Current Aspects on the Plastic Nano- and Microparticles Toxicity in Zebrafish—Focus on the Correlation between Oxidative Stress Responses and Neurodevelopment
Abstract
:Simple Summary
Abstract
1. Introduction
2. Plastic Nano-/Microparticles Accumulation and Oxidative Stress Response
3. Plastic Nano/Microparticles Co-Exposure and Oxidative Stress Response
4. Behavioral Analysis and Oxidative Stress Response
5. Developmental Anomalies and Oxidative Stress Response
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Plastics Europe, Plastics—The Facts 2020 An Analysis of European Plastics Production, Demand and Waste Data. 2020. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2020/ (accessed on 13 September 2022).
- Yuan, Z.; Nag, R.; Cummins, E. Human health concerns regarding microplastics in the aquatic environment—From marine to food systems. Sci. Total Environ. 2022, 823, 153730. [Google Scholar] [CrossRef]
- Smith, M.; Love, D.C.; Rochman, C.M.; Neff, R.A. Microplastics in Seafood and the Implications for Human Health. Curr. Environ. Health Rep. 2018, 5, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Kiran, B.R.; Kopperi, H.; Venkata Mohan, S. Micro/Nano-Plastics Occurrence, Identification, Risk Analysis and Mitigation: Challenges and Perspectives. Rev. Environ. Sci. Biotechnol. 2022, 21, 169–203. [Google Scholar] [CrossRef] [PubMed]
- Gedik, K.; Eryaşar, A.R. Microplastic Pollution Profile of Mediterranean Mussels (Mytilus Galloprovincialis) Collected along the Turkish Coasts. Chemosphere 2020, 260, 127570. [Google Scholar] [CrossRef]
- Ugwu, K.; Herrera, A.; Gómez, M. Microplastics in Marine Biota: A Review. Mar. Pollut. Bull. 2021, 169, 112540. [Google Scholar] [CrossRef]
- Jenner, L.C.; Rotchell, J.M.; Bennett, R.T.; Cowen, M.; Tentzeris, V.; Sadofsky, L.R. Detection of Microplastics in Human Lung Tissue Using ΜFTIR Spectroscopy. Sci. Total Environ. 2022, 831, 154907. [Google Scholar] [CrossRef]
- Mistri, M.; Sfriso, A.A.; Casoni, E.; Nicoli, M.; Vaccaro, C.; Munari, C. Microplastic Accumulation in Commercial Fish from the Adriatic Sea. Mar. Pollut. Bull. 2022, 174, 113279. [Google Scholar] [CrossRef] [PubMed]
- Curpăn, A.S.; Balmus, I.-M.; Dobrin, R.P.; Ciobica, A.; Chele, G.E.; Gorgan, D.L.; Boloș, A. A Mini-Review Regarding the Modalities to Study Neurodevelopmental Disorders-Like Impairments in Zebrafish—Focussing on Neurobehavioural and Psychological Responses. Brain Sci. 2022, 12, 1147. [Google Scholar] [CrossRef]
- Sukhanova, A.; Bozrova, S.; Sokolov, P.; Berestovoy, M.; Karaulov, A.; Nabiev, I. Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties. Nanoscale Res. Lett. 2018, 13, 44. [Google Scholar] [CrossRef]
- Teng, C.; Jiang, C.; Gao, S.; Liu, X.; Zhai, S. Fetotoxicity of Nanoparticles: Causes and Mechanisms. Nanomaterials 2021, 11, 791. [Google Scholar] [CrossRef]
- Shankar, K.; Mehendale, H.M. Oxidative Stress. In Encyclopedia of Toxicology; Philip, W., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 735–737. [Google Scholar]
- Zhang, Y. Cell Toxicity Mechanism and Biomarker. Clin. Transl. Med. 2018, 7, 34. [Google Scholar] [CrossRef] [PubMed]
- Auten, R.L.; Davis, J.M. Oxygen Toxicity and Reactive Oxygen Species: The Devil Is in the Details. Pediatr. Res. 2009, 66, 121–127. [Google Scholar] [CrossRef]
