Use of Camelina sativa and By-Products in Diets for Dairy Cows: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Nutritional Value of Camelina sativa and By-Products
2.1. Chemical Composition
2.2. Fatty Acid Composition
2.3. Amino Acid Composition
3. Factors Governing the Nutritional Value of Camelina Seed and Camelina By-Products
3.1. Variety
3.2. Genotype
3.3. Environment
3.4. Agronomic Practices
4. Comparison of Camelina Meal with other Oilseed Meals
5. Anti-Nutritional Factors in Camelina Seed and By-Products
6. Reduction of Anti-Nutritional Factors and Enhancement of Nutritional Value of Camelina sativa
6.1. By Processing
6.2. By Solid-State Fermentation
6.3. By Genetic Engineering
7. Use of Camelina Seed and By-Products for Dairy Cows
7.1. Effects on Feed Intake and Digestion
7.2. Effects on Rumen Fermentation and Rumen Microbial Population
7.3. Effects on Metabolism
7.4. Effects on Milk Production, Bio-Hydrogenation, and Milk Composition
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mottet, A.; de Haan, C.; Falcucci, A.; Tempio, G.; Opio, C.; Gerber, P. Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Glob. Food Sec. 2017, 14, 1–8. [Google Scholar] [CrossRef]
- Halmemies-Beauchet-Filleau, A.; Kokkonen, T.; Lampi, A.-M.; Toivonen, V.; Shingfield, K.; Vanhatalo, A. Effect of plant oils and camelina expeller on milk fatty acid composition in lactating cows fed diets based on red clover silage. J. Dairy Sci. 2011, 94, 4413–4430. [Google Scholar] [CrossRef]
- Sizmaz, Ö.; Çalik, A.; Bundur, A. In Vitro Fermentation Characteristics of Camelina Meal Comparison with Soybean Meal. Livest. Stud. 2021, 61, 9–13. [Google Scholar] [CrossRef]
- Waraich, E.A.; Ahmed, Z.; Ahmad, R.; Ashraf, M.Y.; Naeem, M.S.; Rengel, Z. ‘Camelina sativa’, a climate proof crop, has high nutritive value and multiple-uses: A review. Aust. J. Crop Sci. 2013, 7, 1551–1559. [Google Scholar]
- Paula, E.M.; da Silva, L.G.; Brandao, V.L.N.; Dai, X.; Faciola, A.P. Feeding canola, camelina, and carinata meals to ruminants. Animals 2019, 9, 704. [Google Scholar] [CrossRef] [Green Version]
- Czerniawski, P.; Piasecka, A.; Bednarek, P. Evolutionary changes in the glucosinolate biosynthetic capacity in species representing Capsella, Camelina and Neslia genera. Phytochemistry 2021, 181, 112571. [Google Scholar] [CrossRef]
- Hurtaud, C.; Peyraud, J.-L. Effects of feeding camelina (seeds or meal) on milk fatty acid composition and butter spreadability. J. Dairy Sci. 2007, 90, 5134–5145. [Google Scholar] [CrossRef]
- Lawrence, R.; Anderson, J.; Clapper, J. Evaluation of camelina meal as a feedstuff for growing dairy heifers. J. Dairy Sci. 2016, 99, 6215–6228. [Google Scholar] [CrossRef]
- Brandao, V.; Silva, L.; Paula, E.; Monteiro, H.; Dai, X.; Lelis, A.; Faccenda, A.; Poulson, S.; Faciola, A. Effects of replacing canola meal with solvent-extracted camelina meal on microbial fermentation in a dual-flow continuous culture system. J. Dairy Sci. 2018, 101, 9028–9040. [Google Scholar] [CrossRef]
- Toma, S.; Dragomir, C.; Habeanu, M.; Ropota, M.; Cismileanu, A.; Grosu, H. Effects of replacing sunflower meal with camelina meal on dairy cows performances. Arch. Zootech. 2015, 18, 85. [Google Scholar]
- Sarramone, J.; Gervais, R.; Benchaar, C.; Chouinard, P. Lactation performance and milk fatty acid composition of lactating dairy cows fed Camelina sativa seeds or expeller. Anim. Feed Sci. Technol. 2020, 270, 114697. [Google Scholar] [CrossRef]
