Determining the Provenance of Traded Wildlife in the Philippines
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site and Sample Collection
2.2. X-ray Fluorescence
2.3. 13C and 15N Stable Isotope Analysis
3. Statistical Analyses
4. Results
4.1. X-ray Fluorescence
4.2. 13C and 15N Stable Isotopes
4.3. Predictive Stable Isotope Models
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zimmerman, M.E. The Black Market for Wildlife: Combating Transnational Organized Crime in the Illegal Wildlife Trade. J. Transnatl. Law 2003, 36, 1657–1689. [Google Scholar]
- Symes, W.S.; McGrath, F.L.; Rao, M.; Carrasco, L.R. The gravity of wildlife trade. Biol. Conserv. 2018, 218, 268–276. [Google Scholar] [CrossRef]
- Scheffers, B.R.; Oliveira, B.F.; Lamb, I.; Edwards, D.P. Global wildlife trade across the tree of life. Science 2019, 366, 71–76. [Google Scholar] [CrossRef]
- Rehman, A.; Jafar, S.; Ashraf Raja, N.; Mahar, J. Use of DNA Barcoding to Control the Illegal Wildlife Trade: A CITES Case Report from Pakistan. J. Bioresour. Manag. 2015, 2, 3. [Google Scholar] [CrossRef]
- Omifolaji, J.K.; Hughes, A.C.; Ibrahim, A.S.; Zhou, J.; Zhang, S.; Ikyaagba, E.T.; Luan, X. Dissecting the illegal pangolin trade in China: An insight from seizures data reports. Nat. Conserv. 2022, 46, 17–38. [Google Scholar] [CrossRef]
- Patel, N.G.; Rorres, C.; Joly, D.O.; Brownstein, J.S.; Boston, R.; Levy, M.Z.; Smith, G. Quantitative methods of identifying the key nodes in the illegal wildlife trade network. Proc. Natl. Acad. Sci. USA 2015, 112, 7948–7953. [Google Scholar] [CrossRef] [Green Version]
- Gaur, A.; Reddy, A.; Annapoorni, S.; Satyarebala, B.; Shivaji, S. The origin of Indian Star tortoises (Geochelone elegans) based on nuclear and mitochondrial DNA analysis: A story of rescue and repatriation. Conserv. Genet. 2005, 7, 231–240. [Google Scholar] [CrossRef]
- Gentile, G.; Ciambotta, M.; Tapia, W. Illegal wildlife trade in Galápagos: Molecular tools help the taxonomic identification of confiscated iguanas and guide their rapid repatriation. Conserv. Genet. Resour. 2013, 5, 867–872. [Google Scholar] [CrossRef]
- Kahler, J.S.; Gore, M.L. Beyond the cooking pot and pocket book: Factors influencing noncompliance with wildlife poaching rules. Int. J. Comp. Appl. Crim. Justice 2012, 36, 103–120. [Google Scholar] [CrossRef]
- Farine, D.R. Mapping illegal wildlife trade networks provides new opportunities for conservation actions. Anim. Conserv. 2020, 23, 145–146. [Google Scholar] [CrossRef] [Green Version]
- van Uhm, D. Illegal wildilfe trade to the EU and harms to the World. In Environmental Crime in Transnational Context: Global Issues in Green Enforcement and Criminology; Spapens, T., White, R., Huismen, W., Eds.; Routledge: Abingdon, UK, 2016. [Google Scholar]
- Poulsen, J.R.; Koerner, S.E.; Moore, S.; Medjibe, V.P.; Blake, S.A.; Clark, C.J.; Akou, M.E.; Fay, M.; Meier, A.; Okouyi, J.; et al. Poaching empties critical Central African wilderness of forest elephants. Curr. Biol. 2017, 27, R123–R138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maisels, F.; Strindberg, S.; Blake, S.; Wittemyer, G.; Hart, J.; Williamson, E.A.; Aba’a, R.; Abitsi, G.; Ambahe, R.D.; Amsini, F.; et al. Devastating decline of forest elephants in central Africa. PLoS ONE 2013, 8, e59469. [Google Scholar] [CrossRef] [PubMed]
