Domig, K.J. The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: A global overview. Poult. Sci. 2019, 98, 1791–1804. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; Alagawany, M.; Abdel-Moneim, A.-M.E.; Mohammed, N.G.; Khafaga, A.F.; Bin-Jumah, M.; Othman, S.I.; Allam, A.A.; Elnesr, S.S. Cinnamon (Cinnamomum zeylanicum) Oil as a Potential Alternative to Antibiotics in Poultry. Antibiotics 2020, 9, 210. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.D.; Edens, F.W.; Parkhurst, C.R.; Qureshi, M.A.; Havenstein, G.B. Infiuence of a propionic acid feed additive on performance of turkey poults with experimentally induced poult enteritis and mortality syndrome. Poult. Sci. 2002, 81, 951–957. [Google Scholar] [CrossRef] [PubMed]
- Tekeli, A.; Celik, L.; Kutlu, H.R.; Gorgulu, M. Effect of dietary supplemental plant extracts on performance, carcass characteristics, digestive system develoment, intestinal microfiora and some biood paeameters of broiler chicks. In Proceedings of the 12th European Poultry Conference, Verona, Italy, 10–14 September 2006. [Google Scholar]
- Yörük, M.A.; Gül, M.; Hayirli, A.; Macit, M. The Effects of Supplementation of Humate and Probiotic on Egg Production and Quality Parameters during the Late Laying Period in Hens. Poult. Sci. 2004, 83, 84–88. [Google Scholar] [CrossRef]
- Rodríguez, C.; Castro, N.; Capote, J.; Morales-delaNuez, A.; Moreno-Indias, I.; Sánchez-Macías, D.; Argüello, A. Effect of colostrum immunoglobulin concentration on immunity in Majorera goat kids. J. Dairy Sci. 2009, 92, 1696–1701. [Google Scholar] [CrossRef] [Green Version]
- Uruakpa, F.O.; Ismond, M.A.H.; Akobundu, E.N.T. Colostrum and its benefits: A review. Nutr. Res. 2002, 22, 755–767. [Google Scholar] [CrossRef]
- Przybylska, J.; Albera, E.; Kankofer, M. Antioxidants in Bovine Colostrum. Reprod. Domest. Anim. 2007, 42, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Indias, I.; Sánchez-Macías, D.; Castro, N.; Morales-delaNuez, A.; Hernández-Castellano, L.E.; Capote, J.; Argüello, A. Chemical composition and immune status of dairy goat colostrum fractions during the first 10 h after partum. Small Rumin. Res. 2012, 103, 220–224. [Google Scholar] [CrossRef]
- Panahi, Y.; Falahi, G.; Falahpour, M.; Moharamzad, Y.; Khorasgani, M.R.; Beiraghdar, F.; Naghizadeh, M.M. Bovine Colostrum in the Management of Nonorganic Failure to Thrive: A Randomized Clinical Trial. J. Pediatr. Gastroenterol. Nutr. 2010, 50, 551–554. [Google Scholar] [CrossRef]
- Douëllou, T.; Montel, M.C.; Thevenot Sergentet, D. Invited review: Anti-adhesive properties of bovine oligosaccharides and bovine milk fat globule membrane-associated glycoconjugates against bacterial food enteropathogens. J. Dairy Sci. 2017, 100, 3348–3359. [Google Scholar] [CrossRef]
- Lönnerdal, B. Nutritional and physiologic significance of human milk proteins. Am. J. Clin. Nutr. 2003, 77, 1537S–1543S. [Google Scholar] [CrossRef] [Green Version]
- Kotsis, Y.; Mikellidi, A.; Aresti, C.; Persia, E.; Sotiropoulos, A.; Panagiotakos, D.B.; Antonopoulou, S.; Nomikos, T. A low-dose, 6-week bovine colostrum supplementation maintains performance and attenuates inflammatory indices following a Loughborough Intermittent Shuttle Test in soccer players. Eur. J. Nutr. 2018, 57, 1181–1195. [Google Scholar] [CrossRef] [Green Version]
