Assessing the Effectiveness of Qista Baited Traps in Capturing Mosquito Vectors of Diseases in the Camargue Region (France) and Investigating Their Diversity
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Study Area
2.3. Description of the Trapping Methods
2.3.1. The Qista BAM Trap
2.3.2. The Site-Nuisance Characterization
- S4, S5, and S6, located 130 m from the castle and 70 m from the traps (Figure 3). These sites were considered to be located in the control area because they were located outside the attraction radius of the BAM traps, which is 60 m.
2.3.3. The Implantation Study
2.3.4. Experiment Design: Monitoring the Qista BAM Trap Potential through HLC
2.4. Data Analysis
3. Results
3.1. Inventory of the Captured Mosquitoes
3.2. HLC before Implantation
3.3. The Qista BAM Catches
3.3.1. The 24 h Net Recovery
3.3.2. The Six-Day Net Recovery
3.3.3. Six-Day vs. Twenty-Four-Hour Net Recovery
3.4. HLC in the Control Area vs. the Protected Area after the BAM Deployment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harbach, R.E. The Culicidae (Diptera): A review of taxonomy, classification and phylogeny. Zootaxa 2007, 1668, 591–638. [Google Scholar] [CrossRef]
- Harbach, R. Culicidae Meigen, 1818. Mosquito Taxonomic Inventory. Available online: https://mosquito-taxonomic-inventory.myspecies.info/simpletaxonomy/term/6045 (accessed on 15 March 2023).
- Powell, J.R. New contender for most lethal animal. Nature 2016, 540, 525. [Google Scholar] [CrossRef] [PubMed]
- Becker, N.; Petric, D.; Zgomba, M.; Boase, C.; Madon, M.; Dahl, C.; Kaiser, A. Mosquitoes and Their Control; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Lee, H.; Halverson, S.; Ezinwa, N. Mosquito-Borne Diseases. Prim. Care 2018, 45, 393–407. [Google Scholar] [CrossRef]
- Bamou, R.; Mayi, M.P.A.; Djiappi-Tchamen, B.; Nana-Ndjangwo, S.M.; Nchoutpouen, E.; Cornel, A.J.; Awono-Ambene, P.; Parola, P.; Tchuinkam, T.; Antonio-Nkondjio, C. An update on the mosquito fauna and mosquito-borne diseases distribution in Cameroon. Parasit. Vectors 2021, 14, 527. [Google Scholar] [CrossRef]
- Wang, G.H.; Gamez, S.; Raban, R.R.; Marshall, J.M.; Alphey, L.; Li, M.; Rasgon, J.L.; Akbari, O.S. Combating mosquito-borne diseases using genetic control technologies. Nat. Commun. 2021, 12, 4388. [Google Scholar] [CrossRef]
- Abbasi, E.; Vahedi, M.; Bagheri, M.; Gholizadeh, S.; Alipour, H.; Moemenbellah-Fard, M.D. Monitoring of synthetic insecticides resistance and mechanisms among malaria vector mosquitoes in Iran: A systematic review. Heliyon 2022, 8, e08830. [Google Scholar] [CrossRef]
- Chan, K.; Bottomley, C.; Saito, K.; Lines, J.; Tusting, L.S. The control of malaria vectors in rice fields: A systematic review and meta-analysis. Sci. Rep. 2022, 12, 19694. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Malaria Report 2021. Available online: https://www.who.int/publications/i/item/9789240040496 (accessed on 15 March 2023).
- Guzman, M.G.; Gubler, D.J.; Izquierdo, A.; Martinez, E.; Halstead, S.B. Dengue infection. Nat. Rev. Dis. Prim. 2016, 2, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Harapan, H.; Michie, A.; Sasmono, R.T.; Imrie, A. Dengue: A Minireview. Viruses 2020, 12, 829. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Dengue Worldwide Overview. Available online: https://www.ecdc.europa.eu/en/dengue-monthly (accessed on 21 January 2023).