- Colombini, S.; Broderick, G.A.; Galasso, I.; Martinelli, T.; Rapetti, L.; Russo, R.; Reggiani, R. Evaluation of Camelina sativa (L.) Crantz meal as an alternative protein source in ruminant rations. J. Sci. Food Agric. 2014, 94, 736–743. [Google Scholar] [CrossRef] [PubMed]
- Colonna, M.A.; Giannico, F.; Tufarelli, V.; Laudadio, V.; Selvaggi, M.; De Mastro, G.; Tedone, L. Dietary Supplementation with Camelina sativa (L. Crantz) Forage in Autochthonous Ionica Goats: Effects on Milk and Caciotta Cheese Chemical, Fatty Acid Composition and Sensory Properties. Animals 2021, 11, 1589. [Google Scholar] [CrossRef] [PubMed]
- Aziza, A.; Panda, A.; Quezada, N.; Cherian, G. Nutrient digestibility, egg quality, and fatty acid composition of brown laying hens fed camelina or flaxseed meal. J. Appl. Poult. Res. 2013, 22, 832–841. [Google Scholar] [CrossRef]
- Peng, Q.; Khan, N.A.; Wang, Z.; Yu, P. Moist and dry heating-induced changes in protein molecular structure, protein subfractions, and nutrient profiles in camelina seeds. J. Dairy Sci. 2014, 97, 446–457. [Google Scholar] [CrossRef]
- Kahindi, R.K.; Woyengo, T.A.; Thacker, P.; Nyachoti, C. Energy and amino acid digestibility of camelina cake fed to growing pigs. Anim. Feed Sci. Technol. 2014, 193, 93–101. [Google Scholar] [CrossRef]
- Woyengo, T.; Patterson, R.; Levesque, C. Nutritive value of multienzyme supplemented cold-pressed camelina cake for pigs. J. Anim. Sci. 2018, 96, 1119–1129. [Google Scholar] [CrossRef] [Green Version]
- Kiarie, E.; Walsh, M.; He, L.; Velayudhan, D.; Yin, Y.; Nyachoti, C. Phytase improved digestible protein, phosphorous, and energy contents in camelina expellers fed to growing pigs. J. Anim. Sci. 2016, 94, 215–218. [Google Scholar] [CrossRef]
- Smit, M.; Beltranena, E. Effects of feeding camelina cake to weaned pigs on safety, growth performance, and fatty acid composition of pork. J. Anim. Sci. 2017, 95, 2496–2508. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.L.; Anderson, D.M.; Lall, S.P. The effects of camelina oil and solvent extracted camelina meal on the growth, carcass composition and hindgut histology of Atlantic salmon (Salmo salar) parr in freshwater. Aquaculture 2016, 450, 397–404. [Google Scholar] [CrossRef]
- Woyengo, T.; Patterson, R.; Slominski, B.; Beltranena, E.; Zijlstra, R. Nutritive value of cold-pressed camelina cake with or without supplementation of multi-enzyme in broiler chickens. Poult. Sci. 2016, 95, 2314–2321. [Google Scholar] [CrossRef]
- Ryhänen, E.L.; Perttilä, S.; Tupasela, T.; Valaja, J.; Eriksson, C.; Larkka, K. Effect of Camelina sativa expeller cake on performance and meat quality of broilers. J. Sci. Food Agric. 2007, 87, 1489–1494. [Google Scholar] [CrossRef]
- Kasiga, T.; Karki, B.; Croat, J.; Kaur, J.; Gibbons, W.R.; Muthukumarappan, K.; Brown, M.L. Process effects on carinata Brassica carinata and camelina Camelina sativa seed meal compositions and diet palatability in Rainbow Trout Oncorhynchus mykiss. Anim. Feed Sci. Technol. 2020, 267, 114578. [Google Scholar] [CrossRef]