- Sayre, L.M.; Perry, G.; Smith, M.A. Oxidative Stress and Neurotoxicity. Chem. Res. Toxicol. 2008, 21, 172–188. [Google Scholar] [CrossRef]
- Domènech, A.; Ayté, J.; Antunes, F.; Hidalgo, E. Using in Vivo Oxidation Status of One- and Two-Component Redox Relays to Determine H2O2 Levels Linked to Signaling and Toxicity. BMC Biol. 2018, 16, 61. [Google Scholar] [CrossRef] [PubMed]
- Schirinzi, G.F.; Pérez-Pomeda, I.; Sanchís, J.; Rossini, C.; Farré, M.; Barceló, D. Cytotoxic Effects of Commonly Used Nanomaterials and Microplastics on Cerebral and Epithelial Human Cells. Environ. Res. 2017, 159, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Estrela, F.N.; Guimarães, A.T.B.; da Costa Araújo, A.P.; Silva, F.G.; da Luz, T.M.; Silva, A.M.; Pereira, P.S.; Malafaia, G. Toxicity of Polystyrene Nanoplastics and Zinc Oxide to Mice. Chemosphere 2021, 271, 129476. [Google Scholar] [CrossRef]
- Nikolic, S.; Gazdic-Jankovic, M.; Rosic, G.; Miletic-Kovacevic, M.; Jovicic, N.; Nestorovic, N.; Stojkovic, P.; Filipovic, N.; Milosevic-Djordjevic, O.; Selakovic, D.; et al. Orally Administered Fluorescent Nanosized Polystyrene Particles Affect Cell Viability, Hormonal and Inflammatory Profile, and Behavior in Treated Mice. Environ. Pollut. 2022, 305, 119206. [Google Scholar] [CrossRef]
- Ribeiro, F.; Garcia, A.R.; Pereira, B.P.; Fonseca, M.; Mestre, N.C.; Fonseca, T.G.; Ilharco, L.M.; Bebianno, M.J. Microplastics Effects in Scrobicularia Plana. Mar. Pollut. Bull. 2017, 122, 379–391. [Google Scholar] [CrossRef]
- Huang, W.; Wang, X.; Chen, D.; Xu, E.G.; Luo, X.; Zeng, J.; Huan, T.; Li, L.; Wang, Y. Toxicity Mechanisms of Polystyrene Microplastics in Marine Mussels Revealed by High-Coverage Quantitative Metabolomics Using Chemical Isotope Labeling Liquid Chromatography Mass Spectrometry. J. Hazard. Mater. 2021, 417, 126003. [Google Scholar] [CrossRef]
- Ding, J.; Huang, Y.; Liu, S.; Zhang, S.; Zou, H.; Wang, Z.; Zhu, W.; Geng, J. Toxicological Effects of Nano- and Micro-Polystyrene Plastics on Red Tilapia: Are Larger Plastic Particles More Harmless? J. Hazard. Mater. 2020, 396, 122693. [Google Scholar] [CrossRef]
- Tlili, S.; Jemai, D.; Brinis, S.; Regaya, I. Microplastics Mixture Exposure at Environmentally Relevant Conditions Induce Oxidative Stress and Neurotoxicity in the Wedge Clam Donax trunculus. Chemosphere 2020, 258, 127344. [Google Scholar] [CrossRef]
- Venâncio, C.; Savuca, A.; Oliveira, M.; Martins, M.A.; Lopes, I. Polymethylmethacrylate Nanoplastics Effects on the Freshwater Cnidarian Hydra viridissima. J. Hazard. Mater. 2021, 402, 123773. [Google Scholar] [CrossRef] [PubMed]
- Venâncio, C.; Melnic, I.; Tamayo-Belda, M.; Oliveira, M.; Martins, M.A.; Lopes, I. Polymethylmethacrylate Nanoplastics Can Cause Developmental Malformations in Early Life Stages of Xenopus laevis. Sci. Total Environ. 2022, 806, 150491. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.R.; Alhewairini, S.S. Zebrafish (Danio rerio) as a Model Organism. In Current Trends in Cancer Management; Streba, L., Gheonea, D.I., Schenker, M., Eds.; IntechOpen: London, UK, 2019. [Google Scholar]
- Kalueff, A.V.; Stewart, A.M.; Gerlai, R. Zebrafish as an Emerging Model for Studying Complex Brain Disorders. Trends Pharmacol. Sci. 2014, 35, 63–75. [Google Scholar] [CrossRef]