- Kehoe, S.I.; Jayarao, B.M.; Heinrichs, A.J. A Survey of Bovine Colostrum Composition and Colostrum Management Practices on Pennsylvania Dairy Farms1. J. Dairy Sci. 2007, 90, 4108–4116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Playford, R.j.; Weiser, M.J. Colostum: Its Constituents and Uses. J. Nutr. 2021, 13, 265. [Google Scholar]
- Godden, S.M.; Lombard, J.E.; Woolums, A.R. Colostrum Management for Dairy Calves. Vet. Clin. N. America. Food Anim. Pract. 2019, 35, 535–556. [Google Scholar] [CrossRef] [PubMed]
- Afzal, I.; Khan, A.; Banday, M.; Manzoor, A.; Untoo, M.; Khurshid, A.; Bashir, S.U.; Rovida, M. Effect of incorporation of bovine colostrum in broiler chicken diets on body weight, mortality pattern and economics of production. J. Entomol. Zool. Stud. 2018, 6, 711–714. [Google Scholar]
- King, M.R.; Ravindran, V.; Morel, P.C.H.; Thomas, D.V.; Birtles, M.J.; Pluske, J.R. Effects of spray-dried colostrum and plasmas on the performance and gut morphology of broiler chickens. Aust. J. Agric. Res. 2005, 56, 811–817. [Google Scholar] [CrossRef]
- Gorbannejhad Parapary, M.H.; Nobakht, A.; Mehmannavaz, Y. The Effect of Colostrum Powder Supplementation on Performance, Intestinal Morphology, Blood Biochemical Parameters, Immunity and Antioxidant Status of Broilers. Iran. J. Appl. Anim. Sci. 2021, 11, 809–816. [Google Scholar]
- Tacket, C.O.; Binion, S.B.; Bostwick, E.; Losonsky, G.; Roy, M.J.; Edelman, R. Efficacy of bovine milk immunoglobulin concentrate in preventing illness after Shigella flexneri challenge. Am. J. Trop. Med. Hyg. 1992, 47, 276–283. [Google Scholar] [CrossRef]
- Mazmanian, S.K.; Round, J.L.; Kasper, D.L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 2008, 453, 620–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timmerman, H.M.; Mulder, L.; Everts, H.; van Espen, D.C.; van der Wal, E.; Klaassen, G.; Rouwers, S.M.G.; Hartemink, R.; Rombouts, F.M.; Beynen, A.C. Health and Growth of Veal Calves Fed Milk Replacers with or without Probiotics. J. Dairy Sci. 2005, 88, 2154–2165. [Google Scholar] [CrossRef] [Green Version]
- Salzman, N.H.; Ghosh, D.; Huttner, K.M.; Paterson, Y.; Bevins, C.L. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 2003, 422, 522–526. [Google Scholar] [CrossRef]
- Gill, H.S. Probiotics to enhance anti-infective defences in the gastrointestinal tract. Best Pract. Res. Clin. Gastroenterol. 2003, 17, 755–773. [Google Scholar] [CrossRef]
- Vahdatpour, T.; Nikpiran, H.; Babazadeh, D.; Vahdatpour, S.; Jafargholipour, M.A. Effects of Protexin®, Fermacto® and combination of them on blood enzymes and performance of Japanese quails (Coturnix Japonica). Ann. Biol. Res. 2011, 2, 283–291. [Google Scholar]
- Tsekhmistrenko, O.; Bityutskii, V.; Tsekhmistrenko, S.; Kharchyshyn, V.; Tymoshok, N.; Spivak, M. Efficiency of application of inorganic and nanopreparations of selenium and probiotics for growing young quails. Theor. Appl. Vet. Med. 2020, 8, 206–212. [Google Scholar] [CrossRef]