- Challender, D.W.S.; Heinrich, S.; Shepherd, C.R.; Katsis, L.K.D. International trade and trafficking in pangolins, 1900–2019. In Biodiversity of the World: Conservation from Genes to Landscapes, Pangolins; Academic Press: Cambridge, MA, USA, 2020; pp. 259–276. [Google Scholar]
- Emslie, R. Diceros bicornis ssp. Longipes; The IUCN Red List of Threatened Species; IUCN: Gland, Switzerland, 2020; p. e.T39319A45814470. [Google Scholar] [CrossRef]
- ‘t Sas-Rolfes, M.; Challender, D.W.; Hinsley, A.; Veríssimo, D.; Milner-Gulland, E. Illegal wildlife trade: Scale, processes, and governance. Annu. Rev. Environ. Resour. 2019, 44, 201–228. [Google Scholar] [CrossRef] [Green Version]
- Thomson, J. Captive Breeding of Selected Taxa in Cambodia and Viet Nam: A Reference Manual for Farm Operators and Cites Authorities; TRAFFIC Southeast Asia, Greater Mekong Programme; TRAFFIC Southeast Asia: Ha Noi, Vietnam, 2008. [Google Scholar]
- Tensen, L. Under what circumstances can wildlife farming benefit species conservation? Glob. Ecol. Conserv. 2016, 6, 286–298. [Google Scholar] [CrossRef] [Green Version]
- Lyons, J.A.; Natusch, D.J.D. Wildlife laundering through breeding farms: Illegal harvest, population declines and a means of regulating the trade of green pythons (Morelia viridis) from Indonesia. Biol. Conserv. 2011, 144, 3073–3081. [Google Scholar] [CrossRef]
- Nijman, V.; Shepherd, C.R. Trade in non-native, CITES-listed, wildlife in Asia, as exemplifi ed by the trade in freshwater turtles and tortoises (Chelonidae) in Thailand. Contrib. Zool. 2007, 76, 207–211. [Google Scholar] [CrossRef] [Green Version]
- Moyle, B. Wildlife markets in the presence of laundering: A comment. Biodivers. Conserv. 2017, 26, 2979–2985. [Google Scholar] [CrossRef]
- Nijman, V. An overview of international wildlife trade from Southeast Asia. Biodivers. Conserv. 2009, 19, 1101–1114. [Google Scholar] [CrossRef] [Green Version]
- Cruz, R.M.; van den Beukel, D.; Lacerna-Widnmann, I.; Schoppe, S.; WIdmann, P. Wildlife Trade in Southern Palawan, Philippines. Banwa 2007, 4, 12–26. [Google Scholar]
- Sy, E.Y.; Schoppe, S.; Diesmos, M.L.L.; Lim, T.M.S.; Diesmos, A.C. Endangered by trade: Seizure analysis of the critically endangered Philippine Forest Turtle Siebenrockiella leytensis from 2004–2018. Philipp. J. Syst. Biol. 2020, 14, 1–8. [Google Scholar] [CrossRef]
- Schoppe, S.; Matillano, J.; Cervancia, M.; Acosta, D. Conservation Needs of the Critically Endangered Philippine Forest Turtle, Siebenrockiella leytensis, in Palawan, Philippines. Chelonian Conserv. Biol. 2010, 9, 145–153. [Google Scholar] [CrossRef]
- Chavez, L. Philippine Forest Turtles Stand a ‘Good Chance’ after First Wild Release. Available online: https://news.mongabay.com/2021/06/philippine-forest-turtles-stand-a-good-chance-after-first-wild-release/ (accessed on 28 June 2021).
