The Increasing Role of Short-Term Sperm Storage and Cryopreservation in Conserving Threatened Amphibian Species
Abstract
:Simple Summary
Abstract
1. Introduction
Amphibian Conservation Breeding Programs and the Value of Integrating Reproductive Technologies (RTs)
2. Gamete Storage and Its Use in Conservation
3. Methods of Obtaining Sperm
4. Protocols for the Short-Term Storage of Amphibian Sperm
4.1. Storage Medium Osmolality and Temperature
4.2. Oxygenation
4.3. Bacterial Contamination and the Use of Antibiotics
Species | Storage Duration | Antibiotic | Dose | Effects (Compared to a Control Group) | Sperm Source | Reference |
---|---|---|---|---|---|---|
Anaxyrus fowleri (Fowler’s toad) | 4 days (assessed daily) | Penicillin- streptomycin | 600 mU | No change in MOT; ↓ VIA; n = 15. | SU | [79] |
Crinia signifera (Common eastern froglet) | 12 days (assessed every 3 days) | Gentamicin | 1 mg/mL | ↑ VIA; BA reduced; n = 10. | SU | Silla, Anastas, and Byrne (unpub-lished data) |
Penicillin- streptomycin | 1000 IU penicillin + 1 mg/mL streptomycin | ↑ VIA; BA reduced; n = 10. | SU | |||
Litoria booroolongensis (Booroolong frog) | 21 days (assessed every 3 days) | Gentamicin | 4 mg/mL | ↓ MOT; n = 10. | TM | [54] |
24 days (assessed every 4 days) | Gentamicin | 1 mg/mL | No change in MOT; BA reduced; n = 8. | TM | [63] | |
2 mg/mL | No change in MOT; BA near eliminated; n = 8. | TM | ||||
3 mg/mL | ↓ MOT; BA near eliminated; n = 8. | TM | ||||
4 mg/mL | ↓ MOT; BA near eliminated; n = 8. | TM | ||||
6 days (assessed daily) | Gentamicin | 1 mg/mL | No change in MOT; BA reduced; n = 10. | SU | [63] | |
2 mg/mL | No change in MOT; BA reduced; n = 10. | SU | ||||
3 mg/mL | No change in MOT; BA reduced; n = 10. | SU | ||||
4 mg/mL | No change in MOT; BA reduced; n = 10. | SU | ||||
Litoria ewingii (Southern brown tree frog) | 14 days (assessed every 2 days) | Gentamicin | 2 mg/mL | No change in VIA; BA reduced; n = 10. | TM | [108] |
4 mg/mL | No change in VIA; BA reduced; n = 10. | |||||
Rana temporaria (European common frog) | 36 days (assessed every 3 days) | Lincomycin | 0.4 mg/mL | No change in MOT; n = 5. | SU | [80] |
Enrofloxacin | 1.2 mg/mL | ↑ MOT; n = 5. | SU | |||
Lincomycin-enrofloxacin-gentamicin | 0.11–0.73–0.73 (total 1.5) mg/mL | ↑ MOT; n = 5. | SU | |||
46 days (assessed every 3–4 days) | Gentamicin | 0.015 mg/mL | No change in MOT; n = 5. | SU | ||
0.03 mg/mL | ↑ MOT; no change in FERT; n = 5. | SU | ||||
0.06 mg/mL | ↑ MOT; no change in FERT; n = 5. | SU | ||||
0.1 mg/mL | ↑ MOT (>80% for 30 days); no change in FERT; n = 5. | SU | ||||
0.2 mg/mL | ↑ MOT; n = 5. | SU | ||||
0.4 mg/mL | ↑ MOT; n = 5. | SU | ||||
1 mg/mL | No change in MOT; n = 5. | SU | ||||
2 mg/mL | No change in MOT; n = 5. | SU | ||||
4 mg/mL | ↓ MOT; n = 5. | SU |
4.4. The Use of Antioxidants
5. Protocols for the Cryopreservation of Amphibian Sperm
5.1. Cryopreservation Medium
Family | Species | Conservation Status (IUCN) | Cryoprotectants | Sperm Parameters Post-Thaw (%) | Sperm Source | Reference |
---|---|---|---|---|---|---|
Ambystomatidae | Ambystoma mexicanum (Axolotl) ^ | CR | 10% SC | 53 (VIA); n = 4 | SP | [166] |
6% DMA | 58 (VIA); n = 9 | SP * | [165] | |||
Ambystoma tigrinum (Eastern tiger salamander) ^ | LC | 0.5% BSA | 0 (MOT); n = 10 | SM | [171] | |
5% TRE | 0 (MOT); n = 10 | SM | ||||
5% SC | 7 (MOT), 2 (FPM); n = 10 | SM | ||||
5% DMSO | 6 (MOT), 1 (FPM); n = 10 | SM | ||||
5% DMSO + 5% TRE | 14 (MOT), 4 (FPM); n = 10 | SM | ||||
5% DMSO + 5% SC | 6 (MOT), 1 (FPM); n = 10 | SM | ||||
5% DMSO + 0.5% BSA | 10 (MOT), 8 (FPM); n = 10 | SM | ||||
Bufonidae | Anaxyrus americanus (American toad) | LC | 15% EG | 88 (relative MOT); n = 6 | TM | [168] |
20% EG | 66 (relative MOT); n = 6 | TM | ||||
20% EG + 75% FBS | 98 (relative MOT); n = 2 | TM | ||||
20% DMSO | 77 (relative MOT); n = 3 | TM | ||||
LC | 4% DMSO + 50% FBS | 34 (VIA); n = 6 | TM | [55] | ||
Anaxyrus baxteri (Wyoming toad) | EW | 5% DMF + 10% TRE | 22 (relative MOT); n = 14 | SU | [147] | |
Anaxyrus boreas boreas (Mountain boreal toad) | LC | 10% DMF + 10% TRE | 49 (MOT), 23 (FPM); n = 6 | SU | [35] | |
5% DMF + 10% TRE | 43 (MOT), 28 (FPM); n = 6 | SU | ||||
10% DMSO + 10% TRE | 49 (MOT), 28 (FPM); n = 6 | SU | ||||
5% DMSO + 10% TRE | 43 (MOT), 23 (FPM); n = 6 | SU | ||||
Anaxyrus fowleri (Fowler’s toad) | LC | 10% DMF + 10% TRE | 69 (MOT), 39 (FPM); n = 6 | SU | [35] | |
5% DMF + 10% TRE | 63 (MOT), 44 (FPM); n = 6 | SU | ||||
10% DMSO + 10% TRE | 69 (MOT), 42 (FPM); n = 6 | SU | ||||
5% DMSO + 10% TRE | 57 (MOT), 35 (FPM); n = 6 | SU | ||||
5% DMF + 10% TRE + 0.25% BSA | 26 (MOT), 19 (FERT); n = 32 | SU | [38] | |||
10% DMF + 10% TRE + 0.25% BSA | 30 (MOT), 15 (FERT); n = 32 | SU | ||||
10% DMSO + 10% TRE + 0.25% BSA | 27 (MOT), 14 (FERT); n = 32 | SU | ||||
5% DMF + 10% TRE | 30 (MOT), 8 (FPM), 30 (VIA), 16 (HAT); n = 20 | SU | [147] | |||
10% DMF + 10% TRE | 5 (MOT); n = 20 | SU | ||||
Anaxyrus houstonensis (Houston toad) | CR | 10% DMF + 10% TRE + 0.25% BSA | 32 (relative MOT); n = 8 | SU | [148] | |
Atelopus sp. (undescribed Harlequin frog) | VU | 5% DMF + 1% SC | 50 (MOT), ~20 (FPM), ~50 (VIA); n = 4 | SU | [149] | |
5% DMF + 2.5% SC | ~50 (MOT), ~27 (FPM), ~50 (VIA); n = 4 | SU | ||||
5% DMF + 5% SC | ~30 (MOT), ~8 (FPM), 54 (VIA); n = 4 | SU | ||||
5% DMF + 1% TRE | ~30 (MOT), ~2 (FPM), ~40 (VIA); n = 4 | SU | ||||
5% DMF + 2.5% TRE | ~30 (MOT), ~4 (FPM), ~40 (VIA); n = 4 | SU | ||||
5% DMF + 5% TRE | ~15 (MOT), ~1 (FPM), ~45 (VIA); n = 4 | SU | ||||
Atelopus zeteki (Panamanian golden frog) | CR | 5% DMF + 10% TRE + 10% EY | ~5–10 (MOT); n = 4 | SU | [150] | |
10% DMF + 10% TRE + 10% EY | ~5–10 (MOT); n = 4 | SU | ||||
Epidalea calamita (Natterjack toad) | LC | 10% DMF + 10% SC | 50 (FERT), 37 (HAT); n = 16 | SU | [172] | |
Peltophryne lemur (Puerto Rican crested toad) | EN | 10% DMF + 10% TRE + 0.25% BSA | 32 (relative MOT); n = 12 | SU | [148] | |
10% DMF + 10% TRE | 28 (MOT), 4 (FERT); n = 8, 5 | SU | [152] | |||
10% DMSO + 10% TRE | 25 (MOT); n = 7 | SU | ||||
10% DMF + 10% TRE | 51 (MOT), 38 (FPM); n = 6 | SU | [35] | |||
5% DMF + 10% TRE | 47 (MOT), 34 (FPM); n = 6 | SU | ||||
10% DMSO + 10% TRE | 45 (MOT), 28 (FPM); n = 6 | SU | ||||
5% DMSO + 10% TRE | 44 (MOT), 30 (FPM); n = 6 | SU | ||||
Rhaebo guttatus (SSmooth-sided toad) | LC | 5% DMF + 10% TRE | 33 (MOT),17 (FPM); n = 2 | SU | [173] | |
Rhinella marina (Cane toad) | LC | 5% DMSO | 19 (GAST); n = 6 | TM | [174] | |
10% DMSO | 23 (GAST); n = 6 | TM | ||||
15% DMSO | 8 (GAST); n = 6 | TM | ||||
10% DMSO + 10% SC | 25 (MOT), 33 (FERT); n = 4 | TM | [175] | |||
15% DMSO + 10% SC | 47 (MOT), 61 (FERT); n = 4 | TM | ||||
20% DMSO + 10% SC | 34 (MOT), 42 (FERT); n = 4 | TM | ||||
10% GLY + 10% SC | 12 (MOT), 34 (FERT); n = 4 | TM | ||||
15% GLY + 10% SC | 25 (MOT), 14 (FERT); n = 4 | TM | ||||
20% GLY + 10% SC | 42 (MOT), 81 (FERT); n = 4 | TM | ||||
10% DMSO + 10% EY | 14 (relative MOT); n = 3 | TM | [167] | |||
15% DMSO + 10% EY | 36 (relative MOT); n = 3 | TM | ||||
20% DMSO + 10% EY | 51 (relative MOT); n = 3 | TM | ||||
10% GLY + 10% EY | 33 (relative MOT); n = 3 | TM | ||||
15% GLY + 10% EY | 34 (relative MOT); n = 3 | TM | ||||
20% GLY + 10% EY | 30 (relative MOT); n = 3 | TM | ||||
Cryptobranchidae | Andrias davidianus (Chinese giant salamander) | CR | 10% DMSO | 15 (VIA); n = unspecified | SM | [146] |
Cryptobranchus alleganiensis (Hellbender) | VU | 5% DMSO | 80 (MOT); n = unspecified | SM | [37] | |
2.5% DMSO | 20 (MOT); n = 5 | SM | [176] | |||
Eleutherodactylidae | Eleutherodactylus coqui (Puerto Rican coqui) | LC | 7% GLY + FBS | 20 (VIA); n = 6 | TM | [56] |
7% DMSO + FBS | 28 (VIA); n = 6 | TM | ||||
20% SC + FBS | 30 (VIA); n = 6 | TM | ||||
Limnodynastidae | Limnodynastes peronii (Striped marsh frog) | LC | 20% GLY + 10% SC | 20 (relative MOT); n = unspecified | TM | [53] |
Philoria frosti (Baw Baw frog) | CR | 10% DMF + 10% TRE | 17 (MOT), 59 (VIA); n = 4 | SU | Silla and Hobbs et al. (unpublished data) | |
Myobatrachidae | Crinia signifera (Common eastern froglet) | LC | 15% DMSO + 10% SC | 15 (relative MOT); n = unspecified | TM | [53] |