- Cochet, A.; Calba, C.; Jourdain, F.; Grard, G.; Durand, G.A.; Guinard, A.; Noël, H.; Paty, M.-C.; Franke, F. Autochthonous dengue in mainland France, 2022: Geographical extension and incidence increase. Eurosurveillance 2022, 27, 2200818. [Google Scholar] [CrossRef]
- Wilson, A.L.; Courtenay, O.; Kelly-Hope, L.A.; Scott, T.W.; Takken, W.; Torr, S.J.; Lindsay, S.W. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl. Trop. Dis. 2020, 14, e0007831. [Google Scholar] [CrossRef] [PubMed]
- Paradkar, P.N.; Sahasrabudhe, P.R.; Ghag Sawant, M.; Mukherjee, S.; Blasdell, K.R. Towards Integrated Management of Dengue in Mumbai. Viruses 2021, 13, 2436. [Google Scholar] [CrossRef]
- Timmermann, U.; Becker, N. Mosquito-borne West Nile virus (WNV) surveillance in the Upper Rhine Valley, Germany. J. Vector Ecol. 2010, 35, 140–143. [Google Scholar] [CrossRef] [PubMed]
- Bouzid, M.; Brainard, J.; Hooper, L.; Hunter, P.R. Public health interventions for Aedes control in the time of Zika virus—A meta-review on effectiveness of vector control strategies. PLoS Negl. Trop. Dis. 2016, 10, e0005176. [Google Scholar] [CrossRef] [PubMed]
- Bawin, T.; Seye, F.; Boukraa, S.; Zimmer, J.-Y.; Delvigne, F.; Francis, F. La lutte contre les moustiques (Diptera: Culicidae): Diversité des approches et application du contrôle biologique. Can. Entomol. 2015, 147, 476–500. [Google Scholar] [CrossRef]
- Nash, R.K.; Lambert, B.; N’Guessan, R.; Ngufor, C.; Rowland, M.; Oxborough, R.; Moore, S.; Tungu, P.; Sherrard-Smith, E.; Churcher, T.S. Systematic review of the entomological impact of insecticide-treated nets evaluated using experimental hut trials in Africa. Curr. Res. Parasitol. Vector-Borne Dis. 2021, 1, 100047. [Google Scholar] [CrossRef] [PubMed]
- Van Den Berg, H.; Zaim, M.; Yadav, R.S.; Soares, A.; Ameneshewa, B.; Mnzava, A.; Hii, J.; Dash, A.P.; Ejov, M. Global trends in the use of insecticides to control vector-borne diseases. Environ. Health Perspect. 2012, 120, 577–582. [Google Scholar] [CrossRef]
- Hemingway, J. Resistance: A problem without an easy solution. Pestic. Biochem. Physiol. 2018, 151, 73–75. [Google Scholar] [CrossRef]
- Chrustek, A.; Hołyńska-Iwan, I.; Dziembowska, I.; Bogusiewicz, J.; Wróblewski, M.; Cwynar, A.; Olszewska-Słonina, D. Current research on the safety of pyrethroids used as insecticides. Medicina 2018, 54, 61. [Google Scholar] [CrossRef]
- Richardson, J.R.; Fitsanakis, V.; Westerink, R.H.; Kanthasamy, A.G. Neurotoxicity of pesticides. Acta Neuropathol. 2019, 138, 343–362. [Google Scholar] [CrossRef]
- Brühl, C.A.; Després, L.; Frör, O.; Patil, C.D.; Poulin, B.; Tetreau, G.; Allgeier, S. Environmental and socioeconomic effects of mosquito control in Europe using the biocide Bacillus thuringiensis subsp. israelensis (Bti). Sci. Total Environ. 2020, 724, 137800. [Google Scholar] [CrossRef]
- Boyce, R.; Lenhart, A.; Kroeger, A.; Velayudhan, R.; Roberts, B.; Horstick, O. Bacillus thuringiensis israelensis (Bti) for the control of dengue vectors: Systematic literature review. Trop. Med. Int. Health 2013, 18, 564–577. [Google Scholar] [CrossRef]
- Han, W.; Lazaro, A.; McCall, P.; George, L.; Runge-Ranzinger, S.; Toledo, J.; Velayudhan, R.; Horstick, O. Efficacy and community effectiveness of larvivorous fish for dengue vector control. Trop. Med. Int. Health 2015, 20, 1239–1256. [Google Scholar] [CrossRef]