- Orger, M.B.; de Polavieja, G.G. Zebrafish Behavior: Opportunities and Challenges. Annu. Rev. Neurosci. 2017, 40, 125–147. [Google Scholar] [CrossRef]
- Yang, L.; Ho, N.Y.; Alshut, R.; Legradi, J.; Weiss, C.; Reischl, M.; Mikut, R.; Liebel, U.; Müller, F.; Strähle, U. Zebrafish Embryos as Models for Embryotoxic and Teratological Effects of Chemicals. Reprod. Toxicol. 2009, 28, 245–253. [Google Scholar] [CrossRef]
- Kimmel, C.B.; Ballard, W.W.; Kimmel, S.R.; Ullmann, B.; Schilling, T.F. Stages of Embryonic Development of the Zebrafish. Dev. Dyn. 1995, 203, 253–310. [Google Scholar] [CrossRef]
- Norton, W.; Bally-Cuif, L. Adult Zebrafish as a Model Organism for Behavioural Genetics. BMC Neurosci. 2010, 11, 90. [Google Scholar] [CrossRef]
- Ciobica, A.; Padurariu, M.; Dobrin, I.; Stefanescu, C.; Dobrin, R. Oxidative Stress in Schizophrenia—Focusing on the Main Markers. Psychiatr. Danub. 2011, 23, 237–245. [Google Scholar]
- Stefanescu, C.; Ciobica, A. The Relevance of Oxidative Stress Status in First Episode and Recurrent Depression. J. Affect. Disord. 2012, 143, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Bild, W.; Ciobica, A.; Padurariu, M.; Bild, V. The Interdependence of the Reactive Species of Oxygen, Nitrogen, and Carbon. J. Physiol. Biochem. 2013, 69, 147–154. [Google Scholar] [CrossRef]
- Padurariu, M.; Ciobica, A.; Lefter, R.; Serban, I.L.; Stefanescu, C.; Chirita, R. The Oxidative Stress Hypothesis in Alzheimer’s Disease. Psychiatr. Danub. 2013, 25, 401–409. [Google Scholar]
- Balmus, I.M.; Ciobica, A.; Antioch, I.; Dobrin, R.; Timofte, D. Oxidative Stress Implications in the Affective Disorders: Main Biomarkers, Animal Models Relevance, Genetic Perspectives, and Antioxidant Approaches. Oxid. Med. Cell. Longev. 2016, 2016, 3975101. [Google Scholar] [CrossRef] [PubMed]
- Robea, M.-A.; Săvucă, A.; Strungaru, Ș.A.; Lenzi, C.; Grasso, C.; Plăvan, G.; Ciobică, A.; Nicoară, M. The General Biological Relevance of the Oxidative Stress Status in Replicating Some Neuropsychiatric and Digestive—Related Manifestations in Zebrafish. Rom. Biotechnol. Lett. 2019, 24, 571–579. [Google Scholar] [CrossRef]
- Curpan, A.; Strungaru, Ș.; Săvucă, A.; Ilie, O.; Ciobîcă, A.; Timofte, D.; Cojocariu, R.; Plăvan, G.; Nicoară, M. A Current Perspective on the Relevance of Nano and Microplastics in the Neurodevelopmental Disorders: Further Relevance for Metabolic, Gastrointestinal, Oxidative Stress-Related and Zebrafish Studies. Bull. Integr. Psychiatry 2020, 86, 19–23. [Google Scholar] [CrossRef]
- Balmus, I.-M.; Ciobica, A.; Cojocariu, R.; Luca, A.-C.; Gorgan, L. Irritable Bowel Syndrome and Neurological Deficiencies: Is There A Relationship? The Possible Relevance of the Oxidative Stress Status. Medicina 2020, 56, 175. [Google Scholar] [CrossRef]
- Robea, M.-A.; Balmus, I.-M.; Ciobica, A.; Strungaru, S.; Plavan, G.; Gorgan, L.D.; Savuca, A.; Nicoara, M. Parkinson’s Disease-Induced Zebrafish Models: Focussing on Oxidative Stress Implications and Sleep Processes. Oxid. Med. Cell. Longev. 2020, 2020, 1370837. [Google Scholar] [CrossRef]
- Huang, X.; Li, Y.; Wang, T.; Liu, H.; Shi, J.; Zhang, X. Evaluation of the Oxidative Stress Status in Zebrafish (Danio rerio) Liver Induced by Three Typical Organic Uv Filters (BP-4, PABA and PBSA). Int. J. Environ. Res. Public. Health 2020, 17, 651. [Google Scholar] [CrossRef]