Pseudophryne bibronii Bbrown toadlet) | LC | 15% DMSO + 10% SC | 20 (relative MOT); n = unspecified | TM | [53] | |
Pseudophryne corroboree (Southern corroboree frog) | CR | 10% DMF + 10% TRE | 66 (VIA); n = 1 | SU | Hobbs and O’Brien (unpublished data) | |
Pseudophryne pengilleyi (Northern corroboree frog) | CR | 10% DMF + 10% TRE | 8 (MOT), 58 (VIA); n = 1 | TM | Hobbs and O’Brien (unpublished data) | |
10% DMF + 10% TRE | 81 (VIA); n = 1 | SU | Hobbs and O’Brien (unpublished data) | |||
Pelodryadidae | Litoria aurea (Green and golden bell frog) | VU | 10% DMSO + 10% SC | ~35 (FPM), ~60 (VIA); n = 5 | TM | [36] |
15% DMSO + 10% SC | ~42 (FPM), ~60 (VIA), 13 (FERT), 2 (HAT); n = 5, 2 | TM | ||||
20% DMSO + 10% SC | ~18 (FPM), ~65 (VIA); n = 5 | TM | ||||
10% GLY + 10% SC | ~15 (FPM), ~40 (VIA); n = 5 | TM | ||||
15% GLY + 10% SC | ~8 (FPM), ~50 (VIA), ~10 (FERT), 0 (HAT); n = 5, 2 | TM | ||||
20% GLY + 10% SC | ~3 (FPM), ~45 (VIA); n = 5 | TM | ||||
15% DMSO + 1% SC | ~53 (MOT), ~53 (VIA); n = 4 | SU | Upton et al. (unpublished data) | |||
15% DMSO + 10% SC | ~14 (MOT), ~30 (VIA); n = 4 | SU | ||||
Litoria booroolongensis (Booroolong frog) | CR | 10% DMF + 10% TRE | ~62 (MOT), ~60 (VIA); n = 8 | SU | Hobbs et al. (unpublished data) | |
15% DMSO + 1% SC | ~60 (MOT), ~58 (VIA); n = 8 | SU | ||||
Litoria brevipalmata (Green-thighed frog) | EN | 15% DMSO + 10% SC | 58 (MOT); n = unspecified | TM | [53] | |
15% GLY + 10% SC | 28 (MOT); n = unspecified | TM | ||||
Litoria castanea (Yellow-spotted bell frog) | CR | 10% DMF + 10% TRE | 66 (MOT), 24 (FPM), 56 (VIA); n = 3 | SU | Hobbs and O’Brien (unpublished data) | |
Litoria citropa (Blue Mountains tree frog) | LC | 15% DMSO + 1% SC | ~22 (FPM), ~62 (VIA); n = 3 | TM | [23] | |
15% DMSO + 10% SC | ~5 (FPM), ~53 (VIA); n = 3 | TM | ||||
Litoria dentata (Bleating tree frog) | LC | 15% DMSO + 10% SC | 45 (relative MOT); n = unspecified | TM | [53] | |
Litoria fallax (Eastern dwarf tree frog) | LC | 15% DMSO + 10% SC | 85 (relative MOT); n = unspecified | TM | [53] | |
10% DMSO + 1% SC | ~30 (FPM), ~50 (VIA); n = 4 | TM | [23] | |||
10%DMSO + 10% SC | ~18 (FPM), ~52 (VIA); n = 4 | TM | ||||
15% DMSO + 1% SC | ~55 (FPM), ~73 (VIA); n = 4 | TM | ||||
15% DMSO + 10% SC | ~10 (FPM), ~62 (VIA); n = 4 | TM | ||||
Litoria latopalmata (Broad-palmed frog) | LC | 15% DMSO + 10% SC | 70 (relative MOT); n = unspecified | TM | [53] | |
Litoria littlejohni (Littlejohn’s tree frog) | LC | 15% DMSO + 1% SC | ~58 (MOT), ~71 (VIA); n = 3 | SU | Upton et al. (unpublished data) | |
Litoria lesueurii (Lesueur’s tree frog) | LC | 15% DMSO + 10% SC | 100 (relative MOT); n = unspecified | TM | [53] | |
15% GLY + 10% SC | 100 (relative MOT); n = unspecified | TM | ||||
15% DMSO + 1% SC | ~35 (MOT), ~65 (VIA); n = 3 | TM | [23] | |||
15% DMSO + 10% SC | ~20 (MOT), ~54 (VIA); n = 3 | TM | ||||
Litoria nasuta (Striped rocket frog) | LC | 15% DMSO + 10% SC | 80 (relative MOT); n = unspecified | TM | [53] | |
Litoria nudidigitus (Southern leaf green tree frog) | LC | 15% DMSO + 1% SC | ~45 (MOT), ~52 (VIA); n = 3 | TM | [23] | |
15% DMSO + 10% SC | ~22 (MOT), ~41 (VIA); n = 3 | TM | ||||
Litoria peronii (Peron’s tree frog) | LC | 15% DMSO + 10% SC | 90 (relative MOT); n = unspecified | TM | [53] | |
20% GLY + 10% SC | 81 (relative MOT); n = unspecified | TM | ||||
Litoria phyllochroa (Leaf green tree frog) | LC | 15% DMSO + 10% SC | 78 (relative MOT); n = unspecified | TM | [53] | |
Litoria quiritatus (Screaming tree frog) | NL | 10% DMSO + 1% SC | ~25 (FPM), ~58 (VIA); n = 4 | TM | [23] | |
10%DMSO + 10% SC | ~5 (FPM), ~32 (VIA); n = 4 | TM | ||||
15% DMSO + 1% SC | ~65 (FPM), 83 (VIA); n = 4 | TM | ||||
15% DMSO + 10% SC | ~2 (FPM), ~43 (VIA); n = 4 | TM | ||||
Litoria subglandulosa (New England tree frog) | VU | 15% DMSO + 10% SC | 60 (relative MOT); n = unspecified | TM | [53] | |
Litoria tyleri (Tyler’s tree frog) | LC | 15% DMSO + 1% SC | ~55 (FPM), ~83 (VIA); n = 3 | TM | [23] | |
15% DMSO + 10% SC | ~20 (FPM), ~75 (VIA); n = 3 | TM | ||||
Pipidae | Xenopus laevis (African clawed frog) | LC | 14% SC + 0.08% NAHCO3 + 20% EY | 10 (VIA); n = 4 | TM | [177] |
14% SC + 0.08% NAHCO3 + 20% EY | 22 (FERT); n = 10 | TM | [178] | |||
5% DMSO | 53 (MOT), 38 (VIA), 29 (HAT); n = 3 | TM | [58] | |||
10% DMSO | 49 (MOT), 35 (VIA), 9 (HAT); n = 3 | TM | ||||
5% DMSO + 1% SC | 62 (MOT), 43 (VIA), 28 (HAT); n = 3 | TM | ||||
5% DMSO + 2.5% SC | 71 (MOT), 60 (VIA), 48 (HAT); n = 3 | TM | ||||
5% DMSO + 5% SC | 60 (MOT), 35 (VIA), 27 (HAT); n = 3 | TM | ||||
27% SC + 1.7% NAHCO3 + 20% EY | 40 (FERT); n = 1 | TM | [59] | |||
15% DMSO + 10% SC/4% DMSO + 50% FBS | 25–50% (MOT); 0 (FERT); n = unspecified | TM | [170] | |||
Xenopus tropicalis (Western clawed frog) | LC | 14% SC + 0.08% NAHCO3 + 20% EY | 40 (VIA); n = 4 | TM | [177] | |
14% SC + 0.08% NAHCO3 + 20% EY | 44 (FERT); n = 9 | TM | [178] | |||
27% SC + 1.7% NAHCO3 + 20% EY | 57 (FERT); n = 2 | TM | [59] | |||
Ranidae | Lithobates catesbeianus (American Bullfrog) | LC | 1–7.5% DMSO | 0 (MOT); n = unspecified | SU | [179] |
1–7.5% methanol | 0 (MOT); n = unspecified | SU | ||||
Lithobates chiricahuensis (Chiricahua leopard frog) | VU | 10% DMF + 10% TRE + 0.25% BSA | 74 (relative MOT); n = 10 | SU | [148] | |
Lithobates pipiens (Northern leopard frog) | LC | 4% DMSO + 50% FBS | 55 (VIA); n = 5 | TM | [55] | |
5% GLY + 12% EY | 71 (VIA); n = 10 | SU | [180] | |||
15% DMSO + 10% SC | 44 (VIA); n = 10 | SU | ||||
5% DMF + 10% TRE | 58 (relative MOT), 13 (HAT); n = 17 | SU | [147] | |||
10% DMF + 10% TRE | 4 (relative MOT); n = 17 | SU | ||||
Lithobates sevosus (Dusky gopher frog) | CR | 5% DMF + 10% TRE | 38 (relative MOT); n = 13 | SU | [147] | |
10% DMF + 10% TRE | 2 (relative MOT); n = 13 | SU | ||||
5% DMF + 10% TRE | 73 (MOT), 32 (FPM), 55 (FERT); n = 5 | SU | [35] | |||
Lithobates sylvaticus (Wood frog) | LC | 4% DMSO | 31 (VIA); n = 5 | TM | [55] | |
2% methanol | 15 (VIA); n = 5 | TM | ||||
4% DMSO + 50% FBS | 43 (VIA); n = 5 | TM | ||||
2% methanol + 50% FBS | 35 (VIA); n = 5 | TM | ||||
14% GLY | 13 (VIA); n = 5 | TM | [181] | |||
28% GLY | 17 (VIA); n = 5 | TM | ||||
12% DMSO | 10 (VIA); n = 5 | TM | ||||
23% DMSO | 13 (VIA); n = 5 | TM | ||||
2% GC | 23 (MOT), 45 (VIA); n = 3 | TM | [62] | |||
1% GLY | 18 (MOT),45 (VIA); n = 3 | TM | ||||
Pelophylax lessonae (Pool frog) | LC | 24% DMF + 20% SC | 40 (MOT), 10 (FPM), 71 (VIA), 29 (FERT); n = 7 | SU | [182] | |
Rana temporaria (European common frog) | LC | 15% DMSO + 10% TRE + 0.5% BSA | 47 (MOT), 41 (VIA), 53 (FERT); n = 10 | TM | [60] | |
15% DMF + 10% TRE + 0.5% BSA | 58 (MOT), 50 (VIA), 68 (FERT); n = 10 | TM | ||||
5% GLY | 15 (MOT), 11 (VIA), 2 (HAT); n = 3 | TM | [61] | |||
10% DMSO | 33 (MOT), 32 (VIA), 14 (HAT); n = 3 | TM | ||||
5% GLY + 2.5% SC | 45 (MOT), 34 (VIA); n = 3 | TM | ||||
10% DMSO + 2.5% SC | 37 (MOT), 43 (VIA), 3 (HAT); n = 3 | TM | ||||
5% GLY + 2.5% SC + 5% EY | 44 (MOT), 60 (VIA), 12 (HAT); n = 3 | TM | ||||
10% DMSO + 2.5% SC + 5% EY | 29 (MOT), 30 (VIA), 5 (HAT); n = 3 | TM | ||||
12% DMSO + 10% SC | 43 (MOT), 46 (VIA), 81 (FERT), 54 (HAT); n = 3 | SU | [183] | |||
12% DMSO + 10% SC + 10% EY | 36 (MOT), 38 (VIA), 91 (FERT), 58 (HAT); n = 3 | SU | ||||
12% DMF + 10% SC | 65 (MOT), 72 (VIA), 91 (FERT), 71 (HAT); n = 3 | SU | ||||
Salamandridae | Notophthalmus meridionalis (Black-spotted newt) ^ | EN | 10% DMSO + 1% BSA | 5 (MOT), 0 (FPM); n = 6 | SM | [151] |
10% DMSO + 1% BSA + 10% TRE | 6 (MOT), 0 (FPM); n = 6 | SM | ||||
Tylototriton kweichowensis (Kweichow newt) ^ | VU | 10% DMSO + 1% BSA | 14 (MOT), 0 (FPM); n = 4 | SM | [151] | |
10% DMSO + 1% BSA + 10% TRE | 12 (MOT), 0 (FPM); n = 4 | SM |
5.2. Freezing and Thawing Methods
6. Generating Offspring from Cryopreserved Sperm
6.1. Hatching Success and Larval Survival
6.2. Morphological Traits
6.3. Survival to Sexual Maturity
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IUCN. IUCN Red List of Threatened Species. Available online: https://www.iucnredlist.org/resources/summary-statistics (accessed on 12 December 2022).