- Lazaro, A.; Han, W.; Manrique-Saide, P.; George, L.; Velayudhan, R.; Toledo, J.; Runge Ranzinger, S.; Horstick, O. Community effectiveness of copepods for dengue vector control: Systematic review. Trop. Med. Int. Health 2015, 20, 685–706. [Google Scholar] [CrossRef] [PubMed]
- Puig-Montserrat, X.; Flaquer, C.; Gómez-Aguilera, N.; Burgas, A.; Mas, M.; Tuneu, C.; Marquès, E.; López-Baucells, A. Bats actively prey on mosquitoes and other deleterious insects in rice paddies: Potential impact on human health and agriculture. Pest Manag. Sci. 2020, 76, 3759–3769. [Google Scholar] [CrossRef] [PubMed]
- Oliva, C.F.; Benedict, M.Q.; Collins, C.M.; Baldet, T.; Bellini, R.; Bossin, H.; Bouyer, J.; Corbel, V.; Facchinelli, L.; Fouque, F. Sterile Insect Technique (SIT) against Aedes species mosquitoes: A roadmap and good practice framework for designing, implementing and evaluating pilot field trials. Insects 2021, 12, 191. [Google Scholar] [CrossRef] [PubMed]
- Poulin, B.; Lefebvre, G. Perturbation and delayed recovery of the reed invertebrate assemblage in Camargue marshes sprayed with Bacillus thuringiensis israelensis. Insect Sci. 2018, 25, 542–548. [Google Scholar] [CrossRef]
- Lühken, R.; Pfitzner, W.P.; Börstler, J.; Garms, R.; Huber, K.; Schork, N.; Steinke, S.; Kiel, E.; Becker, N.; Tannich, E. Field evaluation of four widely used mosquito traps in Central Europe. Parasit. Vectors 2014, 7, 268. [Google Scholar] [CrossRef]
- Liu, Q.-M.; Gong, Z.-Y.; Wang, Z. A Review of the Surveillance Techniques for Aedes albopictus. Am. J. Trop. Med. Hyg. 2022, 108, 245–251. [Google Scholar] [CrossRef]
- Akhoundi, M.; Jourdain, F.; Chandre, F.; Delaunay, P.; Roiz, D. Effectiveness of a field trap barrier system for controlling Aedes albopictus: A “removal trapping” strategy. Parasit. Vectors 2018, 11, 101. [Google Scholar] [CrossRef]
- WIPO. Appareil et Procédé pour Prendre au Piège des Insectes Volants Nuisibles. Available online: https://patentscope.wipo.int/search/fr/detail.jsf?docId=WO2016020627&_cid=P21-LF164D-26078-1. (accessed on 12 February 2023).
- Poulin, B.; Lefebvre, G.; Muranyi-Kovacs, C.; Hilaire, S. Mosquito traps: An innovative, environmentally friendly technique to control mosquitoes. Int. J. Environ. Res. Public Health 2017, 14, 313. [Google Scholar] [CrossRef] [PubMed]
- Balenghien, T.; Fouque, F.; Sabatier, P.; Bicout, D. Horse-, bird-, and human-seeking behavior and seasonal abundance of mosquitoes in a West Nile virus focus of southern France. J. Med. Entomol. 2006, 43, 936–946. [Google Scholar] [CrossRef] [PubMed]
- Balenghien, T.; Vazeille, M.; Grandadam, M.; Schaffner, F.; Zeller, H.; Reiter, P.; Sabatier, P.; Fouque, F.; Bicout, D.J. Vector competence of some French Culex and Aedes mosquitoes for West Nile virus. Vector-Borne Zoonotic Dis. 2008, 8, 589–596. [Google Scholar] [CrossRef]
- Mancini, G.; Montarsi, F.; Calzolari, M.; Capelli, G.; Dottori, M.; Ravagnan, S.; Lelli, D.; Chiari, M.; Santilli, A.; Quaglia, M. Mosquito species involved in the circulation of West Nile and Usutu viruses in Italy. Vet. Ital 2017, 53, 97–110. [Google Scholar] [PubMed]
- Andreadis, T.G.; Anderson, J.F.; Vossbrinck, C.R.; Main, A.J. Epidemiology of West Nile virus in Connecticut: A five-year analysis of mosquito data 1999–2003. Vector-Borne Zoonotic Dis. 2004, 4, 360–378. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.F.; Main, A.J.; Armstrong, P.M.; Andreadis, T.G.; Ferrandino, F.J. Arboviruses in north dakota, 2003–2006. Am. J. Trop. Med. Hyg. 2015, 92, 377. [Google Scholar] [CrossRef]