- Xie, S.; Zhao, S.; Jiang, L.; Lu, L.; Yang, Q.; Yu, Q. Lactobacillus reuteri Stimulates Intestinal Epithelial Proliferation and Induces Differentiation into Goblet Cells in Young Chickens. J. Agric. Food Chem. 2019, 67, 13758–13766. [Google Scholar] [CrossRef]
- Jang, H.J.; Yu, H.S.; Lee, N.K.; Paik, H.D. Immune-stimulating Effect of Lactobacillus plantarum Ln1 Isolated from the Traditional Korean Fermented Food, Kimchi. J. Microbiol. Biotechnol. 2020, 30, 926–929. [Google Scholar] [CrossRef]
- Nasehi, B.; Chaji, M.; Ghodsi, M.; Puranian, M. Effect of Diet Containing Probiotic on the Properties of Japanese Quail Meat during the Storage Time. Iran. J. Nutr. Sci. Food Technol. 2015, 9, 77–86. [Google Scholar]
- Mokhtarzadeh, S.; Nobakht, A.; Mehmannavaz, Y.; Palangi, V.; Eseceli, H.; Lackner, M. Impacts o Continuous and Inter-mittent Use of Bovine Colostrum on Laying Japanese Quails: Egg Performance and Traits, Blood Biochemical and Antioxidant Status. Animals 2022, 12, 2811. [Google Scholar] [CrossRef]
- NRC, N.R.C. Nutrient Requirements of Small Ruminants; National Academy Press: Washington, DC, USA, 1994. [Google Scholar]
- AOAC. Official Methods of Analysis, 18th ed.; Chem, A.O.A., Ed.; Association of Official Analytical Chemists: Gathersburg, MD, USA, 2005. [Google Scholar]
- De Bellis, P.; Maggiolino, A.; Albano, C.; De Palo, P.; Blando, F. Ensiling Grape Pomace with and without Addition of a Lactiplantibacillus plantarum Strain: Effect on Polyphenols and Microbiological Characteristics, in vitro Nutrient Apparent Digestibility, and Gas Emission. Front. Vet. Sci. 2022, 9, 808293. [Google Scholar] [CrossRef]
- Eisen, E.J.; Bohren, B.B.; McKean, H.E. The Haugh Unit as a Measure of Egg Albumen Quality. Poult. Sci. 1962, 41, 1461–1468. [Google Scholar] [CrossRef]
- Brocklebank, J.C.; Dickey, D.A.; Choi, B. SAS® for Forecasting Time Series, 3rd ed.; SAS Institute Inc.: Cary, NC, USA, 2018. [Google Scholar]
- Godhia, M.L.; Patel, N. Colostrum–its Composition, Benefits as a Nutraceutical–A Review. Curr. Res. Nutr. Food Sci. J. 2013, 1, 37–47. [Google Scholar] [CrossRef]
- McGrath, B.A.; Fox, P.F.; McSweeney, P.L.H.; Kelly, A.L. Composition and properties of bovine colostrum: A review. Dairy Sci. Technol. 2016, 96, 133–158. [Google Scholar] [CrossRef] [Green Version]
- Dinardo, F.R.; Maggiolino, A.; Martinello, T.; Liuzzi, G.M.; Elia, G.; Zizzo, N.; Latronico, T.; Mastrangelo, F.; Dahl, G.E.; De Palo, P. Oral administration of nucleotides in calves: Effects on oxidative status, immune response, and intestinal mucosa development. J. Dairy Sci. 2022, 105, 4393–4409. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.W.; March, D.S.; Thatcher, R.; Diment, B.; Walsh, N.P.; Davison, G. The effects of bovine colostrum supplementation on in vivo immunity following prolonged exercise: A randomised controlled trial. Eur. J. Nutr. 2019, 58, 335–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayril, T.; Akdemir, F.; Baran, M.S.; Orhan, C.; Kahraman, M.; Yildiz, A.S.; Sahin, K. Effects of colostrum powder supplementation on the performance, egg quality and egg yolk lipid peroxidation in Japanese quails. Erciyes Üniversitesi Vet. Fakültesi Derg. 2017, 14, 177–182. [Google Scholar]