- Bishop, P.J.; Angulo, A.; Lewis, J.P.; Moore, R.D.; Rabb, G.B.; Moreno, J.G. The Amphibian Extinction Crisis—What will it take to put the action into the Amphibian Conservation Action Plan? SAPIENS 2012, 5, 97–111. [Google Scholar]
- Collins, J.P.; Storfer, A. Global amphibian declines: Sorting the hypotheses. Divers. Distrib. 2003, 9, 89–98. [Google Scholar] [CrossRef]
- Johnson, K.; Mendelson, J.R., III. Status of global amphibian declines and the prioritisation of species for captive breeding. In Reproductive Technologies and Biobanking for the Conservation of Amphibians; Silla, A.J., Kouba, A.J., Heatwole, H., Eds.; CSIRO Publishing: Melbourne, Australia, 2022. [Google Scholar]
- Scheele, B.C.; Pasmans, F.; Skerratt, L.F.; Berger, L.; Martel, A.; Beukema, W.; Acevedo, A.A.; Burrowes, P.A.; Carvalho, T.; Catenazzi, A.; et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 2019, 363, 1459–1463. [Google Scholar] [CrossRef] [PubMed]
- Skerratt, L.F.; Berger, L.; Speare, R.; Cashins, S.; McDonald, K.R.; Phillott, A.D.; Hines, H.B.; Kenyon, N. Spread of Chytridiomycosis Has Caused the Rapid Global Decline and Extinction of Frogs. Ecohealth 2007, 4, 125–134. [Google Scholar] [CrossRef]
- Fisher, M.C.; Garner, T.W.J. Chytrid fungi and global amphibian declines. Nat. Rev. Microbiol. 2020, 18, 332–343. [Google Scholar] [CrossRef]
- Adams, A.J.; Pessier, A.; Cranston, P.; Grasso, R.L. Chytridiomycosis-induced mortality in a threatened anuran. PLoS ONE 2020, 15, e0241119. [Google Scholar] [CrossRef]
- Stuart, S.N.; Chanson, J.S.; Cox, N.A.; Young, B.E.; Rodrigues, A.S.L.; Fischman, D.L.; Waller, R.W. Status and Trends of Amphibian Declines and Extinctions Worldwide. Science 2004, 306, 1783–1786. [Google Scholar] [CrossRef] [Green Version]
- Silla, A.J.; Kouba, A.J. Integrating reproductive technologies into the conservation toolbox for the recovery of amphibian species. In Reproductive Technologies and Biobanking for the Conservation of Amphibians; Silla, A.J., Kouba, A.J., Heatwole, H., Eds.; CSIRO Publishing: Clayton, Australia, 2022. [Google Scholar]
- Scheele, B.C.; Hollanders, M.; Hoffmann, E.P.; Newell, D.A.; Lindenmayer, D.B.; McFadden, M.; Gilbert, D.J.; Grogan, L.F. Conservation translocations for amphibian species threatened by chytrid fungus: A review, conceptual framework, and recommendations. Conserv. Sci. Pract. 2021, 3, e524. [Google Scholar] [CrossRef]
- Nolan, N.; Hayward, M.W.; Klop-Toker, K.; Mahony, M.; Lemckert, F.; Callen, A. Complex Organisms Must Deal with Complex Threats: How Does Amphibian Conservation Deal with Biphasic Life Cycles? Animals 2023, 13, 1634. [Google Scholar] [CrossRef]
- Byrne, P.G.; Silla, A.J. Genetic management of threatened amphibians: Using artificial fertilisation technologies to facilitate genetic rescue and assisted gene flow. In Reproductive Technologies and Biobanking for the Conservation of Amphibians; Silla, A.J., Kouba, A.J., Heatwole, H., Eds.; CSIRO Publishing: Melbourne, Australia, 2022. [Google Scholar]
- Kouba, C.K.; Julien, A.R. Linking in situ and ex situ populations of threatened amphibian species using genome resource banks. In Reproductive Technologies and Biobanking for the Conservation of Amphibians; Silla, A.J., Kouba, A.J., Heatwole, H., Eds.; CSIRO Publishing: Clayton, Australia, 2022. [Google Scholar]
- Clulow, J.; Clulow, S. Cryopreservation and other assisted reproductive technologies for the conservation of threatened amphibians and reptiles: Bringing the ARTs up to speed. Reprod. Fertil. Dev. 2016, 28, 1116–1132. [Google Scholar] [CrossRef]
- Della Togna, G.; Howell, L.G.; Clulow, J.; Langhorne, C.J.; Marcec-Greaves, R.; Calatayud, N.E. Evaluating amphibian biobanking and reproduction for captive breeding programs according to the Amphibian Conservation Action Plan objectives. Theriogenology 2020, 150, 412–431. [Google Scholar] [CrossRef] [PubMed]
- Kouba, A.J.; Lloyd, R.E.; Houck, M.L.; Silla, A.J.; Calatayud, N.; Trudeau, V.L.; Clulow, J.; Molinia, F.; Langhorne, C.; Vance, C.; et al. Emerging trends for biobanking amphibian genetic resources: The hope, reality and challenges for the next decade. Biol. Conserv. 2013, 164, 10–21. [Google Scholar] [CrossRef]
- Silla, A.J.; Calatayud, N.E.; Trudeau, V.L. Amphibian reproductive technologies: Approaches and welfare considerations. Conserv. Physiol. 2021, 9, coab011. [Google Scholar] [CrossRef]
- Silla, A.J.; Byrne, P.G. The role of reproductive technologies in amphibian conservation breeding programs. Annu. Rev. Anim. Biosci. 2019, 7, 499–519. [Google Scholar] [CrossRef] [PubMed]
- Silla, A.J.; Kouba, A.J.; Heatwole, H. Reproductive Technologies and Biobanking for the Conservation of Amphibians; CSIRO Publishing: Clayton, Australia, 2022. [Google Scholar]
- Strand, J.; Thomsen, H.; Jensen, J.B.; Marcussen, C.; Nicolajsen, T.B.; Skriver, M.B.; Søgaard, I.M.; Ezaz, T.; Purup, S.; Callesen, H.; et al. Biobanking in amphibian and reptilian conservation and management: Opportunities and challenges. Conserv. Genet. Resour. 2020, 12, 709–725. [Google Scholar] [CrossRef]
- Vu, M.; Trudeau, V.L. Neuroendocrine control of spawning in amphibians and its practical applications. Gen. Comp. Endocrinol. 2016, 234, 28–39. [Google Scholar] [CrossRef]
- Upton, R.; Clulow, S.; Colyvas, K.; Mahony, M.; Clulow, J. Paradigm shift in frog sperm cryopreservation-reduced role for non-penetrating cryoprotectants. Reproduction 2023, 165, 583–592. [Google Scholar] [CrossRef]
- McFadden, M.S.; Gillbert, D.; Bradfield, K.; Evans, M.; Marantelli, G.; Byrne, P.G. The Role of Ex-Situ Amphibian Conservation in Australia. In Status of Conservation and Decline of Amphibians: Australia, New Zealand, and Pacific Islands; Heatwole, H., Rowley, J.J.L., Eds.; CSIRO Publishing: Melbourne, Australia, 2018; pp. 125–140. [Google Scholar]
- Harley, D.; Mawson, P.; Olds, L.; McFadden, M.; Hogg, C. The contribution of captive breeding in zoos to the conservation of Australia’s threatened fauna. In Recovering Australian Threatened Species: A Book of Hope; Garnett, S., Latch, P., Lindenmayer, D., Woinarski, J., Eds.; CSIRO Publishing: Clayton, Australia, 2018; pp. 281–294. [Google Scholar]
- Harding, G.; Griffiths, R.A.; Pavajeau, L. Developments in amphibian captive breeding and reintroduction programs. Conserv. Biol. 2016, 30, 340–349. [Google Scholar] [CrossRef]
- Wren, S.; Borzée, A.; Marcec-Greaves, R.; Angulo, A. The Amphibian Conservation Action Plan (ACAP): A Status Review and Roadmap for Global Amphibian Conservation, Preprint ed.; IUCN SSC Amphibian Specialist Group: Gland, Switzerland, 2022. [Google Scholar]
- Turani, B.; Aliko, V.; Faggio, C. Allurin and egg jelly coat impact on in-vitro fertilization success of endangered Albanian water frog, Pelophylax shqipericus. Nat. Prod. Res. 2020, 34, 830–837. [Google Scholar] [CrossRef]
- Mansour, N.; Lahnsteiner, F.; Patzner, R.A. Collection of gametes from live axolotl, Ambystoma mexicanum, and standardization of in vitro fertilization. Theriogenology 2011, 75, 354–361. [Google Scholar] [CrossRef]
- Turani, B.; Aliko, V. In-Vitro fertilization and maturation of Balkan water frog (Pelophyllax kurtmuelleri, Gayda, 1940)—A case study in reproductive amphibian biotechnology. Int. J. Ecosyst. Ecol. Sci. 2015, 5, 557–560. [Google Scholar]
- Byrne, P.G.; Gaitan-Espitia, J.D.; Silla, A.J. Genetic benefits of extreme sequential polyandry in a terrestrial-breeding frog. Evolution 2019, 73, 1972–1985. [Google Scholar] [CrossRef]
- Byrne, P.G.; Silla, A.J. An experimental test of the genetic consequences of population augmentation in an amphibian. Conserv. Sci. Pract. 2020, 2, e194. [Google Scholar] [CrossRef] [Green Version]
- Kouba, A.; Willis, E.; Vance, C.; Hasenstab, S.; Reichling, S.; Krebs, J.; Linhoff, L.; Snoza, M.; Langhorne, C.; Germano, J. Development of assisted reproductive technologies for the endangered Mississippi gopher frog (Rana sevosa) and sperm transfer for in vitro fertilization. Reprod. Fertil. Dev. 2011, 24, 170. [Google Scholar] [CrossRef]
- Vance, C.K.; Julien, A.; Counsell, K.; Marcec, R.; Agcanas, L.; Tucker, A.; Kouba, A. Amphibian art over the generations: Frozen sperm offspring produce viable F2 generation. Cryobiology 2018, 85, 178. [Google Scholar] [CrossRef]
- Langhorne, C.J. Developing Assisted Reproductive Technologies for Endangered North American Amphibians. Ph.D. Dissertation, Mississippi State University, Mississippi State, MS, USA, 2016. [Google Scholar]
- Upton, R.; Clulow, S.; Calatayud, N.E.; Colyvas, K.; Seeto, R.G.Y.; Wong, L.A.M.; Mahony, M.J.; Clulow, J. Generation of reproductively mature offspring from the endangered green and golden bell frog Litoria aurea using cryopreserved spermatozoa. Reprod. Fertil. Dev. 2021, 33, 562–572. [Google Scholar] [CrossRef] [PubMed]
- McGinnity, D.; Reinsch, S.D.; Schwartz, H.; Trudeau, V.; Browne, R.K. Semen and oocyte collection, sperm cryopreservation and IVF with the threatened North American giant salamander Cryptobranchus alleganiensis. Reprod. Fertil. Dev. 2022, 34, 470–477. [Google Scholar] [CrossRef] [PubMed]
- Burger, I.J.; Lampert, S.S.; Kouba, C.K.; Morin, D.J.; Kouba, A.J. Development of an amphibian sperm biobanking protocol for genetic management and population sustainability. Conserv. Physiol. 2022, 10, coac032. [Google Scholar] [CrossRef]
- Byrne, P.G.; Silla, A.J. Hormonal induction of gamete release, and in-vitro fertilisation, in the critically endangered Southern Corroboree Frog, Pseudophryne corroboree. Reprod. Biol. Endocrinol. 2010, 8, 144. [Google Scholar] [CrossRef] [Green Version]
- Browne, R.K.; Seratt, J.; Vance, C.; Kouba, A. Hormonal priming, induction of ovulation and in-vitro fertilization of the endangered Wyoming toad (Bufo baxteri). Reprod. Biol. Endocrinol. 2006, 4, 34. [Google Scholar] [CrossRef] [Green Version]
- Frankham, R. Genetic adaptation to captivity in species conservation programs. Mol. Ecol. 2008, 17, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Frankham, R. Genetic rescue of small inbred populations: Meta-analysis reveals large and consistent benefits of gene flow. Mol. Ecol. 2015, 24, 2610–2618. [Google Scholar] [CrossRef]
- Frankham, R.; Ballou, J.D.; Briscoe, D.A. Introduction to Conservation Genetics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Clulow, J.; Trudeau, V.; Kouba, A. Amphibian declines in the twenty-first century: Why we need assisted reproductive technologies. Adv. Exp. Med. Biol. 2014, 753, 275–316. [Google Scholar] [CrossRef] [PubMed]
- Silla, A.J.; Langhorne, C.J. Protocols for hormonally induced spermiation, and the cold storage, activation, and assessment of amphibian sperm. In Reproductive Technologies and Biobanking for the Conservation of Amphibians; Silla, A.J., Kouba, A.J., Heatwole, H., Eds.; CSIRO Publishing: Clayton, Australia, 2022. [Google Scholar]
- Browne, R. Short-term storage of cane toad (Bufo marinus) gametes. Reproduction 2001, 121, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Edwards, D.L.; Mahony, M.J.; Clulow, J. Effect of sperm concentration, medium osmolality and oocyte storage on artificial fertilisation success in a myobatrachid frog (Limnodynastes tasmaniensis). Reprod. Fertil. Dev. 2004, 16, 347–354. [Google Scholar] [CrossRef]