- Teame, T.; Zhang, Z.; Ran, C.; Zhang, H.; Yang, Y.; Ding, Q.; Xie, M.; Gao, C.; Ye, Y.; Duan, M.; et al. The Use of Zebrafish (Danio rerio) as Biomedical Models. Anim. Front. 2019, 9, 68–77. [Google Scholar] [CrossRef]
- Howe, K.; Clark, M.D.; Torroja, C.F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J.E.; Humphray, S.; McLaren, K.; Matthews, L.; et al. The Zebrafish Reference Genome Sequence and Its Relationship to the Human Genome. Nature 2013, 496, 498–503. [Google Scholar] [CrossRef]
- Hollóczki, O.; Gehrke, S. Can Nanoplastics Alter Cell Membranes? ChemPhysChem 2020, 21, 9–12. [Google Scholar] [CrossRef] [PubMed]
- Kögel, T.; Bjorøy, Ø.; Toto, B.; Bienfait, A.M.; Sanden, M. Micro- and Nanoplastic Toxicity on Aquatic Life: Determining Factors. Sci. Total Environ. 2020, 709, 136050. [Google Scholar] [CrossRef] [PubMed]
- Sökmen, T.Ö.; Sulukan, E.; Türkoğlu, M.; Baran, A.; Özkaraca, M.; Ceyhun, S.B. Polystyrene Nanoplastics (20 Nm) Are Able to Bioaccumulate and Cause Oxidative DNA Damages in the Brain Tissue of Zebrafish Embryo (Danio rerio). Neurotoxicology 2020, 77, 51–59. [Google Scholar] [CrossRef]
- Duan, Z.; Duan, X.; Zhao, S.; Wang, X.; Wang, J.; Liu, Y.; Peng, Y.; Gong, Z.; Wang, L. Barrier Function of Zebrafish Embryonic Chorions against Microplastics and Nanoplastics and Its Impact on Embryo Development. J. Hazard. Mater. 2020, 395, 122621. [Google Scholar] [CrossRef]
- van Pomeren, M.; Brun, N.R.; Peijnenburg, W.J.G.M.; Vijver, M.G. Exploring Uptake and Biodistribution of Polystyrene (Nano) Particles in Zebrafish Embryos at Different Developmental Stages. Aquat. Toxicol. 2017, 190, 40–45. [Google Scholar] [CrossRef]
- Parenti, C.C.; Ghilardi, A.; della Torre, C.; Magni, S.; del Giacco, L.; Binelli, A. Evaluation of the Infiltration of Polystyrene Nanobeads in Zebrafish Embryo Tissues after Short-Term Exposure and the Related Biochemical and Behavioural Effects. Environ. Pollut. 2019, 254, 112947. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, Y.; Deng, Y.; Jiang, W.; Zhao, Y.; Geng, J.; Ding, L.; Ren, H. Uptake and Accumulation of Polystyrene Microplastics in Zebrafish (Danio rerio) and Toxic Effects in Liver. Environ. Sci. Technol. 2016, 50, 4054–4060. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Liu, S.; Chen, L.; Liu, Y.; Gu, C.; Ren, H.; Wu, B. Single-Cell RNA Sequencing Reveals Size-Dependent Effects of Polystyrene Microplastics on Immune and Secretory Cell Populations from Zebrafish Intestines. Environ. Sci. Technol. 2020, 54, 3417–3427. [Google Scholar] [CrossRef]
- Qiao, R.; Sheng, C.; Lu, Y.; Zhang, Y.; Ren, H.; Lemos, B. Microplastics Induce Intestinal Inflammation, Oxidative Stress, and Disorders of Metabolome and Microbiome in Zebrafish. Sci. Total Environ. 2019, 662, 246–253. [Google Scholar] [CrossRef]
- Qiao, R.; Deng, Y.; Zhang, S.; Wolosker, M.B.; Zhu, Q.; Ren, H.; Zhang, Y. Accumulation of Different Shapes of Microplastics Initiates Intestinal Injury and Gut Microbiota Dysbiosis in the Gut of Zebrafish. Chemosphere 2019, 236, 124334. [Google Scholar] [CrossRef]