- Griffiths, R.A.; Pavajeau, L. Captive breeding, reintroduction, and the conservation of amphibians. Conserv. Biol. 2008, 22, 852–861. [Google Scholar] [CrossRef] [PubMed]
- Asian Turtle Trade Working Group. Siebenrockiella Leytensis; The IUCN Red List of Threatened Species; IUCN: Gland, Switzerland, 2018. [Google Scholar] [CrossRef]
- Diesmos, A.; Buskirk, J.; Schoppe, S.; Diesmos, M.L.; Sy, E.; Brown, R. Siebenrockiella leytensis (Taylor 1920)—Palawan Forest Turtle, Philippine Forest Turtle. In Conservation Biology of Freshwater Turtles and Tortoises; IUCN: Gland, Switzerland, 2012. [Google Scholar]
- Sy, E.Y. The Palawan forest turtle. Traffic Bull. 2013, 25, 9. [Google Scholar]
- Schoppe, S.; Shepherd, C.R. The Palawan Forest Turtle: Under threat from international trade. TRAFFIC Bull. 2013, 25, 9–11. [Google Scholar]
- Schoppe, S.; Shepherd, C.R.; Beastall, C. The Palawan Forest Turtle: The story of a rare turtle found, then feared lost, only to be rediscovered—Now faces extinction. Tortoise 2013, 1, 108–117. [Google Scholar]
- CITES. Appendices I, II and III; IUCN: Gland, Switzerland, 2021. [Google Scholar]
- Boussekey, M. An integrated approach to conservation of the Philippine or Red-vented cockatoo: Cacatua haematuropygia. Int. Zoo Yearb. 2000, 37, 137–146. [Google Scholar] [CrossRef]
- Birdlife International. Cacatua Haematuropygia; The IUCN Red List of Threatened Species; IUCN: Gland, Switzerland, 2017. [Google Scholar] [CrossRef]
- Dickinson, E.C.; Kennedy, R.S.; Parkes, K.C.; McGowan, E. The Birds of the Philippines: An Annotated Checklist; British Ornithologists’ Union: Tring, UK, 1991; Volume 12. [Google Scholar]
- Schoppe, S.; Katsis, L.K.D.; Alvarado, D.; Acosta-Lagrada, L. Chapter 7—Philippine pangolin Manis culionensis (de Elera, 1915). In Pangolins: Science, Society and Conservation; Challender, D.W.S., Nash, J.C., Waterman, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Heinrich, S.; Wittmann, T.A.; Prowse, T.A.; Ross, J.V.; Delean, S.; Shepherd, C.R.; Cassey, P. Where did all the pangolins go? International CITES trade in pangolin species. Glob. Ecol. Conserv. 2016, 8, 241–253. [Google Scholar] [CrossRef] [Green Version]
- Aceto, M. The use of ICP-MS in food traceability. In Advances in Food Traceability Techniques and Technologies; Elsevier: Amsterdam, The Netherlands, 2016; pp. 137–164. [Google Scholar]
- Salvo, A.; Cicero, N.; Vadalà, R.; Mottese, A.F.; Bua, D.; Mallamace, D.; Giannetto, C.; Dugo, G. Toxic and essential metals determination in commercial seafood: Paracentrotus lividus by ICP-MS. Nat. Prod. Res. 2016, 30, 657–664. [Google Scholar] [CrossRef]
- Bonizzoni, L.; Galli, A.; Gondola, M.; Martini, M. Comparison between XRF, TXRF, and PXRF analyses for provenance classification of archaeological bricks. X-Ray Spectrom. 2013, 42, 262–267. [Google Scholar] [CrossRef]
- Natusch, D.J.; Carter, J.F.; Aust, P.W.; Van Tri, N.; Tinggi, U.; Riyanto, A.; Lyons, J.A. Serpent’s source: Determining the source and geographic origin of traded python skins using isotopic and elemental markers. Biol. Conserv. 2017, 209, 406–414. [Google Scholar] [CrossRef]
- Croudace, I.W.; Rindby, A.; Rothwell, R.G. ITRAX: Description and evaluation of a new multi-function X-ray core scanner. In New Techniques in Sediment Core Analysis; Rothwell, R.G., Ed.; Geological Society, London: London, UK, 2006; pp. 51–63. [Google Scholar]
- McGladdery, C.; Weindorf, D.C.; Chakraborty, S.; Li, B.; Paulette, L.; Podar, D.; Pearson, D.; Kusi, N.Y.O.; Duda, B. Elemental assessment of vegetation via portable X-ray fluorescence (PXRF) spectrometry. J. Environ. Manag. 2018, 210, 210–225. [Google Scholar] [CrossRef] [PubMed]
- Weindorf, D.C.; Bakr, N.; Zhu, Y. Advances in portable X-ray fluorescence (PXRF) for environmental, pedological, and agronomic applications. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2014; Volume 128, pp. 1–45. [Google Scholar]