- Silla, A.J. Artificial fertilisation in a terrestrial toadlet (Pseudophryne guentheri): Effect of medium osmolality, sperm concentration and gamete storage. Reprod. Fertil. Dev. 2013, 25, 1134–1141. [Google Scholar] [CrossRef]
- Kouba, A.J.; Vance, C.K.; Willis, E.L. Artificial fertilization for amphibian conservation: Current knowledge and future considerations. Theriogenology 2009, 71, 214–227. [Google Scholar] [CrossRef]
- Howell, L.G.; Frankham, R.; Rodger, J.C.; Witt, R.R.; Clulow, S.; Upton, R.M.O.; Clulow, J. Integrating biobanking minimises inbreeding and produces significant cost benefits for a threatened frog captive breeding programme. Conserv. Lett. 2021, 14, e12776. [Google Scholar] [CrossRef]
- Howell, L.G.; Mawson, P.R.; Frankham, R.; Rodger, J.C.; Upton, R.M.O.; Witt, R.R.; Calatayud, N.E.; Clulow, S.; Clulow, J. Integrating biobanking could produce significant cost benefits and minimise inbreeding for Australian amphibian captive breeding programs. Reprod. Fertil. Dev. 2021, 33, 573–587. [Google Scholar] [CrossRef]
- Clulow, J.; Upton, R.; Clulow, S. Cryopreservation of amphibian genomes: Targeting the Holy Grail, cryopreservation of maternal-haploid and embryonic-diploid genomes. In Reproductive Technologies and Biobanking for the Conservation of Amphibians; Silla, A.J., Kouba, A.J., Heatwole, H., Eds.; CSIRO Publishing: Melbourne, Australia, 2022. [Google Scholar]
- Browne, R.K.; Clulow, J.; Mahony, M. The short-term storage and cryopreservation of speratozoa from hylid and myobatrachid frogs. CryoLetters 2002, 23, 129–136. [Google Scholar]
- Silla, A.J.; Keogh, L.M.; Byrne, P.G. Antibiotics and oxygen availability affect the short-term storage of spermatozoa from the critically endangered booroolong frog, Litoria booroolongensis. Reprod. Fertil. Dev. 2015, 27, 1147–1153. [Google Scholar] [CrossRef] [PubMed]
- Beesley, S.G.; Costanzo, J.P.; Lee, R.E. Cryopreservation of spermatozoa from freeze-tolerant and -intolerant anurans. Cryobiology 1998, 37, 155–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michael, S.F.; Jones, C. Cryopreservation of spermatozoa of the terrestrial Puerto Rican frog, Eleutherodactylus coqui. Cryobiology 2004, 48, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Upton, R.; Clulow, S.; Mahony, M.J.; Clulow, J. Generation of a sexually mature individual of the Eastern dwarf tree frog, Litoria fallax, from cryopreserved testicular macerates: Proof of capacity of cryopreserved sperm derived offspring to complete development. Conserv. Physiol. 2018, 6, coy043. [Google Scholar] [CrossRef] [Green Version]
- Mansour, N.; Lahnsteiner, F.; Patzner, R.A. Optimization of the cryopreservation of African clawed frog (Xenopus laevis) sperm. Theriogenology 2009, 72, 1221–1228. [Google Scholar] [CrossRef] [PubMed]
- Sargent, M.G.; Mohun, T.J. Cryopreservation of sperm of Xenopus laevis and Xenopus tropicalis. Genesis 2005, 41, 41–46. [Google Scholar] [CrossRef]
- Kaurova, S.A.; Uteshev, V.K.; Gapeyev, A.B.; Shishova, N.V.; Gakhova, E.N.; Browne, R.K.; Kramarova, L.I. Cryopreservation of spermatozoa obtained postmortem from the European common frog Rana temporaria. Reprod. Fertil. Dev. 2021, 33, 588–595. [Google Scholar] [CrossRef]
- Mansour, N.; Lahnsteiner, F.; Patzner, R.A. Motility and cryopreservation of spermatozoa of European common frog, Rana temporaria. Theriogenology 2010, 74, 724–732. [Google Scholar] [CrossRef]
- Costanzo, J.P.; Mugnano, J.A.; Wehrheim, H.M.; Lee, R.E., Jr. Osmotic and freezing tolerance in spermatozoa of freeze-tolerant and -intolerant frogs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1998, 275, 713–719. [Google Scholar] [CrossRef]
- Keogh, L.M.; Byrne, P.G.; Silla, A.J. The effect of gentamicin on sperm motility and bacterial abundance during chilled sperm storage in the Booroolong frog. Gen. Comp. Endocrinol. 2017, 243, 51–59. [Google Scholar] [CrossRef]
- Browne, R.K.; Silla, A.J.; Upton, R.; Della-Togna, G.; Marcec-Greaves, R.; Shishova, N.V.; Uteshev, V.K.; Proaño, B.; Pérez, O.D.; Mansour, N.; et al. Sperm collection and storage for the sustainable management of amphibian biodiversity. Theriogenology 2019, 133, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Browne, R.K.; Kaurova, S.A.; Vasudevan, K.; McGinnity, D.; Venu, G.; Gonzalez, M.; Uteshev, V.K.; Marcec-Greaves, R. Reproduction technologies for the sustainable management of Caudata (salamander) and Gymnophiona (caecilian) biodiversity. Reprod. Fertil. Dev. 2022, 34, 479–497. [Google Scholar] [CrossRef]
- Clulow, J.; Pomering, M.; Herbert, D.; Upton, R.; Calatayud, N.; Clulow, S.; Mahony, M.J.; Trudeau, V.L. Differential success in obtaining gametes between male and female Australian temperate frogs by hormonal induction: A review. Gen. Comp. Endocrinol. 2018, 265, 141–148. [Google Scholar] [CrossRef]
- Birkhead, T.R.; Hosken, D.J.; Pitnick, S.S. Sperm biology: An Evolutionary Perspective; Academic Press: Burlington, MA, USA, 2008; p. 642. [Google Scholar]
- Alavi, S.M.; Cosson, J. Sperm motility in fishes. (II) Effects of ions and osmolality: A review. Cell. Biol. Int. 2006, 30, 1–14. [Google Scholar] [CrossRef]
- Legendre, M.; Alavi, S.M.; Dzyuba, B.; Linhart, O.; Prokopchuk, G.; Cochet, C.; Dugue, R.; Cosson, J. Adaptations of semen characteristics and sperm motility to harsh salinity: Extreme situations encountered by the euryhaline tilapia Sarotherodon melanotheron heudelotii (Dumeril, 1859). Theriogenology 2016, 86, 1251–1267. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, E.D.; Krapf, D.; Cabada, M.O.; Visconti, P.E.; Arranz, S.E. Transmembrane adenylyl cyclase regulates amphibian sperm motility through protein kinase A activation. Dev. Biol. 2011, 350, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Bobe, J.; Labbe, C. Chilled storage of sperm and eggs. In Methods in Reproductive Aquaculture: Marine and Freshwater Species; Cabrita, E., Robles, V., Herraez, P., Eds.; CRC Press: Boca Raton, FL, USA, 2009; pp. 219–235. [Google Scholar]
- Contreras, P.; Dumorné, K.; Ulloa-Rodríguez, P.; Merino, O.; Figueroa, E.; Farías, J.G.; Valdebenito, I.; Risopatrón, J. Effects of short-term storage on sperm function in fish semen: A review. Rev. Aquac. 2020, 12, 1373–1389. [Google Scholar] [CrossRef]
- Inoda, T.; Morisawa, M. Effect of osmolality on the initiation of sperm motility in Xenopus laevis. Comp. Biochem. Physiol. 1987, 88A, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Keogh, L.M.; Byrne, P.G.; Silla, A.J. The effect of antioxidants on sperm motility activation in the Booroolong frog. Anim. Reprod. Sci. 2017, 183, 126–131. [Google Scholar] [CrossRef]
- Kouba, A.J.; Vance, C.K.; Frommeyer, M.A.; Roth, T.L. Structural and functional aspects of Bufo americanus spermatozoa: Effects of inactivation and reactivation. J. Exp. Zool A Comp. Exp. Biol. 2003, 295A, 172–182. [Google Scholar] [CrossRef]
- Rurangwa, E.; Kime, D.E.; Ollevier, F.; Nash, J.P. The measurement of sperm motility and factors affecting sperm quality in cultured fish. Aquaculture 2004, 234, 1–28. [Google Scholar] [CrossRef]
- Zidni, I.; Lee, H.-B.; Yoon, J.-H.; Park, J.-Y.; Jang, H.-S.; Co, Y.-S.; Pratiwi, D.Y.; Lim, H.-K. Intermediate-term storage of spotted halibut (Verasper variegatus) sperm: Effects of storage methods, extenders supplemented with antibiotics and antioxidants on sperm quality. Antioxidants 2023, 12, 122. [Google Scholar] [CrossRef]
- Beirão, J.; Boulais, M.; Gallego, V.; O’Brien, J.K.; Peixoto, S.; Robeck, T.R.; Cabrita, E. Sperm handling in aquatic animals for artificial reproduction. Theriogenology 2019, 133, 161–178. [Google Scholar] [CrossRef] [PubMed]
- Germano, J.M.; Arregui, L.; Kouba, A.J. Effects of aeration and antibiotics on short-term storage of Fowler’s toad (Bufo fowleri) sperm. Aquaculture 2013, 396–399, 20–24. [Google Scholar] [CrossRef]
- Kaurova, S.A.; Browne, R.K.; Uteshev, V.K. Antibiotics for the refrigerated storage at 4 °C of hormonally induced European common frog (Rana temporaria) spermatozoa. Theriogenol. Wild 2022, 1, 100009. [Google Scholar] [CrossRef]
- Althouse, G.C.; Kuster, C.E.; Clark, S.G.; Weisiger, R.M. Field investigations of bacterial contaminants and their effects on extended porcine semen. Theriogenology 2000, 53, 1167–1176. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Martínez, N.; Bussalleu, E.; Garcia-Bonavila, E.; Bonet, S.; Yeste, M. Effects of Enterobacter cloacae on boar sperm quality during liquid storage at 17 °C. Anim. Reprod. Sci. 2014, 148, 72–82. [Google Scholar] [CrossRef]
- Sanocka-Maciejewska, D.; Ciupińska, M.; Kurpisz, M. Bacterial infection and semen quality. J. Reprod. Immunol. 2005, 67, 51–56. [Google Scholar] [CrossRef]
- Sepúlveda, L.; Bussalleu, E.; Yeste, M.; Bonet, S. Effects of different concentrations of Pseudomonas aeruginosa on boar sperm quality. Anim. Reprod. Sci. 2014, 150, 96–106. [Google Scholar] [CrossRef]
- Yániz, J.L.; Marco-Aguado, M.A.; Mateos, J.A.; Santolaria, P. Bacterial contamination of ram semen, antibiotic sensitivities, and effects on sperm quality during storage at 15 °C. Anim. Reprod. Sci. 2010, 122, 142–149. [Google Scholar] [CrossRef]
- Azoulay, Y.; Malik, Z.; Breitbart, H. Sperm interaction with bacteria induces the spontaneous acrosome reaction. Theriogenology 2023, 203, 82–88. [Google Scholar] [CrossRef]
- Lenický, M.; Slanina, T.; Kačániová, M.; Galovičová, L.; Petrovičová, M.; Ďuračka, M.; Benko, F.; Kováč, J.; Tvrdá, E. Identification of bacterial profiles and their interactions with selected quality, oxidative, and immunological parameters of turkey semen. Animals 2021, 11, 1771. [Google Scholar] [CrossRef] [PubMed]
- Haines, M.D.; Parker, H.M.; McDaniel, C.D.; Kiess, A.S. Impact of 6 different intestinal bacteria on broiler breeder sperm motility in vitro. Poult. Sci. 2013, 92, 2174–2181. [Google Scholar] [CrossRef]
- Nimrat, S.; Sonwat, S.; Matharatanukul, B.; Boonthai, T.; Vuthiphandchai, V. Chilled and cryopreserved spermatophores of banana shrimp (Fenneropenaeus merguiensis): Effects of antibiotics on sperm quality and bacterial abundance. Aquaculture 2022, 560, 738551. [Google Scholar] [CrossRef]
- Stoss, J.; Refstie, T. Short-term storage and cryopreservation of milt from Atlantic salmon and sea trout. Aquaculture 1983, 30, 229–236. [Google Scholar] [CrossRef]
- Saad, A.; Billard, R.; Theron, M.C.; Hollebecq, M.G. Short-term preservation of carp (Cyprinus carpio) semen. Aquaculture 1988, 71, 133–150. [Google Scholar] [CrossRef]
- Christensen, J.M.; Tiersch, T.R. Refrigerated storage of channel catfish sperm. J. World Aquac. Soc. 1996, 27, 340–346. [Google Scholar] [CrossRef]
- Jenkins, J.A.; Tiersch, T.R. A preliminary bacteriological study of refrigerated channel catfish sperm. J. World Aquac. Soc. 1997, 28, 282–288. [Google Scholar] [CrossRef]