- Talbalaghi, A.; Moutailler, S.; Vazeille, M.; Failloux, A.B. Are Aedes albopictus or other mosquito species from northern Italy competent to sustain new arboviral outbreaks? Med. Vet. Entomol. 2010, 24, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Gendernalik, A.; Weger-Lucarelli, J.; Luna, S.M.G.; Fauver, J.R.; Rückert, C.; Murrieta, R.A.; Bergren, N.; Samaras, D.; Nguyen, C.; Kading, R.C. American Aedes vexans mosquitoes are competent vectors of Zika virus. Am. J. Trop. Med. Hyg. 2017, 96, 1338. [Google Scholar] [CrossRef]
- Turell, M.J.; O’Guinn, M.L.; Dohm, D.J.; Jones, J.W. Vector competence of North American mosquitoes (diptera: Culicidae) for West Nile virus. J. Med. Entomol. 2001, 38, 130–134. [Google Scholar] [CrossRef]
- Blagrove, M.S.; Sherlock, K.; Chapman, G.E.; Impoinvil, D.E.; McCall, P.J.; Medlock, J.M.; Lycett, G.; Solomon, T.; Baylis, M. Evaluation of the vector competence of a native UK mosquito Ochlerotatus detritus (Aedes detritus) for dengue, chikungunya and West Nile viruses. Parasit. Vectors 2016, 9, 425. [Google Scholar] [CrossRef]
- Heitmann, A.; Jansen, S.; Lühken, R.; Leggewie, M.; Badusche, M.; Pluskota, B.; Becker, N.; Vapalahti, O.; Schmidt-Chanasit, J.; Tannich, E. Experimental transmission of Zika virus by mosquitoes from central Europe. Eurosurveillance 2017, 22, 30437. [Google Scholar] [CrossRef] [PubMed]
- Martinet, J.-P.; Ferté, H.; Failloux, A.-B.; Schaffner, F.; Depaquit, J. Mosquitoes of north-western Europe as potential vectors of arboviruses: A review. Viruses 2019, 11, 1059. [Google Scholar] [CrossRef] [PubMed]
- Piperaki, E.; Daikos, G. Malaria in Europe: Emerging threat or minor nuisance? Clin. Microbiol. Infect. 2016, 22, 487–493. [Google Scholar] [CrossRef]
- Liu, X.; Yang, S.; Yao, Y.; Wu, S.; Wu, P.; Zhai, Z. Opsin1 regulates light-evoked avoidance behavior in Aedes albopictus. BMC Biol. 2022, 20, 110. [Google Scholar] [CrossRef]
- Delaunay, P.; Jeannin, C.; Schaffner, F.; Marty, P. News on the presence of the tiger mosquito Aedes albopictus in metropolitan France. Arch. Pediatr. Organe Off. Soc. Fr. Pediatr. 2009, 16, S66–S71. [Google Scholar] [CrossRef] [PubMed]
- Giron, S.; Franke, F.; Decoppet, A.; Cadiou, B.; Travaglini, T.; Thirion, L.; Durand, G.; Jeannin, C.; L’ambert, G.; Grard, G. Vector-borne transmission of Zika virus in Europe, southern France, August 2019. Eurosurveillance 2019, 24, 1900655. [Google Scholar] [CrossRef]
- La Ruche, G.; Souarès, Y.; Armengaud, A.; Peloux-Petiot, F.; Delaunay, P.; Desprès, P.; Lenglet, A.; Jourdain, F.; Leparc-Goffart, I.; Charlet, F. First two autochthonous dengue virus infections in metropolitan France, September 2010. Eurosurveillance 2010, 15, 19676. [Google Scholar] [CrossRef] [PubMed]
- Cadot, L.; Segondy, M.; Foulongne, V. Laboratory surveillance of arboviral infections in a southern France region colonized by Aedes albopictus. Epidemiol. Infect. 2017, 145, 710–714. [Google Scholar] [CrossRef] [PubMed]
- Bertola, M.; Fornasiero, D.; Sgubin, S.; Paiola, M.; Gabbiadini, M.; Drago, A.; Breda, L.; Montarsi, F.; Capelli, G. Comparative efficacy of BG-Sentinel 2 and CDC-like mosquito traps for monitoring potential malaria vectors in Europe. Parasites Vectors 2022, 15, 160. [Google Scholar] [CrossRef]
- Drago, A.; Marini, F.; Caputo, B.; Coluzzi, M.; della Torre, A.; Pombi, M. Looking for the gold standard: Assessment of the effectiveness of four traps for monitoring mosquitoes in Italy. J. Vector Ecol. 2012, 37, 117–123. [Google Scholar] [CrossRef]