- Ribeiro, B.T.; Silva, S.H.G.; Silva, E.A.; Guilherme, L.R.G. Portable X-ray fluorescence (pXRF) applications in tropical Soil Science. Ciência e Agrotecnologia 2017, 41, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Biagetti, S.; Alcaina-Mateos, J.; Ruiz-Giralt, A.; Lancelotti, C.; Groenewald, P.; Ibanez-Insa, J.; Gur-Arie, S.; Morton, F.; Merlo, S. Identifying anthropogenic features at Seoke (Botswana) using pXRF: Expanding the record of southern African Stone Walled Sites. PLoS ONE 2021, 16, e0250776. [Google Scholar] [CrossRef]
- Hobson, K.A.; Wassenaar, L.I. Tracking Animal Migration with Stable Isotopes; Academic Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Brandis, K.J.; Mazumder, D.; Gadd, P.; Ji, B.; Kingsford, R.T.; Ramp, D. Using feathers to map continental-scale movements of waterbirds and wetland importance. Conserv. Lett. 2021, 14, e12798. [Google Scholar] [CrossRef]
- Hobson, K.A. Using stable isotopes to trace long-distance dispersal in birds and other taxa. Divers. Distrib. 2005, 11, 157–164. [Google Scholar] [CrossRef]
- Hobson, K.A. Tracing origins and migration of wildlife using stable isotopes: A review. Oecologia 1999, 120, 314–326. [Google Scholar] [CrossRef] [PubMed]
- Sung, Y.H.; Liew, J.H.; Chan, H.K.; Lee, W.H.; Wong, B.H.F.; Dingle, C.; Karraker, N.E.; Spencer, R.J.; Fong, J.J. Assessing the diet of the endangered Beale’s eyed turtle (Sacalia bealei) using faecal content and stable isotope analyses: Implications for conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 2021, 31, 2804–2813. [Google Scholar] [CrossRef]
- Andersson, A.A.; Gibson, L.; Baker, D.M.; Cybulski, J.D.; Wang, S.; Leung, B.; Chu, L.M.; Dingle, C. Stable isotope analysis as a tool to detect illegal trade in critically endangered cockatoos. Anim. Conserv. 2021, 24, 1021–1031. [Google Scholar] [CrossRef]
- Brandis, K.J.; Meagher, P.J.; Tong, L.; Shaw, M.; Mazumder, D.; Gadd, P.; Ramp, D. Novel detection of provenance in the illegal wildlife trade using elemental data. Sci. Rep. 2018, 8, 15380. [Google Scholar] [CrossRef] [Green Version]
- Dempson, J.; Power, M. Use of stable isotopes to distinguish farmed from wild Atlantic salmon, Salmo salar. Ecol. Freshw. Fish 2004, 13, 176–184. [Google Scholar] [CrossRef]
- Hammershøj, M.; Pertoldi, C.; Asferg, T.; Møller, T.B.; Kristensen, N.B. Danish free-ranging mink populations consist mainly of farm animals: Evidence from microsatellite and stable isotope analyses. J. Nat. Conserv. 2005, 13, 267–274. [Google Scholar] [CrossRef]
- Dittrich, C.; Struck, U.; Rödel, M.O. Stable isotope analyses—A method to distinguish intensively farmed from wild frogs. Ecol. Evol. 2017, 7, 2525–2534. [Google Scholar] [CrossRef]
- Ziegler, S.; Streit, B.; Jacob, D.E. Assigning elephant ivory with stable isotopes. In Isotopic Landscapes in Bioarchaeology; Springer: Berlin/Heidelberg, Germany, 2016; pp. 213–220. [Google Scholar]
- DeNiro, M.J.; Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 1978, 42, 495–506. [Google Scholar] [CrossRef]
- DeNiro, M.J.; Epstein, S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 1981, 45, 341–351. [Google Scholar] [CrossRef]
- Mumby, J.A.; Larocque, S.M.; Johnson, T.B.; Stewart, T.J.; Fitzsimons, J.D.; Weidel, B.C.; Walsh, M.G.; Lantry, J.R.; Yuille, M.J.; Fisk, A.T. Diet and trophic niche space and overlap of Lake Ontario salmonid species using stable isotopes and stomach contents. J. Great Lakes Res. 2018, 44, 1383–1392. [Google Scholar] [CrossRef]
- Schoppe, S.; Acosta, D. Philippine Freshwater Turtle Conservation Program (Pftcp) 2015 Annual Report; Katala Foundation: Puerto Princesa City, Philippines, 2016. [Google Scholar]
- Keller, J.M.; Pugh, R.S.; Becher, P.R. Biological and Environmental Monitoring and Archival of Sea Turtle Tissues (BEMAST): Rationale, Protocols, and Initial Collections of Banked Sea Turtle Tissues; U.S. Department of Commerce: Washington, DC, USA, 2014.