- Viveiros, A.T.M.; Isaú, Z.A.; Figueiredo, H.C.P.; Leite, M.A.S.; Maria, A.N. Gentamycin controls bacterial growth during refrigerated storage of piracanjuba, Brycon orbignyanus, semen. J. World Aquac. Soc. 2010, 41, 57–65. [Google Scholar] [CrossRef]
- Oielska, M. Reproduction of Amphibians; CRC Press: Milton Park, UK, 2009. [Google Scholar]
- Segovia, M.; Jenkins, J.A.; Paniagua-Chavez, C.; Tiersch, T.R. Flow cytometric evaluation of antibiotic effects on viability and mitochondrial function of refrigerated spermatozoa of nile tilapia. Theriogenology 2000, 53, 1489–1499. [Google Scholar] [CrossRef]
- Cottell, E.; Lennon, B.; McMorrow, J.; Barry-Ḱinsella, C.; Harrison, R.F. Processing of semen in an antibiotic-rich culture medium to minimize microbial presence during in vitro fertilization. Fertil. Steril. 1997, 67, 98–103. [Google Scholar] [CrossRef] [PubMed]
- DeGraaf, J.D.; Berlinsky, D.L. Cryogenic and refrigerated storage of rainbow smelt Osmerus mordax spermatozoa. J. World Aquac. Soc. 2004, 35, 209–216. [Google Scholar] [CrossRef]
- Rahimi, R.; Hajirezaee, S.; Shaluei, F.; Kaboutari Katadj, J. Antibiotics, Penicillin and Sreptomycin improve semen quality indices of endangered Caspian brown trout, Salmo trutta caspius (Kessler, 1870) during in vitro short-term storage. Aquac. Res. 2016, 47, 3662–3666. [Google Scholar] [CrossRef]
- Tan, C.K.; Natrah, I.; Suyub, I.B.; Edward, M.J.; Kaman, N.; Samsudin, A.A. Comparative study of gut microbiota in wild and captive Malaysian Mahseer (Tor tambroides). Microbiologyopen 2019, 8, e00734. [Google Scholar] [CrossRef] [Green Version]
- Xenoulis, P.G.; Gray, P.L.; Brightsmith, D.; Palculict, B.; Hoppes, S.; Steiner, J.M.; Tizard, I.; Suchodolski, J.S. Molecular characterization of the cloacal microbiota of wild and captive parrots. Vet. Microbiol. 2010, 146, 320–325. [Google Scholar] [CrossRef]
- Passos, L.F.; Garcia, G.; Young, R.J. Comparing the bacterial communities of wild and captive golden mantella frogs: Implications for amphibian conservation. PLoS ONE 2018, 13, e0205652. [Google Scholar] [CrossRef]
- Sabino-Pinto, J.; Bletz, M.C.; Islam, M.M.; Shimizu, N.; Bhuju, S.; Geffers, R.; Jarek, M.; Kurabayashi, A.; Vences, M. Composition of the Cutaneous Bacterial Community in Japanese Amphibians: Effects of Captivity, Host Species, and Body Region. Microb. Ecol. 2016, 72, 460–469. [Google Scholar] [CrossRef]
- Becker, M.H.; Richards-Zawacki, C.L.; Gratwicke, B.; Belden, L.K. The effect of captivity on the cutaneous bacterial community of the critically endangered Panamanian golden frog (Atelopus zeteki). Biol. Conserv. 2014, 176, 199–206. [Google Scholar] [CrossRef]
- Antwis, R.E.; Haworth, R.L.; Engelmoer, D.J.P.; Ogilvy, V.; Fidgett, A.L.; Preziosi, R.F. Ex situ diet influences the bacterial community associated with the skin of red-eyed tree frogs (Agalychnis callidryas). PLoS ONE 2014, 9, e85563. [Google Scholar] [CrossRef] [PubMed]
- Holt, W.V.; Comizzoli, P. Perspective: Genome resource banking for wildlife conservation: Promises and caveats. CryoLetters 2021, 42, 309–320. [Google Scholar]
- Bielanski, A. Biosafety in Embryos and Semen Cryopreservation, Storage, Management and Transport. In Reproductive Sciences in Animal Conservation; Holt, W.V., Brown, J.L., Commizzoli, P., Eds.; Advances in Experimental Medicine and Biology; Springer New York: New York, NY, USA, 2014; Volume 753, pp. 429–465. [Google Scholar]
- Love, E. Hormonal Induction of Spermiation and Short-Term Sperm Storage in Two Australian Tree Frogs. Honour’s Thesis, Monash University Clayton, Clayton, Australia, 2011. [Google Scholar]
- Aurich, J.E.; Schönherr, U.; Hoppe, H.; Aurich, C. Effects of antioxidants on motility and membrane integrity of chilled-stored stallion semen. Theriogenology 1997, 48, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Nallella, K.P.; Allamaneni, S.S.R.; Said, T.M. Role of antioxidants in treatment of male infertility: An overview of the literature. Reprod. Biomed. Online 2004, 8, 616–627. [Google Scholar] [CrossRef]
- Agarwal, A.; Virk, G.; Ong, C.; du Plessis, S.S. Effect of oxidative stress on male reproduction. World J. Mens. Health 2014, 32, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, A.; Kanwar, K.C. Human sperm motility and lipid peroxidation in different ascorbic acid concentrations: An in vitro analysis. Andrologia 1998, 30, 325–329. [Google Scholar] [CrossRef]
- Almbro, M.; Dowling, D.K.; Simmons, L.W. Effects of vitamin E and beta-carotene on sperm competitiveness. Ecol. Lett. 2011, 14, 891–895. [Google Scholar] [CrossRef]
- Vrolijk, M.F.; Opperhuizen, A.; Jansen, E.H.; Godschalk, R.W.; van Schooten, F.J.; Bast, A.; Haenen, G.R. The shifting perception on antioxidants: The case of vitamin E and beta-carotene. Redox Biol. 2015, 4C, 272–278. [Google Scholar] [CrossRef] [Green Version]
- de Lamirande, E.; O’Flaherty, C. Sperm activation: Role of reactive oxygen species and kinases. Biochim. Biophys. Acta 2008, 1784, 106–115. [Google Scholar] [CrossRef]
- Lahnsteiner, F.; Mansour, N.; Plaetzer, K. Antioxidant systems of brown trout (Salmo trutta f. fario) semen. Anim. Reprod. Sci. 2010, 119, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Peña, F.J.; Johannisson, A.; Wallgren, M.; Martinez, H.R. Antioxidant supplementation of boar spermatozoa from different fractions of the ejaculate improves cryopreservation: Changes in sperm membrane lipid architecture. Zygote 2004, 12, 117–124. [Google Scholar] [CrossRef]
- Sarioezkan, S.; Tuncer, P.B.; Bucak, M.N.; Ulutas, P.A. Influence of various antioxidants on microscopic-oxidative stress indicators and fertilizing ability of frozen-thawed bull semen. Acta Vet. Brno 2009, 78, 463–469. [Google Scholar] [CrossRef] [Green Version]
- Uysal, O.; Bucak, M.N. Effects of oxidized glutathione, bovine serum albumin, cysteine and lycopene on the quality of frozen-thawed ram semen. Acta Vet. Brno 2007, 76, 383–390. [Google Scholar] [CrossRef]
- Ribas-Maynou, J.; Mateo-Otero, Y.; Delgado-Bermúdez, A.; Bucci, D.; Tamanini, C.; Yeste, M.; Barranco, I. Role of exogenous antioxidants on the performance and function of pig sperm after preservation in liquid and frozen states: A systematic review. Theriogenology 2021, 173, 279–294. [Google Scholar] [CrossRef] [PubMed]
- Lahnsteiner, F.; Mansour, N. A comparative study on antioxidant systems in semen of species of the Percidae, Salmonidae, Cyprinidae, and Lotidae for improving semen storage techniques. Aquaculture 2010, 307, 130–140. [Google Scholar] [CrossRef]
- Stadtman, E.R.; Moskovitz, J.; Berlett, B.S.; Levine, R.L. Cyclic oxidation and reduction of protein methionine residues is an important antioxidant mechanism. Mol. Cell. Biochem. 2002, 234–235, 3–9. [Google Scholar] [CrossRef]
- Ubilla, A.; Valdebenito, I. Use of antioxidants on rainbow trout Oncorhynchus mykiss (Walbaum, 1792) sperm diluent: Effects on motility and fertilizing capability. Lat. Am. J. Aquat. Res. 2011, 39, 338–343. [Google Scholar] [CrossRef]
- Merino, O.; Figueroa, E.; Cheuquemán, C.; Valdebenito, I.; Isachenko, V.; Isachenko, E.; Sánchez, R.; Farías, J.; Risopatrón, J. Short-term storage of salmonids semen in a sodium alginate-based extender. Andrologia 2017, 49, e12661. [Google Scholar] [CrossRef] [PubMed]
- Merino, O.; Dumorné, K.; Leidy, S.-V.; Figueroa, E.; Valdebenito, I.; Farías, J.G.; Risopatrón, J. Short-term storage sperm of coho salmon (Oncorhynchus kisutch) at 4 °C: Effect of sperm: Extender dilution ratios and antioxidant butyl-hydroxytoluene (BHT) on sperm function. Cryobiology 2020, 95, 44–50. [Google Scholar] [CrossRef]
- Ciereszko, A.; Dabrowski, K.; Kucharczyk, D.; Dobosz, S.; Goryczko, K.; Glogowski, J. The presence of uric acid, an antioxidantive substance, in fish seminal plasma. Fish Physiol. Biochem. 1999, 21, 313–315. [Google Scholar] [CrossRef]
- Shaliutina, A.; Hulak, M.; Gazo, I.; Linhartova, P.; Linhart, O. Effect of short-term storage on quality parameters, DNA integrity, and oxidative stress in Russian (Acipenser gueldenstaedtii) and Siberian (Acipenser baerii) sturgeon sperm. Anim. Reprod. Sci. 2013, 139, 127–135. [Google Scholar] [CrossRef]
- Shaliutina-Kolešová, A.; Nian, R. Motility and oxidative stress of common carp Cyprinus carpio sperm during short-term storage. Anim. Reprod. Sci. 2022, 241, 106991. [Google Scholar] [CrossRef]
- Lahnsteiner, F.; Mansour, N.; Kunz, F.A. The effect of antioxidants on the quality of cryopreserved semen in two salmonid fish, the brook trout (Salvelinus fontinalis) and the rainbow trout (Oncorhynchus mykiss). Theriogenology 2011, 76, 882–890. [Google Scholar] [CrossRef] [PubMed]
- Silla, A.J.; Keogh, L.M.; Byrne, P.G. Sperm motility activation in the critically endangered booroolong frog: The effect of medium osmolality and phosphodiesterase inhibitors. Reprod. Fertil. Dev. 2017, 29, 2277–2283. [Google Scholar] [CrossRef] [PubMed]
- Fontoura, P.; Mello, M.D.; Gallo-Sá, P.; Erthal-Martins, M.C.; Cardoso, M.C.A.; Ramos, C. Leptin improves sperm cryopreservation via antioxidant defense. J. Reprod. Infertil. 2017, 18, 172–178. [Google Scholar]
- Jeong, Y.J.; Kim, M.K.; Song, H.J.; Kang, E.J.; Ock, S.A.; Kumar, B.M.; Balasubramanian, S.; Rho, G.J. Effect of alpha-tocopherol supplementation during boar semen cryopreservation on sperm characteristics and expression of apoptosis related genes. Cryobiology 2009, 58, 181–189. [Google Scholar] [CrossRef]
- Mirzoyan, A.V.; Nebesikhina, N.A.; Voynova, N.V.; Chistyakov, V.A. Preliminary results on ascorbic acid and lysine suppression of clastogenic effect of deep-frozen sperm of the Russian sturgeon (Acipenser gueldenstaedti). Int. J. Refrig. 2006, 29, 374–378. [Google Scholar] [CrossRef]
- Öğretmen, F.; İnanan, B.E.; Kutluyer, F.; Kayim, M. Effect of semen extender supplementation with cysteine on postthaw sperm quality, DNA damage, and fertilizing ability in the common carp (Cyprinus carpio). Theriogenology 2015, 83, 1548–1552. [Google Scholar] [CrossRef] [PubMed]
- Osipova, V.P.; Berberova, N.T.; Gazzaeva, R.A.; Kudryavtsev, K.V. Application of new phenolic antioxidants for cryopreservation of sturgeon sperm. Cryobiology 2016, 72, 112–118. [Google Scholar] [CrossRef]
- Bolton, A.L.; Mooney, A.; Pettit, M.T.; Bolton, A.E.; Morgan, L.; Drake, G.J.; Appeltant, R.; Walker, S.L.; Gillis, J.D.; Hvilsom, C. Resurrecting biodiversity: Advanced assisted reproductive technologies and biobanking. Vasc. Biol. 2022, 3, R121–R146. [Google Scholar] [CrossRef]
- Ballou, J.D. Potential contribution of cryopreserved germ plasm to the preservation of genetic diversity and conservation of endangered species in captivity. Cryobiology 1992, 29, 19–25. [Google Scholar] [CrossRef]
- Watson, P.F. Recent developments and concepts in the cryopreservation of spermatozoa and the assessment of their post-thawing function. Reprod. Fertil. Dev. 1995, 7, 871–891. [Google Scholar] [CrossRef]
- Comizzoli, P.; Holt, W.V. Recent progress in spermatology contributing to the knowledge and conservation of rare and endangered species. Annu. Rev. Anim. Biosci. 2022, 10, 469–490. [Google Scholar] [CrossRef] [PubMed]