- Pitt, J.A.; Trevisan, R.; Massarsky, A.; Kozal, J.S.; Levin, E.D.; di Giulio, R.T. Maternal Transfer of Nanoplastics to Offspring in Zebrafish (Danio rerio): A Case Study with Nanopolystyrene. Sci. Total Environ. 2018, 643, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, A.F.; Meyer, D.N.; Petriv, A.M.V.; Soto, A.L.; Shields, J.N.; Akemann, C.; Baker, B.B.; Tsou, W.L.; Zhang, Y.; Baker, T.R. Nanoplastics Impact the Zebrafish (Danio rerio) Transcriptome: Associated Developmental and Neurobehavioral Consequences. Environ. Pollut. 2020, 266, 115090. [Google Scholar] [CrossRef] [PubMed]
- Pitt, J.A.; Kozal, J.S.; Jayasundara, N.; Massarsky, A.; Trevisan, R.; Geitner, N.; Wiesner, M.; Levin, E.D.; di Giulio, R.T. Uptake, Tissue Distribution, and Toxicity of Polystyrene Nanoparticles in Developing Zebrafish (Danio rerio). Aquat. Toxicol. 2018, 194, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Qiang, L.; Cheng, J. Exposure to Microplastics Decreases Swimming Competence in Larval Zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 2019, 176, 226–233. [Google Scholar] [CrossRef]
- Chen, Q.; Gundlach, M.; Yang, S.; Jiang, J.; Velki, M.; Yin, D.; Hollert, H. Quantitative Investigation of the Mechanisms of Microplastics and Nanoplastics toward Zebrafish Larvae Locomotor Activity. Sci. Total Environ. 2017, 584–585, 1022–1031. [Google Scholar] [CrossRef]
- Jin, Y.; Xia, J.; Pan, Z.; Yang, J.; Wang, W.; Fu, Z. Polystyrene Microplastics Induce Microbiota Dysbiosis and Inflammation in the Gut of Adult Zebrafish. Environ. Pollut. 2018, 235, 322–329. [Google Scholar] [CrossRef]
- Mak, C.W.; Ching-Fong Yeung, K.; Chan, K.M. Acute Toxic Effects of Polyethylene Microplastic on Adult Zebrafish. Ecotoxicol. Environ. Saf. 2019, 182, 109442. [Google Scholar] [CrossRef]
- Umamaheswari, S.; Priyadarshinee, S.; Bhattacharjee, M.; Kadirvelu, K.; Ramesh, M. Exposure to Polystyrene Microplastics Induced Gene Modulated Biological Responses in Zebrafish (Danio rerio). Chemosphere 2021, 281, 128592. [Google Scholar] [CrossRef]
- Sarasamma, S.; Audira, G.; Siregar, P.; Malhotra, N.; Lai, Y.-H.; Liang, S.-T.; Chen, J.-R.; Chen, K.H.-C.; Hsiao, C.-D. Nanoplastics Cause Neurobehavioral Impairments, Reproductive and Oxidative Damages, and Biomarker Responses in Zebrafish: Throwing up Alarms of Wide Spread Health Risk of Exposure. Int. J. Mol. Sci. 2020, 21, 1410. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Y.; Yang, C.; Chen, C.; Huang, W.; Dang, Z. Aggregation Kinetics of UV Irradiated Nanoplastics in Aquatic Environments. Water Res. 2019, 163, 114870. [Google Scholar] [CrossRef]
- Santos, D.; Félix, L.; Luzio, A.; Parra, S.; Cabecinha, E.; Bellas, J.; Monteiro, S.M. Toxicological Effects Induced on Early Life Stages of Zebrafish (Danio rerio) after an Acute Exposure to Microplastics Alone or Co-Exposed with Copper. Chemosphere 2020, 261, 127748. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.S.; Cho, H.-J.; Kim, E.; Huh, Y.H.; Kim, H.-J.; Kim, B.; Kang, T.; Lee, J.-S.; Jeong, J. Bioaccumulation of Polystyrene Nanoplastics and Their Effect on the Toxicity of Au Ions in Zebrafish Embryos. Nanoscale 2019, 11, 3173–3185. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.; Qiao, R.; An, H.; Zhang, Y. Influence of Microplastics on the Accumulation and Chronic Toxic Effects of Cadmium in Zebrafish (Danio rerio). Chemosphere 2018, 202, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Xu, Z.; Wen, L.; Lei, D.; Li, S.; Wang, J.; Huang, J.; Wang, N.; Durkan, C.; Liao, X.; et al. Cadmium-Induced Dysfunction of the Blood-Brain Barrier Depends on ROS-Mediated Inhibition of PTPase Activity in Zebrafish. J. Hazard. Mater. 2021, 412, 125198. [Google Scholar] [CrossRef]