- Hua, L.; Gong, S.; Wang, F.; Li, W.; Ge, Y.; Li, X.; Hou, F. Captive breeding of pangolins: Current status, problems and future prospects. ZooKeys 2015, 507, 99–114. [Google Scholar]
- Paritte, J.M.; Kelly, J.F. Effect of cleaning regime on stable-isotope ratios of feathers in Japanese Quail (Coturnix japonica). The Auk 2009, 126, 165–174. [Google Scholar] [CrossRef]
- Dunnington, D. xrftools: XRF Tools for R. R package version 0.0.1.9000. 2021. Available online: https://github.com/paleolimbot/xrftools (accessed on 12 November 2021).
- Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H. Xgboost: Extreme Gradient Boosting. R package Version 1.3.2.1. 2021. Available online: https://rdrr.io/cran/xgboost/ (accessed on 12 November 2021).
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Lenth, R. Emmeans: Estimated Marginal Means, Aka Least-Squares Means; 2020. Available online: https://cran.r-project.org/web/packages/emmeans/emmeans.pdf (accessed on 12 November 2021).
- Gherase, M.R.; Mader, J.E.; Fleming, D.E. The radiation dose from a proposed measurement of arsenic and selenium in human skin. Phys. Med. Biol. 2010, 55, 5499–5514. [Google Scholar] [CrossRef]
- Specht, A.J.; Parish, C.N.; Wallens, E.K.; Watson, R.T.; Nie, L.H.; Weisskopf, M.G. Feasibility of a portable X-ray fluorescence device for bone lead measurements of condor bones. Sci. Total Environ. 2018, 615, 398–403. [Google Scholar] [CrossRef]
- Irshad, N.; Mahmood, T.; Hussain, R.; Nadeem, M.S. Distribution, abundance and diet of the Indian pangolin (Manis crassicaudata). Anim. Biol. 2015, 65, 57–71. [Google Scholar] [CrossRef]
- Sopsop, L.B. Floral survey in the coastal forest of Rasa wildlife sanctuary, Narra, Palawan, Philippines. J. Environ. Sci. Manag. 2011, 14, 71–76. [Google Scholar]
- Cherel, Y.; Hobson, K.A.; Weimerskirch, H. Using stable-isotope analysis of feathers to distinguish moutling and breeding origins of seabirds. Oecologia 2000, 122, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Buddhachat, K.; Thitaram, C.; Brown, J.L.; Klinhom, S.; Bansiddhi, P.; Penchart, K.; Ouitavon, K.; Sriaksorn, K.; Pa-in, C.; Kanchanasaka, B.; et al. Use of handheld X-ray fluorescence as a non-invasive method to distinguish between Asian and African elephant tusks. Sci. Rep. 2016, 6, 24845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diesmos, A.C.; Gee, G.V.; Diesmos, M.; Brown, R.M.; Widmann, P.J.; Dimalibot, J.C. Rediscovery of the Philippine forest turtle, Heosemys leytensis (Chelonia; Bataguridae), from Palawan Island, Philippines. Asiat. Herpetol. Res. 2004, 10, 22–27. [Google Scholar]
- Pietersen, D.W.; Symes, C.T.; Woodborne, S.; McKechnie, A.E.; Jansen, R. Diet and prey selectivity of the specialist myrmecophage, Temminck’s ground pangolin. J. Zool. 2016, 298, 198–208. [Google Scholar] [CrossRef] [Green Version]
- Chesson, L.A.; Barnette, J.E.; Bowen, G.J.; Brooks, J.R.; Casale, J.F.; Cerling, T.E.; Cook, C.S.; Douthitt, C.B.; Howa, J.D.; Hurley, J.M.; et al. Applying the principles of isotope analysis in plant and animal ecology to forensic science in the Americas. Oecologia 2018, 187, 1077–1094. [Google Scholar] [CrossRef] [PubMed]
- Alacs, E.A.; Georges, A.; FitzSimmons, N.N.; Robertson, J. DNA detective: A review of molecular approaches to wildlife forensics. Forensic Sci. Med. Pathol. 2010, 6, 180–194. [Google Scholar] [CrossRef]