- Comizzoli, P.; Songsasen, N.; Hagedorn, M.; Wildt, D.E. Comparative cryobiological traits and requirements for gametes and gonadal tissues collected from wildlife species. Theriogenology 2012, 78, 1666–1681. [Google Scholar] [CrossRef] [PubMed]
- Sztein, J.M.; Takeo, T.; Nakagata, N. History of cryobiology, with special emphasis in evolution of mouse sperm cryopreservation. Cryobiology 2018, 82, 57–63. [Google Scholar] [CrossRef]
- Luyet, B.J.; Hodapp, E.L. Revival of frog’s spermatozoa vitrified in liquid air. Exp. Biol. Med. 1938, 39, 433–434. [Google Scholar] [CrossRef]
- Rostand, J. Glycérine et résistance du sperme aux basses températures. Acad. Des Sci. 1946, 222, 1524–1525. [Google Scholar]
- Rostand, J. Sur le refroidissement des cellules spermatiques en presénce de glycérine. Acad. Des Sci. 1952, 222, 2310–2312. [Google Scholar]
- Lampert, S.; Burger, I.; Chen, D.; Kouba, A.; Kouba, C. Comparison of the effect of frozen-thawed versus fresh sperm on offspring growth in tiger salamanders (Ambystoma tigrinum). Cryobiology 2022, 109, 50. [Google Scholar] [CrossRef]
- Peng, L.-Y.; Xiao, Y.-M.; Liu, Y. Effect of cryopreservation and short-term storage on Chinese giant salamander sperm. Acta Hydrobiol. Sin. 2011, 35, 325–332. [Google Scholar] [CrossRef]
- Poo, S.; Hinkson, K.M. Applying cryopreservation to anuran conservation biology. Conserv. Sci. Pract. 2019, 1, e91. [Google Scholar] [CrossRef] [Green Version]
- Burger, I.J.; Chen, L.-D.; Lampert, S.S.; Kouba, C.K.; Barber, D.; Smith, D.; Cobos, C.; Kouba, A.J. Applying sperm collection and cryopreservation protocols developed in a model amphibian to three threatened anuran species targeted for biobanking management. Biol. Conserv. 2023, 277, 109850. [Google Scholar] [CrossRef]
- Naranjo, R.E.; Naydenova, E.; Proaño-Bolaños, C.; Vizuete, K.; Debut, A.; Arias, M.T.; Coloma, L.A. Development of assisted reproductive technologies for the conservation of Atelopus sp. (spumarius complex). Cryobiology 2022, 105, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Della Togna Nieto, G. Structural and Functional Characterization of the Panamanian Golden Frog (Atelopus zeteki) Spermatoza—Impact of Medium Osmolality and Cryopreservation on Motility and Cell Viability. Ph.D. Dissertation, University of Maryland, Maryland, MD, USA, 2015. [Google Scholar]
- Guy, E.L.; Gillis, A.B.; Kouba, A.J.; Barber, D.; Poole, V.; Marcec-Greaves, R.M.; Kouba, C.K. Sperm collection and cryopreservation for threatened newt species. Cryobiology 2020, 94, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Burger, I.; Julien, A.R.; Kouba, A.J.; Barber, D.; Counsell, K.R.; Pacheco, C.; Krebs, J.; Kouba, C.K. Linking in-situ and ex-situ populations of threatened amphibians through genome banking. Conserv. Sci. Pract. 2021, 3, e525. [Google Scholar] [CrossRef]
- Holt, W.V.; Abaigar, T.; Watson, P.F.; Wildt, D.E. Genetic resource banks for species conservation. In Reproductive Science and Integrated Conservation; Holt, W.V., Pickard, A.R., Rodger, J.C., Wildt, D.E., Eds.; Cambridge University Press: Cambridge, UK, 2003; pp. 267–280. [Google Scholar]
- Lampert, S.S.; Burger, I.J.; Julien, A.R.; Gillis, A.B.; Kouba, A.J.; Barber, D.; Kouba, C.K. Sperm cryopreservation as a tool for amphibian conservation: Production of F2 generation offspring from cryo-produced F1 progeny. Animals 2023, 13, 53. [Google Scholar] [CrossRef] [PubMed]
- Yánez-Ortiz, I.; Catalán, J.; Rodríguez-Gil, J.E.; Miró, J.; Yeste, M. Advances in sperm cryopreservation in farm animals: Cattle, horse, pig and sheep. Anim. Reprod. Sci. 2022, 246, 106904. [Google Scholar] [CrossRef] [PubMed]
- Whaley, D.; Damyar, K.; Witek, R.P.; Mendoza, A.; Alexander, M.; Lakey, J.R.T. Cryopreservation: An overview of principles and cell-specific considerations. Cell Transplant. 2021, 30, 963689721999617. [Google Scholar] [CrossRef]
- Hezavehei, M.; Sharafi, M.; Kouchesfahani, H.M.; Henkel, R.; Agarwal, A.; Esmaeili, V.; Shahverdi, A. Sperm cryopreservation: A review on current molecular cryobiology and advanced approaches. Reprod. Biomed. Online 2018, 37, 327–339. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Critser, J.K. Mechanisms of Cryoinjury in Living Cells. ILAR J. 2000, 41, 187–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sieme, H.; Oldenhof, H.; Wolkers, W.F. Mode of action of cryoprotectants for sperm preservation. Anim. Reprod. Sci. 2016, 169, 2–5. [Google Scholar] [CrossRef] [PubMed]
- Mazur, P. Principles of Cryobiology; Taylor & Francis Group: Boca Raton, FL, USA, 2004; pp. 3–65. [Google Scholar]
- Elliott, G.D.; Wang, S.; Fuller, B.J. Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology 2017, 76, 74–91. [Google Scholar] [CrossRef]
- Suquet, M.; Dreanno, C.; Fauvel, C.; Cosson, J.; Billard, R. Cryopreservation of sperm in marine fish: Cryopreservation of sperm in marine fish. Aquac. Res. 2000, 31, 231–243. [Google Scholar] [CrossRef] [Green Version]
- Kolyada, M.N.; Osipova, V.P.; Berberova, N.T. Use of cryoprotectors and antioxidants in sturgeon semen cryopreservation. Cryobiology 2023, 111, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Lahnsteiner, F.; Berger, B.; Weismann, T.; Patzner, R. The influence of various cryoprotectants on semen quality of the rainbow trout (Oncorhynchus mykiss) before and after cryopreservation. Appl. Ichthyol. 1996, 12, 99–106. [Google Scholar] [CrossRef]
- Rivera-Pacheco, J.; Herrera-Barragán, J.; León-Galván, M.; Ocampo-Cervantes, J.; Pérez-Rivero, J.; Gual-Sill, F. Ambystoma mexicanum sperm cryopreservation (Shaw & Nodder, 1798). Abanico Vet. 2021, 11, 1–14. [Google Scholar] [CrossRef]
- Figiel, C.R.J. Cryopreservation of sperm from the Axolotl Ambystoma Mexicanum: Implications for conservation. Herpetol. Conserv. Biol. 2013, 8, 748–755. [Google Scholar]
- Browne, R.K.; Mahony, M.; Clulow, J. A comparison of sucrose, saline, and saline with egg-yolk diluents on the cryopreservation of cane toad (Bufo marinus) sperm. Cryobiology 2002, 44, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Barton, H.L.; Guttman, S.I. Low temperature preservation of toad spermatozoa (Genus Bufo). Tex J. Sci. 1972, 23, 363–370. [Google Scholar]
- Yang, H.; Tiersch, T.R. Current status of sperm cryopreservation in biomedical research fish models: Zebrafish, medaka, and Xiphophorus. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2009, 149, 224–232. [Google Scholar] [CrossRef] [Green Version]
- Buchholz, D.R.; Fu, L.; Shi, Y.-B. Cryopreservation of Xenopus transgenic lines. Mol. Reprod. Dev. 2004, 67, 65–69. [Google Scholar] [CrossRef]
- Marcec-Greaves, R. Development of Assisted Reproductive Technologies for Endangered North American Salamanders. Ph.D. Dissertation, Mississippi State University, Mississippi State, MS, USA, 2016. [Google Scholar]
- Arregui, L.; Bóveda, P.; Gosálvez, J.; Kouba, A.J. Effect of seasonality on hormonally induced sperm in Epidalea calamita (Amphibia, Anura, Bufonidae) and its refrigerated and cryopreservated storage. Aquaculture 2020, 529, 735677. [Google Scholar] [CrossRef]
- Hinkson, K.M.; Baecher, J.A.; Poo, S. Cryopreservation and hormonal induction of spermic urine in a novel species: The smooth-sided toad (Rhaebo guttatus). Cryobiology 2019, 89, 109–111. [Google Scholar] [CrossRef] [PubMed]
- Proaño, B.; Pérez, O. In vitro fertilizations with cryopreserved sperm of Rhinella marina (Anura: Bufonidae) in Ecuador. Amphib. Reptile Conserv. 2017, 11, 1–6. [Google Scholar]
- Browne, R.K.; Clulow, J.; Mahony, M.; Clark, A. Successful recovery of motility and fertility of cryopreserved cane toad (Bufo marinus) Sperm. Cryobiology 1998, 37, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Unger, S.; Mathis, A.; Wilkinson, R. A comparison of sperm health in declining and stable populations of hellbenders (Cryptobranchus alleganiensis alleganiensis and C.a. bishopi). Am. Midl. Nat. 2013, 170, 382–392. [Google Scholar] [CrossRef]
- Morrow, S.; Gosálvez, J.; López-Fernández, C.; Arroyo, F.; Holt, W.V.; Guille, M.J. Effects of freezing and activation on membrane quality and DNA damage in Xenopus tropicalis and Xenopus laevis spermatozoa. Reprod. Fertil. Dev. 2017, 29, 1556–1566. [Google Scholar] [CrossRef] [Green Version]
- Pearl, E.; Morrow, S.; Noble, A.; Lerebours, A.; Horb, M.; Guille, M. An optimized method for cryogenic storage of Xenopus sperm to maximise the effectiveness of research using genetically altered frogs. Theriogenology 2017, 92, 149–155. [Google Scholar] [CrossRef] [Green Version]
- Calado, L.L. Collection and Cryopreservation of American Bullfrog (Lithobates catesbeianus) Semen. Master’s Dissertation, Federal University of Viçosa, Viçosa, Brazil, 2009. [Google Scholar]
- Hopkins, B.K.; Herr, C. Cryopreservation of frog (Rana pipiens) sperm cells collected by non-lethal methods. Reprod. Fertil. Dev. 2008, 20, 120. [Google Scholar] [CrossRef]
- Mugnano, J.A.; Costanzo, J.; Beesley, S.G.; Lee, R.E., Jr. Evaluation of glycerol and dimethyl sulfoxide for the cryopreservation of spermatozoa from the wood frog (Rana sylvatica). CryoLetters 1998, 19, 249–254. [Google Scholar]
- Uteshev, V.K.; Shishova, N.V.; Kaurova, S.A.; Manokhin, A.A.; Gakhova, E.N. Collection and cryopreservation of hormonally induced sperm of pool frog (Pelophylax lessonae). Russ. J. Herpetol. 2013, 20, 105–109. [Google Scholar]
- Shishova, N.R.; Uteshev, V.K.; Kaurova, S.A.; Browne, R.K.; Gakhova, E.N. Cryopreservation of hormonally induced sperm for the conservation of threatened amphibians with Rana temporaria as a model research species. Theriogenology 2011, 75, 220–232. [Google Scholar] [CrossRef]
- Mazur, P.; Leibo, S.P.; Chu, E.H.Y. A two-factor hypothesis of freezing injury. Exp. Cell. Res. 1972, 71, 345–355. [Google Scholar] [CrossRef]
- Magnotti, C.; Cerqueira, V.; Lee-Estevez, M.; Farias, J.G.; Valdebenito, I.; Figueroa, E. Cryopreservation and vitrification of fish semen: A review with special emphasis on marine species. Rev. Aquac. 2018, 10, 15–25. [Google Scholar] [CrossRef]
- Cuevas-Uribe, R.; Chesney, E.J.; Daly, J.; Tiersch, T.R. Vitrification of sperm from marine fish: Effect on motility and membrane integrity. Aquac. Res. 2015, 46, 1770–1784. [Google Scholar] [CrossRef] [Green Version]
- Fahy, G.M.; MacFarlane, D.R.; Angell, C.A.; Meryman, H.T. Vitrification as an approach to cryopreservation. Cryobiology 1984, 21, 407–426. [Google Scholar] [CrossRef] [PubMed]
- Holt, W.V. Fundamental aspects of sperm cryobiology: The importance of species and individual differences. Theriogenology 2000, 53, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Billard, R.; Cosson, J.; Noveiri, S.B.; Pourkazemi, M. Cryopreservation and short-term storage of sturgeon sperm, a review. Aquaculture 2004, 236, 1–9. [Google Scholar] [CrossRef]
- Mazur, P.; Leibo, S.P.; Seidel, G.E. Cryopreservation of the germplasm of animals used in biological and medical research: Importance, impact, status, and future directions. Biol. Reprod. 2008, 78, 2–12. [Google Scholar] [CrossRef] [Green Version]