- Reid, G.; Friendship, R. Alternative to antibiotics use: Probiotic for the gut. Anim. Bio. 2002, 13, 97–112. [Google Scholar] [CrossRef]
- Khaksefidi, A. and Ghoorchi, T. 2006. Effect of probiotic on performance and immunocompetence in broiler chichs. J. Poult. Sci. 2006, 43, 296–300. [Google Scholar] [CrossRef] [Green Version]
- Alkhalf, A.; Alhaj, M.; Al-homidan, I. Influence of probiotic supplementation on blood parameters and growth performance in broiler chickens. Saudi J. Biol. Sci. 2010, 17, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Safamehr, A.R.; Nobakht, A. Effect of probiotic (Protexin) on performance, blood biochemical parameters and egg quality in laying hens. Agroecol. J. 2009, 4, 61–71. [Google Scholar]
- Golami, T.; Nobakht, A. The effects of two feed restriction programs with and without probiotic on performance, egg traits and production cost in Laying Japanese Quails. Anim. Sci. J. 2018, 31, 185–194. [Google Scholar] [CrossRef]
- Sahin, T.; Kaya, I.; Unal, Y.; Elmali, D.A. Dietary supplementation of probiotic and prebiotic combination (Combiotics) on performance, carcass quality and blood parameters in growing quails. J. Anim. Vet. Adv. 2008, 7, 1370–1373. [Google Scholar]
- Arjomand, M.; Nobakht, A.; Mehmannavaz, Y. Effects of Different Forms of Cattle Colostrum for Broiler Chickens. Iran. J. Appl. Anim. Sci. 2022, 12, 371–378. [Google Scholar]
- Buckley, J.D.; Abbott, M.J.; Brinkworth, G.D.; Whyte, P.B.D. Bovine colostrum supplementation during endurance running training improves recovery, but not performance. J. Sci. Med. Sport 2002, 5, 65–79. [Google Scholar] [CrossRef] [PubMed]
- King, M.R.; Morel, P.C.H.; Pluske, J.R.; Hendriks, W.H. A comparison of the effects of dietary spray-dried bovine colostrum and animal plasma on growth and intestinal histology in weaner pigs. Livest. Sci. 2008, 119, 167–173. [Google Scholar] [CrossRef]
- Alvarez, M.A. (Ed.) Yungas. In Pharmacological Properties of Native Plants from Argentina; Springer International Publishing: Cham, Switzerland, 2019; pp. 167–191. [Google Scholar]
- Mehdi, Y.; Hornick, J.-L.; Istasse, L.; Dufrasne, I. Selenium in the Environment, Metabolism and Involvement in Body Functions. Molecules 2013, 18, 3292–3311. [Google Scholar] [CrossRef] [Green Version]
- Gupta, T.T.; Ayan, H. Application of Non-Thermal Plasma on Biofilm: A Review. Appl. Sci. 2019, 9, 3548. [Google Scholar] [CrossRef] [Green Version]
- de Andrade, D.P.; Ramos, C.L.; Botrel, D.A.; Borges, S.V.; Schwan, R.F.; Ribeiro Dias, D. Stability of microencapsulated lactic acid bacteria under acidic and bile juice conditions. Int. J. Food Sci. Technol. 2019, 54, 2355–2362. [Google Scholar] [CrossRef]
- Kleerebezem, M.; Boekhorst, J.; Kranenburg, R.v.; Molenaar, D.; Kuipers, O.P.; Leer, R.; Tarchini, R.; Peters, S.A.; Sandbrink, H.M.; Fiers, M.W.E.J.; et al. Complete genome sequence of Lactobacillus plantarum WCFS1. Proc. Natl. Acad. Sci. USA 2003, 100, 1990–1995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahbar Saadat, Y.; Yari Khosroushahi, A.; Pourghassem Gargari, B. A comprehensive review of anticancer, immunomodulatory and health beneficial effects of the lactic acid bacteria exopolysaccharides. Carbohydr. Polym. 2019, 217, 79–89. [Google Scholar] [CrossRef]