- Zhang, H.; Miller, M.P.; Yang, F.; Chan, H.K.; Gaubert, P.; Ades, G.; Fischer, G.A. Molecular tracing of confiscated pangolin scales for conservation and illegal trade monitoring in Southeast Asia. Glob. Ecol. Conserv. 2015, 4, 414–422. [Google Scholar] [CrossRef] [Green Version]
- Mwale, M.; Dalton, D.L.; Jansen, R.; De Bruyn, M.; Pietersen, D.; Mokgokong, P.S.; Kotze, A. Forensic application of DNA barcoding for identification of illegally traded African pangolin scales. Genome 2017, 60, 272–284. [Google Scholar] [CrossRef]
- van Uhm, D. Wildlife and laundering: Interaction between the under and upper world. In Green Crimes and Dirty Money, 1st ed.; Spapens, T., White, R., Huisman, W., van Uhm, D., Eds.; Routledge: London, UK, 2018. [Google Scholar]
- Van Song, N. Wildlife Trading in Vietnam; Situation, Causes and Solutions. J. Environ. Dev. 2008, 17, 145–165. [Google Scholar] [CrossRef]
- Thomas-Walters, L.; Veríssimo, D.; Gadsby, E.; Roberts, D.; Smith, R.J. Taking a more nuanced look at behavior change for demand reduction in the illegal wildlife trade. Conserv. Sci. Pract. 2020, 2, e248. [Google Scholar] [CrossRef]
- Kurland, J.; Pires, S.F.; Assessing, U.S. Wildlife Trafficking Patterns: How Criminology and Conservation Science Can Guide Strategies to Reduce the Illegal Wildlife Trade. Deviant Behav. 2017, 38, 375–391. [Google Scholar] [CrossRef]
Common Name | Species Name | Sample | Provenance | Site | n |
---|---|---|---|---|---|
Palawan forest turtle | Siebenrockiella leytensis | Scute | Captive | KFI | 24 |
Wild | B | 18 | |||
C | 3 | ||||
Philippine cockatoo | Cacatua haematuropygia | Feather | Captive | KFI | 20 |
Wild | D | 24 | |||
E | 21 | ||||
Philippine pangolin | Manis culionensis | Claw | Wild | F | 10 |
Scale | Wild | G | 6 |
Species | Response Variable | pXRF Model % Accuracy ± SD | SIA Model % Accuracy ± SD |
---|---|---|---|
Palawan forest turtle | Captive or wild | 88 ± 12% | 66 ± 16% |
Geographic origin | 94 ± 5% | 73 ± 14% | |
Philippine cockatoo | Captive or wild | 78 ± 2% | 28 ± 1% |
Geographic origin | 62 ± 9% | 27 ± 2% | |
Philippine pangolin | Group | 93 ± 14% | 41 ± 25% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brandis, K.J.; Meagher, P.; Schoppe, S.; Zawada, K.; Widmann, I.; Widmann, P.; Dolorosa, R.G.; Francis, R. Determining the Provenance of Traded Wildlife in the Philippines. Animals 2023, 13, 2165. https://doi.org/10.3390/ani13132165
Brandis KJ, Meagher P, Schoppe S, Zawada K, Widmann I, Widmann P, Dolorosa RG, Francis R. Determining the Provenance of Traded Wildlife in the Philippines. Animals. 2023; 13(13):2165. https://doi.org/10.3390/ani13132165
Chicago/Turabian StyleBrandis, Kate J., Phoebe Meagher, Sabine Schoppe, Kyle Zawada, Indira Widmann, Peter Widmann, Roger G. Dolorosa, and Roxane Francis. 2023. "Determining the Provenance of Traded Wildlife in the Philippines" Animals 13, no. 13: 2165. https://doi.org/10.3390/ani13132165
APA StyleBrandis, K. J., Meagher, P., Schoppe, S., Zawada, K., Widmann, I., Widmann, P., Dolorosa, R. G., & Francis, R. (2023). Determining the Provenance of Traded Wildlife in the Philippines. Animals, 13(13), 2165. https://doi.org/10.3390/ani13132165