- Zhou, R.; Lu, G.; Yan, Z.; Jiang, R.; Sun, Y.; Zhang, P. Interactive Transgenerational Effects of Polystyrene Nanoplastics and Ethylhexyl Salicylate on Zebrafish. Environ. Sci. Nano 2021, 8, 146–159. [Google Scholar] [CrossRef]
- Singh, N.; Bhagat, J.; Tiwari, E.; Khandelwal, N.; Darbha, G.K.; Shyama, S.K. Metal Oxide Nanoparticles and Polycyclic Aromatic Hydrocarbons Alter Nanoplastic’s Stability and Toxicity to Zebrafish. J. Hazard. Mater. 2021, 407, 124382. [Google Scholar] [CrossRef]
- Santos, D.; Félix, L.; Luzio, A.; Parra, S.; Bellas, J.; Monteiro, S.M. Single and Combined Acute and Subchronic Toxic Effects of Microplastics and Copper in Zebrafish (Danio rerio) Early Life Stages. Chemosphere 2021, 277, 130262. [Google Scholar] [CrossRef]
- Brun, N.R.; van Hage, P.; Hunting, E.R.; Haramis, A.-P.G.; Vink, S.C.; Vijver, M.G.; Schaaf, M.J.M.; Tudorache, C. Polystyrene Nanoplastics Disrupt Glucose Metabolism and Cortisol Levels with a Possible Link to Behavioural Changes in Larval Zebrafish. Commun. Biol. 2019, 2, 382. [Google Scholar] [CrossRef]
- Kalueff, A.V.; Gebhardt, M.; Stewart, A.M.; Cachat, J.M.; Brimmer, M.; Chawla, J.S.; Craddock, C.; Kyzar, E.J.; Roth, A.; Landsman, S.; et al. Towards a Comprehensive Catalog of Zebrafish Behavior 1.0 and Beyond. Zebrafish 2013, 10, 70–86. [Google Scholar] [CrossRef]
- Hayes, A.J.; Reynolds, S.; Nowell, M.A.; Meakin, L.B.; Habicher, J.; Ledin, J.; Bashford, A.; Caterson, B.; Hammond, C.L. Spinal Deformity in Aged Zebrafish Is Accompanied by Degenerative Changes to Their Vertebrae That Resemble Osteoarthritis. PLoS ONE 2013, 8, e75787. [Google Scholar] [CrossRef]
- Maroni, M.; Colosio, C.; Ferioli, A.; Fait, A. Biological Monitoring of Pesticide Exposure: A Review. Introduction. Toxicology 2000, 143, 1–118. [Google Scholar] [CrossRef] [PubMed]
- Lionetto, M.G.; Caricato, R.; Calisi, A.; Giordano, M.E.; Schettino, T. Acetylcholinesterase as a Biomarker in Environmental and Occupational Medicine: New Insights and Future Perspectives. Biomed. Res. Int. 2013, 2013, 321213. [Google Scholar] [CrossRef] [PubMed]
Life Stage | Plastic Characterization (Type/Shape/Size/Concentrations) | Accumulation Site | Exposure Time | Effects | Ref. |
---|---|---|---|---|---|
Embryo | PS/Beads/500 nm/1 mg/L | Intestinal tract | 48 h (72 to 120 hpf) | ↓ COX and ↑ SOD activities; Neurotoxic effects (changing their turning behavior). | [50] |
PS/20 nm/3 nL of 1% PS (injected) | Brain | 120 h | ↑ ROS production; Apoptosis, especially in the brain; Malformations in 60% of embryos; Mortality rate ~27%; Mild hatching delays. | [46] | |
Embryo/larvae | PS/Spherules/25, 50, 250, 700 nm/2, 25, 50 mg/L | 120 hpf | 25 and 50 nm PS NPs were found in the eyes; NPs > 50 nm were predominantly adsorbed through the intestinal tract and outer epidermis. | [48] | |
PS/Spherules/100 nm, 157 ± 52 μm/250 MPs/50 mL; 2 × 104 NPs/50 mL | Brain, gills, blood, liver, and digestive tract:
| 120 hpf | 100 nm PS NPs can be blocked by the chorions; The adsorption of NPs/MPs by the outer surface of chorion can change the mechanical properties of chorion; NPs/MPs exposure induced altered heart rates and ↑ blood flow; ↓ Hatching rates of the embryos; NPs/MPs exposure can lead also to antioxidant system impairments in embryos. | [47] | |