- Koshimoto, C.; Mazur, P. Effects of warming rate, temperature, and antifreeze proteins on the survival of mouse spermatozoa frozen at an optimal rate. Cryobiology 2002, 45, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Clulow, J.; Upton, R.; Trudeau, V.L.; Clulow, S. Amphibian Assisted Reproductive Technologies: Moving from Technology to Application. In Reproductive Sciences in Animal Conservation, 2nd ed.; Comizzoli, P., Brown, J.L., Holt, W.V., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 413–463. [Google Scholar]
- Charlton, S.J.; Nielsen, M.B.; Pedersen, C.R.; Thomsen, L.; Kristjansen, M.P.; Sørensen, T.B.; Pertoldi, C.; Strand, J. Strong heterogeneity in advances in cryopreservation techniques in the mammalian orders. Zoolog Sci. 2018, 35, 1–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saint Jalme, M.; Lecoq, R.; Seigneurin, F.; Blesbois, E.; Plouzeau, E. Cryopreservation of semen from endangered pheasants: The first step towards a cryobank for endangered avian species. Theriogenology 2003, 59, 875–888. [Google Scholar] [CrossRef]
- O’Brien, J.K.; Steinman, K.J.; Montano, G.A.; Dubach, J.M.; Robeck, T.R. Chicks produced in the Magellanic penguin (Spheniscus magellanicus) after cloacal insemination of frozen-thawed semen. Zoo Biol. 2016, 35, 326–338. [Google Scholar] [CrossRef] [PubMed]
- Asturiano, J.F.; Cabrita, E.; Horváth, Á. Progress, challenges and perspectives on fish gamete cryopreservation: A mini-review. Gen Comp Endocrinol 2016, 245, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Páramo, S.; Horváth, Á.; Labbé, C.; Zhang, T.; Robles, V.; Herráez, P.; Suquet, M.; Adams, S.; Viveiros, A.; Tiersch, T.R.; et al. Cryobanking of aquatic species. Aquaculture 2017, 472, 156–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaneko, T.; Yamamura, A.; Ide, Y.; Ogi, M.; Yanagita, T.; Nakagata, N. Long-term cryopreservation of mouse sperm. Theriogenology 2006, 66, 1098–1101. [Google Scholar] [CrossRef] [PubMed]
- Kopeika, J.; Thornhill, A.; Khalaf, Y. The effect of cryopreservation on the genome of gametes and embryos: Principles of cryobiology and critical appraisal of the evidence. Hum. Reprod. Update 2015, 21, 209–227. [Google Scholar] [CrossRef] [Green Version]
- Lansac, J.; Royère, D. Follow-up studies of children born after frozen sperm donation. Hum. Reprod. Update 2001, 7, 33–37. [Google Scholar] [CrossRef]
- Mendelson, J.R.; Altig, R. Tadpoles, froglets, and conservation: A discussion of basic principles of rearing and release procedures. Amphib. Reptile Conserv. 2016, 10, 20–27. [Google Scholar]
- Akter, S.; Hassan, M.M.; Nahiduzzaman, M.; Hossain, M.A.R. Growth and survival of olive barb, Puntius sarana (Hamilton 1822) larvae produced with cryopreserved versus fresh sperm. Aquac. Res. 2016, 47, 228–233. [Google Scholar] [CrossRef]
- Rahman, F.; Sarder, R.I.; Rouf, M.A. Comparison of growth performance between cryopreserved and fresh sperm-originated fry of Barbonymus gonionotus. J. Bangladesh Agric. Univ. 2009, 7, 145–149. [Google Scholar] [CrossRef] [Green Version]
- Viveiros, A.T.M.; Isaú, Z.A.; Caneppele, D.; Leal, M.C. Sperm cryopreservation affects postthaw motility, but not embryogenesis or larval growth in the Brazilian fish Brycon insignis (Characiformes). Theriogenology 2012, 78, 803–810. [Google Scholar] [CrossRef] [Green Version]
- Rana, K.J.; McAndrew, B.J. The viability of cryopreserved tilapia spermatozoa. Aquaculture 1989, 76, 335–345. [Google Scholar] [CrossRef]
- Nusbaumer, D.; Marques da Cunha, L.; Wedekind, C. Sperm cryopreservation reduces offspring growth. Proc. R. Soc. B 2019, 286, 20191644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayes, M.C.; Rubin, S.P.; Hensleigh, J.E.; Reisenbichler, R.R.; Wetzel, L.A. Performance of juvenile steelhead trout (Oncorhynchus mykiss) produced from untreated and cryopreserved milt. Aquaculture 2005, 249, 291–302. [Google Scholar] [CrossRef]
- Galo, J.M.; Streit-Junior, D.P.; Oliveira, C.A.; Povh, J.P.; Fornari, D.C.; Digmayer, M.; Ribeiro, R.P. Quality of fresh and cryopreserved semen and their influence on the rates of fertilization, hatching and quality of the larvae of Piaractus mesopotamicus. Braz. J. Biol. 2019, 79, 438–445. [Google Scholar] [CrossRef]
- Bokor, Z.; Ittzés, I.; Mosonyi, G.; Kotrik, L.; Müller, T.; Urbányi, B.; Horváth, Á. Survival and growth rates of wels catfish (Siluris glanis Linnaeus, 1758) larvae originating from fertilization with cryopreserved or fresh sperm. Appl. Ichthyol. 2015, 31, 164–168. [Google Scholar] [CrossRef]
- Miller, M.E.; Kemski, M.; Grayson, J.D.; Towne, K.; Dabrowski, K. Yellow perch sperm motility, cryopreservation, and viability of resulting larvae and juveniles. N. Am. J. Aquac. 2018, 80, 3–12. [Google Scholar] [CrossRef]
- Fernández-Gonzalez, R.; Moreira, P.N.; Pérez-Crespo, M.; Sánchez-Martín, M.; Ramirez, M.A.; Pericuesta, E.; Bilbao, A.; Bermejo-Alvarez, P.; de Dios Hourcade, J.; de Fonseca, F.R.; et al. Long-term effects of mouse intracytoplasmic sperm injection with DNA-fragmented sperm on health and behavior of adult offspring. Biol. Reprod. 2008, 78, 761–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Mello, F.; Garcia, J.S.; Godoy, L.C.; Depincé, A.; Labbé, C.; Streit, D.P., Jr. The effect of cryoprotectant agents on DNA methylation patterns and progeny development in the spermatozoa of Colossoma macropomum. Gen. Comp. Endocrinol. 2017, 245, 94–101. [Google Scholar] [CrossRef]
- Poo, S.; Bogisich, A.; Mack, M.; Lynn, B.K.; Devan-Song, A. Post-release comparisons of amphibian growth reveal challenges with sperm cryopreservation as a conservation tool. Conserv. Sci. Pract. 2022, 4, e572. [Google Scholar] [CrossRef]
- Poo, S.; Hinkson, K.M. Amphibian conservation using assisted reproductive technologies: Cryopreserved sperm affects offspring morphology, but not behavior, in a toad. Glob. Ecol. Conserv. 2020, 21, e00809. [Google Scholar] [CrossRef]
- Fontenot, C.L., Jr. Reproductive biology of the aquatic salamander Amphiuma tridactylum in Louisiana. J. Herpetol. 1999, 33, 100–105. [Google Scholar] [CrossRef]
- Scott, D.E. The effect of larval density on adult demographic traits in Ambystoma opacum. Ecology 1994, 75, 1383–1396. [Google Scholar] [CrossRef]
- Howard, R.D.; Young, J.R. Individual variation in male vocal traits and female mating preferences in Bufo americanus. Anim. Behav. 1998, 55, 1165–1179. [Google Scholar] [CrossRef] [Green Version]
- Cabrera-Guzmán, E.; Crossland, M.R.; Brown, G.P.; Shine, R. Larger body size at metamorphosis enhances survival, growth and performance of young cane toads (Rhinella marina). PLoS ONE 2013, 8, e70121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flowers, M.A.; Graves, B.M. Prey selectivity and size-specific diet changes in Bufo cognatus and B. woodhousii during early postmetamorphic ontogeny. J. Herpetol. 1995, 29, 608–612. [Google Scholar] [CrossRef]
- Newman, R.A. Body size and diet of recently metamorphosed spadefoot toads (Scaphiopus couchii). Herpetologica 1999, 55, 507–515. [Google Scholar]
- Altwegg, R.; Reyer, H.-U. Patterns of natural selection on size at metamorphosis in water frogs. Evolution 2003, 57, 872–882. [Google Scholar] [CrossRef]
- Metcalfe, N.B.; Monaghan, P. Compensation for a bad start: Grow now, pay later? Trends Ecol. Evol. 2001, 16, 254–260. [Google Scholar] [CrossRef]
Family | Species | Conserva-tion Status (IUCN) | Cooling Rate (−° min−1) | Freeze Method | Thaw Method | Sperm Parameters Post-Thaw (%) | Sperm Source | Reference |
---|---|---|---|---|---|---|---|---|
Ambystomatidae | Ambystoma mexicanum (Axolotl) | CR | ~108 | Within goblet in dry shipper | WB (25 °C; 5 min) | 85 (VIA) | SP | [166] |
~24 | Within goblet and canister in dry shipper | WB (25 °C; 5 min) | 86 (VIA) | SP | ||||
~10 | Within additional insulation in dry shipper | WB (25 °C; 5 min) | 89 (VIA) | SP | ||||
NS | 5 cm above LN for 15 min | 15 °C; 5 min | SP * | [165] | ||||
Ambystoma tigrinum (Eastern tiger salamander) | LC | NS | 20 cm above LN for 15 min | WB (40 °C; ~5 s) | SM | [171] | ||
Bufonidae | Anaxyrus americanus (American toad) | LC | 0.7 | Direct into −20 °C freezer; store in −80 °C freezer | WB (25 °C; 10 s) | TM | [168] | |
130 | Direct into −80 °C freezer | WB (NS) | TM | [55] | ||||
Anaxyrus baxteri (Wyoming toad) | EW | ~10 | Above LN | Air (23 °C; 10 s); WB (40 °C; 10 s) | SU | [147] | ||
Anaxyrus boreas boreas (Mountain boreal toad) | LC | 20–25 | 10 cm above LN | WB (40 °C; ~5 s) | SU | [35] | ||
Anaxyrus fowleri (Fowler’s toad) | LC | 32–45 | 5 cm above LN for 10 min | WB (40 °C; ~5 s) | 24 (MOT), 5 (FPM) | SU | [38] | |
20–29 | 10 cm above LN for 10 min | WB (40 °C; ~5 s) | 19 (MOT), 4 (FPM) | SU | ||||
20–25 | 10 cm above LN | WB (40 °C; ~5 s) | SU | [35] | ||||
~9 | Above LN2. | Air (23 °C; 10 s); WB (40 °C; 10 s) | SU | [147] | ||||
Anaxyrus houstonensis (Houston toad) | CR | 32–45 | 5 cm above LN for 10 min | WB (40 °C; ~5 s) | 32 (relative MOT) | SU | [148] | |
20–29 | 10 cm above LN for 10 min | WB (40 °C; ~5 s) | 27 (relative MOT) | SU | ||||
Atelopus sp. (undescribed Harlequin frog) | VU | NS | 5 cm above LN for 10 min | WB (40 °C; 15 s) | 17 (MOT), 0 (FPM), 16 (VIA) | SU | [149] | |
NS | 7 cm above LN for 10 min | WB (40 °C; 15 s) | 29 (MOT), 1 (FPM), 18 (VIA) | SU | ||||
NS | 10 cm above LN for 10 min | WB (40 °C; 15 s) | 57 (MOT), 24 (FPM), 59 (VIA) | SU | ||||
NS | 13 cm above LN for 10 min | WB (40 °C; 15 s) | 60 (MOT), 22 (FPM), 58 (VIA) | SU | ||||
Atelopus zeteki (Panamanian golden frog) | CR | 60 | 10 cm above LN for 3 min | WB (21 °C; 15 s) | SU | [150] | ||
Epidalea calamita (Natterjack toad) | LC | NS | 5 cm above LN for 10 min | WB (40 °C; ~5 s) | SU | [172] | ||
Peltophryne lemur (Puerto Rican crested toad) | EN | 32–45 | 5 cm above LN for 10 min | WB (40 °C; ~5 s) | 32 (relative MOT) | SU | [148] | |
20–29 | 10 cm above LN for 10 min | WB (40 °C; ~5 s) | 27 (relative MOT) | SU | ||||
38 | 10 cm above LN for 10 min | WB (40 °C; ~5 s) | SU | [152] | ||||
20–25 | 1 cm above LN | WB (40 °C; ~5 s) | SU | [35] | ||||
Rhaebo guttatus (Smooth-sided toad) | LC | ~10 | 10 cm above LN for 10 min | Air (23 °C; 10 s); WB (40 °C; 10 s) | SU | [173] | ||
Rhinella marina (Cane toad) | LC | 1–5 | Programmable freezer # | Air (21 °C) | 47 (MOT) | TM | [175] | |
~40 C | 1 cm above LN | Air (21 °C) | <2% (MOT) | TM | ||||
~30 | 3 cm above LN | Air (21 °C) | <10% (MOT) | TM | ||||
1–5 | Programmable freezer # | Air (21 °C) | TM | [167] | ||||
NS | Direct into −20 °C freezer; store in −80 °C freezer | Air (4 °C) for 2 h | TM | [174] | ||||
Cryptobranchidae | Andrias davidianus (Chinese giant salamander) | CR | NS | Above LN | WB (26–28 °C) | SM | [146] | |
Cryptobranchus alleganiensis (Hellbender) | VU | NS | 5–10 cm above LN for 5 min | Rubbed between hands for several mins | SM | [37] | ||
NS | Direct into −80 °C freezer | WB (35 °C; ~10 s) | SM | [176] | ||||
Eleutherodactylidae | Eleutherodactylus coqui (Puerto Rican coqui) | LC | ~24 | Direct into −80 °C freezer | WB (20 °C; ~36 s) | TM | Michael and Jones [56] | |