- Englbrecht, C.; Gordon, S.; Venturelli, C.; Rose, A.; Geier, M. Evaluation of BG-sentinel trap as a management tool to reduce Aedes albopictus nuisance in an urban environment in Italy. J. Am. Mosq. Control Assoc. 2015, 31, 16–25. [Google Scholar] [CrossRef] [PubMed]
Species | ∑ of the 24 h Capture Periods | ∑ of the 6 d Capture Periods | χ2 between 24 h and 6 d Capture Periods | Mean of 24 h Capture Period/BAM | Mean of 6 d Capture Period/BAM | p-Value 24 h vs. 6 d Catches |
---|---|---|---|---|---|---|
Ae. caspius | 13,371 (67.78%) | 39,395 (60.86%) | χ2 = 309.22, df = 1, p-value < 2.2 × 10−16 * | 82.54 ± 83.53 | 252.53 ± 275.50 | 0.00049 * |
Ae. detritus | 1150 (5.83%) | 5763 (8.90%) | χ2 = 189.53, df = 1, p -value < 2.2 × 10−16 * | 7.10 ± 13.27 | 36.94 ± 44.43 | 0.0072 * |
Ae. dorsalis | 24 (0.12%) | 63 (0.10%) | χ2 = 0.65042, df = 1, p -value = 0.42 | 0.15 ± 0.41 | 0.40 ± 1.16 | 0.87 |
Ae. vexans | 4494 (22.78%) | 16,012 (24.73%) | χ2 = 31.248, df = 1, p -value = 2.271 × 10−8 * | 27.74 ± 56.26 | 102.64 ± 170.58 | 0.036 * |
Ae. rossicus | 12 (0.06%) | 4 (0.01%) | χ2 = 21.046, df = 1, p -value = 4.483 × 10−6 * | 0.07 ± 0.25 | 0.03 ± 0.13 | 0.33 |
Ae. albopictus | 9 (0.05%) | 34 (0.05%) | χ2 = 0.038286, df = 1, p -value = 0.8449 | 0.06 ± 0.11 | 0.22 ± 0.55 | 0.43 |
An. maculipennis | 145 (0.74%) | 650 (1.00%) | χ2 = 11.449, df = 1, p -value = 0.0007155 * | 0.90 ± 1.39 | 4.17 ± 6.62 | 0.066 |
Cs. annulata | 111 (0.56%) | 245 (0.38%) | χ2 = 41.059, df = 1, p -value = 1.477 × 10−10 * | 0.69 ± 1.75 | 1.57 ± 4.72 | 0.49 |
Cs. longiareolata | 0 (0.00%) | 5 (0.01%) | χ2 = 0.49823, df = 1, p -value = 0.4803 | 0 | 0.03 ± 0.11 | 0.076 |
Cx. pipiens | 407 (2.06%) | 2560 (3.95%) | χ2 = 159, df = 1, p -value < 2.2 × 10−16 * | 2.51 ± 2.74 | 16.41 ± 14.69 | 0.00010 * |
Cx. modestus | 3 (0.02%) | 4 (0.01%) | χ2= 0.59737, df = 1, p -value = 0.4396 | 0.02 ± 0.10 | 0.03 ± 0.13 | 0.98 |
Total mosquito species | 19,726 | 64,735 | NA | 121.765 ± 129.90 | 414.97 ± 434.80 | 8.6 × 10−5 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boucheikhchoukh, M.; Lafri, I.; Chamssidine Combo, A.; Regalado, C.; Barthés, C.; Leulmi, H. Assessing the Effectiveness of Qista Baited Traps in Capturing Mosquito Vectors of Diseases in the Camargue Region (France) and Investigating Their Diversity. Animals 2023, 13, 1809. https://doi.org/10.3390/ani13111809
Boucheikhchoukh M, Lafri I, Chamssidine Combo A, Regalado C, Barthés C, Leulmi H. Assessing the Effectiveness of Qista Baited Traps in Capturing Mosquito Vectors of Diseases in the Camargue Region (France) and Investigating Their Diversity. Animals. 2023; 13(11):1809. https://doi.org/10.3390/ani13111809
Chicago/Turabian StyleBoucheikhchoukh, Mehdi, Ismail Lafri, Anlamina Chamssidine Combo, Christophe Regalado, César Barthés, and Hamza Leulmi. 2023. "Assessing the Effectiveness of Qista Baited Traps in Capturing Mosquito Vectors of Diseases in the Camargue Region (France) and Investigating Their Diversity" Animals 13, no. 11: 1809. https://doi.org/10.3390/ani13111809
APA StyleBoucheikhchoukh, M., Lafri, I., Chamssidine Combo, A., Regalado, C., Barthés, C., & Leulmi, H. (2023). Assessing the Effectiveness of Qista Baited Traps in Capturing Mosquito Vectors of Diseases in the Camargue Region (France) and Investigating Their Diversity. Animals, 13(11), 1809. https://doi.org/10.3390/ani13111809