PS/Microspheres/1 µm/100, 1000 μg/L | Embryo—chorion (24 hpf) Larvae—mouths, stomachs, and intestinal tracts (96 hpf) | 4–120 hpf | ↓ Swimming ability of larvae; Inflammation and OS (significantly upregulated CAT gene expression). | [52] | |
Larvae | PS/50 nm, 45 μm | - | 4–120 hpf | ↓ AChE activity; ↑ CAT, and GPx activities; ↑ GSH levels; 6.1% ↓ body length; ↓ Locomotor activity ≥ significant developmental neurotoxicity. | [56] |
PS/50, 200 nm/2.46 × 1014; 2.54 × 1012 NPs/L | Gastrointestinal tract, liver, eyes, brain | 6–120 hpf | Hyperactive behavior during dark cycles; Altered gene expression leading to neurological impairments, such as SLC6A1 (implicated in ADHD). | [55] | |
Embryo/larvae/ adult | PS/42 nm/5 mg/L | Embryo—chorion (maternal transfer, higher in co-parental transfer); Larvae—yolk sac (48 hpf maternal transfer, higher in co-parental transfer; after 72 hpf in parental transfer) | 7 days | ↓ GR activity: brain and muscles—females, muscles and testes—males; ↑ GPx activity in the female zebrafish brains; Bradycardia was observed in embryos from maternal and co-parental exposure groups. | [56] |
Adult | PS/Beads/70 nm, 5 µm, 20 µm/20, 200, 2000 µg MPs/L | 5 μm—gills, liver, gut; 20 μm—gills, gut. | 7 days | ↑ SOD and CAT activities in liver + impaired lipid and energy metabolism; 5 µm and 70 nm PS MPs: inflammation and lipids accumulation in liver. | [51] |
PS/Spherules/0.5 µm, 50 µm/100, 1000 μg/L | 14 days | Intestinal microbiota alteration (PS MPs); Significant intestinal dysbiosis and inflammation (PS NPs, as compared to PS MPs). | [59] | ||
PS/100 nm, 5 µm, 200 µm/500 μg/L | 100 nm and 5 μm—intestines | 21 days | 100 nm PS MPs altered the expression of phagocytosis-related genes; ↑ ROS and ↑ mucus secretion; Intestinal immune cells dysfunction; Pathogenic bacteria abundance. | [50] | |
PS/Beads/5 µm/50 μg/L, 500 μg/L | Gut, liver, gills | 21 days | ↑ SOD and CAT activities (gut); Significant histological alterations; Significant alteration of lipid metabolism; Intestinal inflammation. | [52] | |
PS/Beads/15 μm; PS/Fragments/4–40 μm; PP/Fibers/20–100 μm/10 μg/L | Gut (shape-dependent accumulation) | 21 days | ↑ SOD activity (gut). | [53] | |
PE/Beads/10–22 μm, 45–53 μm, 90–106 μm, 212–250 μm, 500–600 μm/2 mg/L | 89 ± 6% of intestine area | 96 h | Erratic movements, epileptic seizures; Significant debilitating morphological alterations (abnormal tail bend); Increased ingestion disregarding beads size. | [60] | |
PS/Beads/94–107 nm/10, 100 μg/L | Brain, liver | 35 days | ↑ ROS, ↑ lipid peroxidation; ↓ CAT, ↓ SOD, ↓ GPx activities (brain and liver); ↓ AChE activity (brain and liver); ↑ LDH and AST activities (brain and liver); ↑ ALT and ↓ AKP activities (liver); Histopathological damage: inflammation, degeneration, necrosis, and hemorrhage (brain and liver); Gene-modulated neurotoxic responses (brain). (dose and exposure time dependent changes) | [61] | |
PS/70 nm/0.5, 1.5 mg/L | Gonads, intestine, liver, and brain | 7 weeks | ↓ Aggressivity and predator avoidance behavior; ↓ Social behavior (tight shoaling); ↑ Anxiety behavior; Hyperactivity in dark cycle; Lipid and energy metabolism impairments; ↓ AChE levels; ↓ oxytocin and vasopressin (brain); ↓ serotonin and dopamine activities; ↓ kisspeptin levels; ↓ melatonin; ↑ ROS, ↓ATP levels. | [62] |