- Ten Bruggencate, S.J.; Bovee-Oudenhoven, I.M.; Feitsma, A.L.; van Hoffen, E.; Schoterman, M.H. Functional role and mechanisms of sialyllactose and other sialylated milk oligosaccharides. Nutr. Rev. 2014, 72, 377–389. [Google Scholar] [CrossRef] [Green Version]
- Zivkovic, A.M.; Barile, D. Bovine milk as a source of functional oligosaccharides for improving human health. Adv. Nutr. 2011, 2, 284–289. [Google Scholar] [CrossRef] [Green Version]
- O’Riordan, N.; O’Callaghan, J.; Buttò, L.F.; Kilcoyne, M.; Joshi, L.; Hickey, R.M. Bovine glycomacropeptide promotes the growth of Bifidobacterium longum ssp. infantis and modulates its gene expression. J. Dairy Sci. 2018, 101, 6730–6741. [Google Scholar] [CrossRef] [Green Version]
- Erisir, Z.; Mutlu, S.İ.; Şimşek, Ü.G.; Ciftci, M.; Azman, M.A.; Benzer, F.; Erisir, M. Effects of milk thistle (Silybum marianum) seed supplementation to high-calorie basal diets of quails on egg production, egg quality traits, hatchability and oxidative stress parameters. Kafkas Univ. Vet. Fakültesi Derg. 2016, 22, 577–584. [Google Scholar]
- Valko, M.; Izakovic, M.; Mazur, M.; Rhodes, C.J.; Telser, J. Role of oxygen radicals in DNA damage and cancer incidence. Mol. Cell. Biochem. 2004, 266, 37–56. [Google Scholar] [CrossRef] [PubMed]
- Abdolsamadi, H.; Rafieian, N.; Goodarzi, M.T.; Feradmal, J.; Davoodi, P.; Jazayeri, M. Levels of salivary antioxidant vitamins and lipid peroxidation in patients with oral lichen planus and healthy individuals. Chonnam Med. J. 2014, 50, 58–62. [Google Scholar] [CrossRef] [Green Version]
- Khademi, H.; Khozeimeh, F.; Tavangar, A.; Amini, S.; Ghalayani, P. The Serum and salivary level of malondialdehyde, vitamins A, E, and C in patients with recurrent aphthous stomatitis. J. Adv. Biomed. Res. 2014, 3, 246–258. [Google Scholar]
- Halliwell, B.; Gutteridge, J.M. Free Radicals in Biology and Medicine; Oxford University Press: New York, NY, USA, 2015. [Google Scholar]
- Appukutty, M.; Radhakrishnan, A.K.; Ramasamy, K.; Ramasamy, R.; Abdul Majeed, A.B.; Noor, M.I.; Safii, N.S.; Koon, P.B.; Chinna, K.; Haleagrahara, N. Colostrum supplementation protects against exercise—Induced oxidative stress in skeletal muscle in mice. BMC Res. Notes 2012, 5, 649. [Google Scholar] [CrossRef] [Green Version]
- Palamanda, J.R.; Kehrer, J.P. Involvement of vitamin E and protein thiols in the inhibition of microsomal lipid peroxidation by glutathione. Lipids 1993, 28, 427–431. [Google Scholar] [CrossRef] [PubMed]
Feed Ingredients (%) | Colostrum Inclusion | |||||
---|---|---|---|---|---|---|
0-Col/Pro-0 | Col-2/pro-0 | Col-4/pro-0 | Col-0/pro-0.01 | Col-2/pro-0.01 | Col4/pro-0.01 | |
Corn | 50.00 | 49.00 | 48.00 | 50.00 | 49.00 | 48.00 |
Wheat | 23.73 | 22.18 | 20.63 | 23.73 | 22.18 | 20.63 |
Soybean meal-44% | 16.31 | 14.75 | 13.21 | 16.31 | 14.75 | 13.21 |
Soybean oil | 0.24 | 0.36 | 0.48 | 0.24 | 0.36 | 0.48 |
Colostrum | 0 | 2.00 | 4.00 | 0 | 2.00 | 4.00 |