Limnodynastidae | Limnodynastes peronii (Striped marsh frog) | LC | 1–5 | Programmable freezer # | Air | TM | [53] | |
Philoria frosti (Baw Baw frog) | CR | ~21 | Within goblet and canister in dry shipper, 2-step lowering of goblet | Air (19–22 °C; 2 s); WB (40 °C; 5 s) | SU | Hobbs and O’Brien (unpublished data) | ||
Myobatrachidae | Crinia signifera (Common eastern froglet) | LC | 1–5 | Programmable freezer # | Air | TM | [53] | |
Pseudophryne bibronii (Brown toadlet) | LC | 1–5 | Programmable freezer # | Air | TM | [53] | ||
Pseudophryne corroboree (Southern corroboree frog) | CR | ~21 | Within goblet and canister in dry shipper, 2-step lowering of goblet | Air (19–22 °C; 2 s); WB (40 °C; 5 s) | SU | Hobbs and O’Brien (unpublished data) | ||
Pseudophryne pengilleyi (Northern corroboree frog) | CR | ~21 | Within goblet and canister in dry shipper, 2-step lowering of goblet | Air (19–22 °C; 2 s); WB (40 °C; 5 s) | SU | Hobbs and O’Brien (unpublished data) | ||
Pelodryadidae | Litoria aurea (Green and golden bell frog) | VU | 1–3.4 | Programmable freezer # | Air (21 °C; 2 min) | TM | [36] | |
1–3.4 | Programmable freezer # | Air (21 °C; 2 min) | SU | Upton et al. (unpublished data) | ||||
Litoria booroolongensis (Booroolong frog) | CR | ~21 | Within goblet and canister in dry shipper, 2-step lowering of goblet | Air (19 °C; 2 s); WB (40 °C; 5 s) | SU | Hobbs and O’Brien (unpublished data) | ||
Litoria brevipalmata (Green-thighed frog) | EN | 1–5 | Programmable freezer # | Air | TM | [53] | ||
Litoria castanea (Yellow-spotted bell frog) | ~21 | Within goblet and canister in dry shipper, two-step lowering of goblet | Air (19 °C; 2 s); WB (40 °C; 5 s) | SU | Hobbs and O’Brien (unpublished data) | |||
Litoria citropa (Blue Mountains tree frog) | LC | 1–3.4 | Programmable freezer # | Air (21 °C; 2 min) | TM | [23] | ||
Litoria dentata (Bleating tree frog) | LC | 1–5 | Programmable freezer # | Air | TM | [53] | ||
Litoria fallax (Eastern dwarf tree frog) | LC | 1–5 | Programmable freezer # | Air | TM | [53] | ||
1–3.4 | Programmable freezer # | Air | TM | [23,57] | ||||
Litoria latopalmata (Broad-palmed frog) | LC | 1–5 | Programmable freezer # | Air | TM | [53] | ||
Litoria lesueurii (Lesueur’s tree frog) | LC | 1–5 | Programmable freezer # | Air | TM | [53] | ||
Litoria littlejohni (Littlejohn’s tree frog) | LC | 1–3.4 | Programmable freezer # | Air (21 °C; 2 min) | SU | [23] | ||
Litoria nasuta (Striped rocket frog) | LC | 1–5 | Programmable freezer # | Air | TM | [53] | ||
Litoria nudidigitus (Southern leaf green tree frog) | LC | 1–3.4 | Programmable freezer # | Air (21 °C; 2 min) | TM | [23] | ||
Litoria peronii (Peron’s tree frog) | LC | 1–5 | Programmable freezer # | Air | TM | [53] | ||
Litoria phyllochroa (Leaf green tree frog) | LC | 1–5 | Programmable freezer # | Air | TM | [53] | ||
Litoria quiritatus (Screaming tree frog) | NL | 1–3.4 | Programmable freezer # | Air (21 °C; 2 min) | TM | [23] | ||
Litoria subglandulosa (New England tree frog) | VU | 1–5 | Programmable freezer # | Air | TM | [53] | ||
Litoria tyleri (Tyler’s tree frog) | LC | 1–3.4 | Programmable freezer # | Air (21 °C; 2 min) | TM | [23] | ||
Pipidae | Xenopus laevis (African clawed frog) | LC | NS | Direct into −80 °C freezer | Held between hands | TM | [177] | |
NS | Direct into −80 °C freezer | WB (37 °C; 40 s) | TM | [178] | ||||
NS | 5 cm above LN for 7 min | Air (40 s) | 1 (MOT), 6 (VIA) | TM | [58] | |||
NS | 8 cm above LN for 7 min | Air (40 s) | 8 (MOT), 15 (VIA) | TM | ||||
20–25 | 10 cm above LN for 7 min | Air (40 s) | 20 (MOT), 48 (VIA) | TM | ||||
10 | Programmable freezer | Air (40 s) | TM | [59] | ||||
NS | Direct into −80 °C freezer | WB (37 °C) | TM | [170] | ||||
Xenopus tropicalis (Western clawed frog) | LC | NS | Direct into −80 °C freezer | Held between hands | TM | [177] | ||
NS | Direct into −80 °C freezer | WB (37 °C; 40 s) | TM | [178] | ||||
10 | Programmable freezer | Air (40 s) | TM | [59] | ||||
Ranidae | Lithobates catesbeianus (American bullfrog) | LC | NS | Dry shipper | WB (37 °C; 10 s) | SU | [179] | |
Lithobates chiricahuensis (Chiricahua leopard frog) | VU | 32–45 | 5 cm above LN for 10 min | WB (40 °C; ~5 s) | 74 (relative MOT) | SU | [148] | |
20–29 | 10 cm above LN for 10 min | WB (40 °C; ~5 s) | 55 (relative MOT) | SU | ||||
Lithobates pipiens (Northern leopard frog) | LC | 130 | Direct into −80 °C freezer | WB (NS) | TM | [55] | ||
NS | On dry ice for 3 min. | Centrifuge (21 °C) | SU | [180] | ||||
~11 | Above LN | Air (23 °C; 10 s); WB (40 °C; 10 s) | SU | [147] | ||||
Lithobates sevosus (Dusky gopher frog) | CR | ~12 | Above LN | Air (23 °C; 10 s); WB (40 °C; 10 s) | SU | [147] | ||
20–25 | 10 cm above LN | WB (40 °C; ~5 s) | SU | [35] | ||||
Lithobates sylvaticus (Wood frog) | LC | ~130 | Direct into −80 °C freezer | WB | TM | [55] | ||
~130 | On dry ice; stored in −80 °C freezer | WB (30 °C) | TM | [181] | ||||
~0.2 | Direct into −8 °C freezer | WB (23 °C for 20 min) | TM | [62] | ||||
Pelophylax lessonae (Pool frog) | LC | NS | 10 cm above LN for 15 min | WB (40 °C) | SU | [182] | ||
Rana temporaria (European common frog) | LC | 5–7 | Above LN for 13 min | WB (40 °C; 6–8 s) | TM | [60] | ||
NS | 5 cm above LN for 7 min | WB (22 °C; 30–40 s) | 0 (MOT) | TM | [61] | |||
NS | 10 cm above LN for 7 min | WB (22 °C; 30–40 s) | 30–35 (MOT) | TM | ||||
5–7 | 10 cm above LN for 5–7 min | WB (40 °C) | SU | [183] | ||||
Salamandridae | Notophthalmus meridionalis (Black-spotted newt) | EN | NS | 10 cm above LN for 10 min | WB (40 °C; 5 s) | SM | [151] | |
Tylototriton kweichowensis (Kweichow newt) | VU | NS | 10 cm above LN for 10 min | WB (40 °C; 5 s) | SM | [151] |
Family | Species | Conservation Status (IUCN) | Sperm Source | FDTs Assessed | Key Results | Reference |
---|---|---|---|---|---|---|
Ambystomatidae | Ambystoma tigrinum (Eastern tiger salamander) | LC | SM | 1. Hatching success 2. Reproductive success of F1 generation | 1. Cryo (33%) = non-cryo (45%); 21 cryo F1 hatchings produced 2. 1 cryo F1 female + 1 non-cryo male produced 5 F2 hatchlings (4% of eggs) | [154] |
SM | 1. Larval total length 21 days post-hatching 2. Larval total length 28 days post-hatching 3. Survival beyond 28 days post-hatching | 1. Cryo = non-cryo 2. Cryo > non-cryo 3. Cryo = non-cryo; continuation of development | [145] | |||
Bufonidae | Anaxyrus fowleri (Fowler’s toad) | LC | SU | 1. Hatching success | 1. Cryo (13%) < non-cryo (52%); 1102 cryo F1 hatchlings produced Nb: hatchling progress currently being monitored | [38] |
SU | 1. Larval total length 10 days post-oviposition 2. Larval tail length 10 days post-oviposition 3. Larval width 10 days post-oviposition 4. Larval total length 20 days post-oviposition 5. Larval tail length 20 days post-oviposition 6. Larval width 20 days post-oviposition 7. Larval duration 8. Survival to metamorphosis 9. Mass at metamorphosis 10. SVL at metamorphosis | 1. Cryo = non-cryo 2. Cryo = non-cryo 3. Cryo = non-cryo 4. Cryo < non-cryo 5. Cryo < non-cryo 6. Cryo < non-cryo 7. Cryo > non-cryo 8. Cryo = non-cryo 9. Cryo < non-cryo 10. Cryo < non-cryo | [213] | |||
SU | 1. Larval total length 30 days post-oviposition 2. Larval tail length 30 days post-oviposition 3. Larval width 30 days post-oviposition 4. Larval baseline activity level 5. Larval duration 6. Mass at metamorphosis 7. SVL at metamorphosis | 1. Cryo < non-cryo 2. Cryo < non-cryo 3. Cryo = non-cryo 4. Cryo = non-cryo 5. Cryo = non-cryo 6. Cryo < non-cryo 7. Cryo < non-cryo | [214] | |||
Peltophyrne lemur (Puerto Rican crested toad) | EN | SU | 1. Hatching success 2. Reproductive success of F1 generation | 1. Cryo (15%) = non-cryo (27%); 46 cryo F1 hatchings produced 2. 1 cryo F1 male + 1 non-cryo female produced 5095 F2 hatchlings (98% of eggs) | [154] | |
SU | 1. Hatching success 2. Survival to metamorphosis 3. Survival of F1 generation 4. Reproductive success of F1 generation | 1. Cryo (18%) = non-cryo (41%); 55 cryo F1 hatchlings produced 2. Cryo (15%) = non-cryo (27%); 46 cryo F1 metamorphs produced 3. 24 (75%) cryo F1 in CBP surviving after 1.5 years 4. 1 cryo F1 male produced F2 offspring | [152] | |||
Pelodryadidae | Litoria aurea (Green and golden bell frog) | VU | TM | 1. Embryonic duration 2. Hatching success 3. Survival to sexual maturity | 1. Cryo = non-cryo 2. Cryo (~2%) < non-cryo (~40%) 3. Both male and female cryo F1 reached sexual maturity | [36] |
Litoria fallax (Eastern dwarf tree frog) | LC | TM | 1. Hatching success 2. Survival to metamorphosis 3. Survival to sexual maturity | 1. Cryo (62%) > non-cryo (30%); 133 cryo F1 hatchlings produced 2. Cryo = non-cryo; 4 cryo F1 metamorphs produced 3. 1 cryo F1 reached sexual maturity. | [57] | |
Pipidae | Xenopus laevis (African clawed frog) | LC | TM | 1. Embryonic development 2. Mass at metamorphosis 3. Reproductive success of F1 generation | 1. Cryo = non-cryo 2. Cryo = non-cryo 3. Cryo = non-cryo; 18 cryo F1 used for AF. | [178] |
Ranidae | Lithobates sevosus (Dusky gopher frog) | VU | SU | 1. Hatching success 2. Reproductive success of F1 generation | 1. Cryo (4%) = non-cryo (7%); 42 cryo F1 hatchings produced 2. 1 cryo F1 male + 1 non-cryo female produced 48 F2 hatchlings (64% of eggs) | [154] |
SU | 1. Hatching success 2. Reproductive success of F1 generation 3. Rate of development of F2 generation | 1. Cryo (26%); non-cryo (46%) 2. 2 cryo F1 male + 1 non-cryo female produced F2 hatchlings 3. F2 = non-cryo | [34] | |||
SU | 1. Hatching success 2. Mass at metamorphosis 3. SVL at metamorphosis 4. Survival to completion of metamorphosis 5. Rate of development | 1. Cryo (27%) < non-cryo (46%) 2. Cryo > non-cryo 3. Cryo = non-cryo 4. Cryo (70%); non-cryo (55%) 5. Cryo = non-cryo | [35] | |||
Rana temporaria (European common frog) | LC | SU | 1. Hatching success 2. Larval survival at 7 days post-fertilisation | 1. Cryo (71%) = non-cryo 2. Cryo (74%) = non-cryo Nb: when cryo treatment was 12% DMF + 10% sucrose | [183] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anastas, Z.M.; Byrne, P.G.; O’Brien, J.K.; Hobbs, R.J.; Upton, R.; Silla, A.J. The Increasing Role of Short-Term Sperm Storage and Cryopreservation in Conserving Threatened Amphibian Species. Animals 2023, 13, 2094. https://doi.org/10.3390/ani13132094
Anastas ZM, Byrne PG, O’Brien JK, Hobbs RJ, Upton R, Silla AJ. The Increasing Role of Short-Term Sperm Storage and Cryopreservation in Conserving Threatened Amphibian Species. Animals. 2023; 13(13):2094. https://doi.org/10.3390/ani13132094
Chicago/Turabian StyleAnastas, Zara M., Phillip G. Byrne, Justine K. O’Brien, Rebecca J. Hobbs, Rose Upton, and Aimee J. Silla. 2023. "The Increasing Role of Short-Term Sperm Storage and Cryopreservation in Conserving Threatened Amphibian Species" Animals 13, no. 13: 2094. https://doi.org/10.3390/ani13132094
APA StyleAnastas, Z. M., Byrne, P. G., O’Brien, J. K., Hobbs, R. J., Upton, R., & Silla, A. J. (2023). The Increasing Role of Short-Term Sperm Storage and Cryopreservation in Conserving Threatened Amphibian Species. Animals, 13(13), 2094. https://doi.org/10.3390/ani13132094