Life Stage | Experimental Conditions | Accumulation Site | Exposure Time | Effects | Ref. | |
---|---|---|---|---|---|---|
Plastic Characterization (Type/Shape/Size/Concentration) | Co-Exposed with | |||||
Embryo/ Larvae | Polymers/Spherules/1–5 µm/2 mg MPs/L | 60/125 μg/L Copper (Cu) | 6 dpf: gastrointestinal tract | 2 hpf—14 dpf | >10 dpf: ↑ Mortality; ↑ neurotoxicity (↓ AChE activity); ↑ ROS, ↑ SOD, ↑ CAT, ↑ GPx. | [70] |
Polymers/Spherules/1–5 µm/2 mg MPs/L | 15/60/125 μg/L Copper (Cu) | Embryo—chorion, Larvae—yolk sac, brain, gastrointestinal tract | 2–96 hpf | Morphological malformations (pericardial oedema, yolk sac oedema, spinal curvatures defects, retina layers disruption); ↓ Embryo survival and hatching rate ↑ Neurotoxicity (↓ AChE activity); ↑ ROS levels, ↓ lipid peroxidation, ↓ SOD, ↑ GPx activities (plastic MPs + Cu); dose-dependent CAT activity changes; ↑ GST and LDH activities (plastic MPs + Cu); ↑ GSH/GSSG levels (plastic MPs + Cu, Cu in higher concentrations). | [64] | |
PS/Beads/50, 200, 500 nm/10 mg NPs/mL | 1.25 μg/mL Au | Chorion, yolk sac; Lipid-rich regions (retina, brain). | 24 h | ↓ Survival, hatching rate; Developmental defects; ↑ ROS (co-exposure). | [65] | |
Adult | PS/Beads/5 µm/20, 200 μg MPs/L | 100 mg/L Cadmium (Cd) | Gills, liver, gut | 3 weeks | ↑ GSH, ↓ SOD, ↑ MT activities; ↑ Inflammation. (PS MPs potentiated Cd accumulation) | [66] |
PS/Spherules/100 nm/10 μg NPs/L | 1, 10, and 100 μg/L ethylhexyl salicylate (EHS) | 28 days | ↑ ROS and MDA, ↓ SOD activity; (PS NPs facilitated EHS transport and bioavailability) | [68] | ||
PS/Spherules/55 nm, 100 nm/1 mg NPs/L | nCuO (10 mg/L), nZnO (10 mg/L), chrysene (100 µg/L Chr), fluoranthene 100 µg/L (Flu) | 5 days | ↑ MDA and LPO, ↓ CAT activity (potentiating effect of co-exposure) (PS NPs more stable in PAHs mixtures, as compared with nMOx mixtures) | [69] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savuca, A.; Nicoara, M.N.; Ciobica, A.; Gorgan, D.L.; Ureche, D.; Balmus, I.M. Current Aspects on the Plastic Nano- and Microparticles Toxicity in Zebrafish—Focus on the Correlation between Oxidative Stress Responses and Neurodevelopment. Animals 2023, 13, 1810. https://doi.org/10.3390/ani13111810
Savuca A, Nicoara MN, Ciobica A, Gorgan DL, Ureche D, Balmus IM. Current Aspects on the Plastic Nano- and Microparticles Toxicity in Zebrafish—Focus on the Correlation between Oxidative Stress Responses and Neurodevelopment. Animals. 2023; 13(11):1810. https://doi.org/10.3390/ani13111810
Chicago/Turabian StyleSavuca, Alexandra, Mircea Nicușor Nicoara, Alin Ciobica, Dragos Lucian Gorgan, Dorel Ureche, and Ioana Miruna Balmus. 2023. "Current Aspects on the Plastic Nano- and Microparticles Toxicity in Zebrafish—Focus on the Correlation between Oxidative Stress Responses and Neurodevelopment" Animals 13, no. 11: 1810. https://doi.org/10.3390/ani13111810
APA StyleSavuca, A., Nicoara, M. N., Ciobica, A., Gorgan, D. L., Ureche, D., & Balmus, I. M. (2023). Current Aspects on the Plastic Nano- and Microparticles Toxicity in Zebrafish—Focus on the Correlation between Oxidative Stress Responses and Neurodevelopment. Animals, 13(11), 1810. https://doi.org/10.3390/ani13111810