Bio-Poul® | 0 | 0 | 0 | 0.01 | 0.01 | 0.01 |
Oyster shell | 7.83 | 7.83 | 7.81 | 7.82 | 7.83 | 7.81 |
Dicalcium phosphate | 1.11 | 1.10 | 1.10 | 1.11 | 1.10 | 1.10 |
Salt | 0.28 | 0.28 | 0.27 | 0.28 | 0.28 | 0.27 |
Vitamin premix 1 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
Mineral premix 2 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
Calculated composition | ||||||
Metabolisable energy (Kcal/kg) | 2800 | 2800 | 2800 | 2800 | 2800 | 2800 |
Crude protein (%) | 14.00 | 14.00 | 14.00 | 14.00 | 14.00 | 14.00 |
Ether extract (%) | 3.70 | 3.64 | 3.59 | 3.70 | 3.64 | 3.59 |
Ca (%) | 3.28 | 3.28 | 3.28 | 3.28 | 3.28 | 3.28 |
Available phosphor (%) | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 |
Crude fiber (%) | 2.86 | 3.28 | 3.98 | 2.86 | 3.28 | 3.98 |
Sodium (%) | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 |
Lysine (%) | 0.63 | 0.63 | 0.63 | 0.63 | 0.63 | 0.63 |
Methionine + Cysteine (%) | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 |
Tryptophan (%) | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 |
Prob-0 1 | Prob-0.01 2 | MSE 3 | Analysis of Variance | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Col-0 | Col-2 | Col-4 | Col-0 | Col-2 | Col-4 | P 4 | C 5 | P × C | ||
Egg weight (g) | 11.57 c | 12.09 b | 12.44 a | 11.66 b | 11.88 b | 12.54 a | 0.10 | 0.9136 | >0.05 | >0.05 |
Egg production (%) | 51.13 b | 67.22 a | 69.88 a | 52.79 b | 67.26 a | 72.54 a | 1.69 | 0.5581 | >0.05 | >0.05 |
Egg mass (g/h/d) | 5.91 c | 8.15 b | 8.76 a | 6.15 b | 8.00 b | 9.03 a | 0.21 | 0.6704 | >0.05 | >0.05 |
Feed intake (g/h/d) | 24.71 b | 26.06 a | 26.14 a | 24.55 b | 25.92 ab | 26.03 a | 0.29 | 0.4495 | >0.05 | >0.05 |
FCR 6 | 4.23 a | 3.40 b | 3.18 b | 4.07 a | 3.44 b | 3.02 b | 0.09 | 0.3771 | >0.05 | >0.05 |
Prob-0 1 | Prob-0.01 2 | MSE 3 | Analysis of Variance | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Col-0 | Col-2 | Col-4 | Col-0 | Col-2 | Col-4 | P 4 | C 5 | P × C | ||
Egg albumin (%) | 59.98 c | 62.86 ab | 63.41 ab | 62.15 b | 62.40 b | 64.77 a | 0.38 | 0.9000 | 0.0001 | 0.0001 |
Egg yolk index | 60.07 c | 61.72 bc | 65.63 ab | 59.00 c | 60.76 bc | 67.75 a | 0.52 | 0.1340 | 0.0001 | 0.0003 |
Egg yolk (%) | 30.76 a | 27.75 b | 28.81 b | 29.03 ab | 28.46 b | 27.30 b | 0.43 | 0.9857 | 0.0041 | 0.0006 |
Eggshell (%) | 8.57 c | 9.28 ab | 9.40 ab | 8.80 bc | 9.25 ab | 9.71 a | 0.14 | 0.3940 | 0.0001 | 0.0003 |
Shell Thickness (mm) | 0.238 c | 0.255 bc | 0.285 bc | 0.245 c | 0.258 bc | 0.300 a | 0.01 | 0.4615 | 0.0001 | 0.0003 |
Yolk color | 3.5 c | 4.79 b | 7.21 a | 3.5 c | 5.30 b | 7.16 a | 0.28 | 0.8223 | 0.0001 | 0.0001 |
Haugh unit | 95.52 b | 96.88 b | 99.68 a | 95.18 b | 96.28 b | 99.77 a | 0.51 | 0.7507 | 0.0001 | 0.0001 |
Prob-0 1 | Prob-0.01 2 | MSE 3 | Analysis of Variance | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Col-0 | Col-2 | Col-4 | Col-0 | Col-2 | Col-4 | P 4 | C 5 | P × C | ||
Carcass | 64.16 bc | 70.05 abc | 73.40 a | 62.79 c | 72.23 ab | 73.17 a | 2.05 | 0.2748 | 0.0001 | 0.0001 |
Intestine | 7.69 b | 7.69 b | 11.27 b | 7.73 b | 8.37 b | 11.43 a | 0.42 | 0.8051 | 0.0001 | 0.0001 |
Liver | 6.59 a | 4.05 b | 3.60 b | 5.85 a | 4.12 b | 3.65 b | 0.2 | 0.6834 | 0.0001 | 0.0001 |
Spleen | 0.30 a | 0.16 b | 0.16 b | 0.29 a | 0.20 b | 0.15 b | 0.02 | 0.7586 | 0.0001 | 0.0001 |
Gizzard | 3.65 b | 4.12 ab | 5.03 a | 3.45 b | 4.13 | 4.82 a | 0.24 | 0.6566 | 0.0001 | 0.0009 |
Breast | 30.83 b | 33.05 b | 36.17 a | 30.72 b | 34.70 b | 35.57 ab | 1.14 | 0.8036 | 0.0005 | 0.0096 |
Thighs | 16.79 bc | 19.19 ab | 20.32 a | 15.31 c | 19.32 ab | 20.18 a | 0.57 | 0.5831 | 0.0001 | 0.0001 |
Prob-0 1 | Prob-0.01 2 | MSE 3 | Analysis of Variance | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Col-0 | Col-2 | Col-4 | Col-0 | Col-2 | Col-4 | P 4 | C 5 | P × C | ||
SOD 6 (g/dL) | 1.35 c | 2.68 b | 3.44 a | 1.33 c | 2.68 b | 3.41 a | 0.15 | 0.9606 | 0.0001 | 0.0001 |
Uric acid (g/dL) | 4.38 | 4.35 | 4.74 | 4.28 | 4.05 | 4.96 | 0.24 | 0.9013 | 0.0141 | 0.1178 |
Albumin (g/dL) | 1.25 c | 1.53 abc | 1.62 ab | 1.33 bc | 1.57 abc | 1.65 a | 0.07 | 0.6813 | 0.0001 | 0.0025 |
Protein (g/dL) | 3.43 b | 4.10 a | 4.25 a | 3.43 b | 4.15 a | 4.35 a | 0.16 | 0.9619 | 0.0001 | 0.0009 |
ALT 7 (mg/dL) | 32.50 b | 31.25 b | 33.25 a | 32.00 b | 34.00 a | 33.25 a | 2.31 | 0.4644 | 0.8039 | 0.9926 |
AST 8 (mg/dL) | 245.50 | 253.25 | 260.00 | 245.00 | 275.50 | 237.50 | 12.17 | 0.9868 | 0.7103 | 0.7820 |
MDA 9 (g/dL) | 4.20 a | 3.83 b | 1.93 c | 4.20 a | 2.00 c | 1.53 d | 0.38 | 0.1492 | 0.0001 | 0.0001 |
LDL 10 (mg/dL) | 38.35 b | 48.95 a | 48.45 a | 38.45 b | 47.90 a | 51.45 a | 1.69 | 0.8935 | 0.0001 | 0.0001 |
TG 11 (mg/dL) | 765.00 b | 979.00 a | 989.00 a | 769.00 b | 958.00 a | 1029.00 a | 35.34 | 0.8135 | 0.0001 | 0.0001 |
Ca (mg/dL) | 29.50 b | 35.38 a | 27.60 a | 29.00 b | 25.00 c | 23.20 c | 1.26 | 0.9684 | 0.0001 | 0.0038 |
P (mg/dL) | 7.28 a | 5.84 ab | 5.70 b | 6.68 ab | 5.64 b | 5.36 b | 0.32 | 0.3056 | 0.0003 | 0.0039 |
Mg (mg/dL) | 3.43 a | 2.68 b | 2.60 b | 3.45 a | 2.60 b | 2.60 b | 0.12 | 0.9441 | 0.0001 | 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mokhtarian Asl, R.; Nobakht, A.; Palangi, V.; Maggiolino, A.; Centoducati, G. The Effect of Using Bovine Colostrum and Probiotics on Performance, Egg Traits, Blood Biochemical and Antioxidant Status of Laying Japanese Quails. Animals 2023, 13, 2166. https://doi.org/10.3390/ani13132166
Mokhtarian Asl R, Nobakht A, Palangi V, Maggiolino A, Centoducati G. The Effect of Using Bovine Colostrum and Probiotics on Performance, Egg Traits, Blood Biochemical and Antioxidant Status of Laying Japanese Quails. Animals. 2023; 13(13):2166. https://doi.org/10.3390/ani13132166
Chicago/Turabian StyleMokhtarian Asl, Reza, Ali Nobakht, Valiollah Palangi, Aristide Maggiolino, and Gerardo Centoducati. 2023. "The Effect of Using Bovine Colostrum and Probiotics on Performance, Egg Traits, Blood Biochemical and Antioxidant Status of Laying Japanese Quails" Animals 13, no. 13: 2166. https://doi.org/10.3390/ani13132166
APA StyleMokhtarian Asl, R., Nobakht, A., Palangi, V., Maggiolino, A., & Centoducati, G. (2023). The Effect of Using Bovine Colostrum and Probiotics on Performance, Egg Traits, Blood Biochemical and Antioxidant Status of Laying Japanese Quails. Animals, 13(13), 2166. https://doi.org/10.3390/ani13132166