- Halmemies-Beauchet-Filleau, A.; Rinne, M.; Lamminen, M.; Mapato, C.; Ampapon, T.; Wanapat, M.; Vanhatalo, A. Alternative and novel feeds for ruminants: Nutritive value, product quality and environmental aspects. Animal 2018, 12, s295–s309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zając, M.; Kiczorowska, B.; Samolińska, W.; Klebaniuk, R. Inclusion of camelina, flax, and sunflower seeds in the diets for broiler chickens: Apparent digestibility of nutrients, growth performance, health status, and carcass and meat quality traits. Animals 2020, 10, 321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moriel, P.; Nayigihugu, V.; Cappellozza, B.; Gonçalves, E.; Krall, J.; Foulke, T.; Cammack, K.; Hess, B. Camelina meal and crude glycerin as feed supplements for developing replacement beef heifers. J. Anim. Sci. 2011, 89, 4314–4324. [Google Scholar] [CrossRef] [Green Version]
- Zubr, J. Carbohydrates, vitamins and minerals of Camelina sativa seed. Nutr. Food Sci. 2010, 40, 523–531. [Google Scholar] [CrossRef]
- Cherian, G.; Campbell, A.; Parker, T. Egg quality and lipid composition of eggs from hens fed Camelina sativa. J. Appl. Poult. Res. 2009, 18, 143–150. [Google Scholar] [CrossRef]
- Zubr, J. Unique dietary oil from Camelina sativa seed. Agrafood Ind. Hi-Tech 2009, 20, 42–46. [Google Scholar]
- Yang, J.; Caldwell, C.; Corscadden, K.; He, Q.S.; Li, J. An evaluation of biodiesel production from Camelina sativa grown in Nova Scotia. Ind. Crops Prod. 2016, 81, 162–168. [Google Scholar] [CrossRef]
- Quezada, N.; Cherian, G. Lipid characterization and antioxidant status of the seeds and meals of Camelina sativa and flax. Eur. J. Lipid Sci. Technol. 2012, 114, 974–982. [Google Scholar] [CrossRef]
- Wu, X.; Leung, D.Y. Optimization of biodiesel production from camelina oil using orthogonal experiment. Appl. Energy 2011, 88, 3615–3624. [Google Scholar] [CrossRef]
- Budin, J.T.; Breene, W.M.; Putnam, D.H. Some compositional properties of camelina (Camelina sativa L. Crantz) seeds and oils. J. Am. Oil Chem. Soc. 1995, 72, 309–315. [Google Scholar] [CrossRef]
- Petre, S.M.; Moraru, A.; Dobre, P.; Jurcoane, S. Life Cycle Assessment of Camelina sativa—Environmental friendly source for biofuels and livestock protein available in Romania. Rom. Biotechnol. Lett. 2015, 20, 10561. [Google Scholar]
- Zubr, J.; Matthäus, B. Effects of growth conditions on fatty acids and tocopherols in Camelina sativa oil. Ind. Crops Prod. 2002, 15, 155–162. [Google Scholar] [CrossRef]
- Cappellozza, B.I.; Cooke, R.; Bohnert, D.; Cherian, G.; Carroll, J. Effects of camelina meal supplementation on ruminal forage degradability, performance, and physiological responses of beef cattle. J. Anim. Sci. 2012, 90, 4042–4054. [Google Scholar] [CrossRef] [Green Version]
- Abramovič, H.; Butinar, B.; Nikolič, V. Changes occurring in phenolic content, tocopherol composition and oxidative stability of Camelina sativa oil during storage. Food Chem. 2007, 104, 903–909. [Google Scholar] [CrossRef]
- Krzyżaniak, M.; Stolarski, M.J.; Tworkowski, J.; Puttick, D.; Eynck, C.; Załuski, D.; Kwiatkowski, J. Yield and seed composition of 10 spring camelina genotypes cultivated in the temperate climate of Central Europe. Ind. Crops Prod. 2019, 138, 111443. [Google Scholar] [CrossRef]
- Ebeid, H.M.; Hassan, F.-U.; Li, M.; Peng, L.; Peng, K.; Liang, X.; Yang, C. Camelina sativa L. Oil Mitigates Enteric in vitro Methane Production, Modulates Ruminal Fermentation, and Ruminal Bacterial Diversity in Buffaloes. Front. Vet. Sci. 2020, 7, 550. [Google Scholar] [CrossRef] [PubMed]
- Bayat, A.; Kairenius, P.; Stefański, T.; Leskinen, H.; Comtet-Marre, S.; Forano, E.; Chaucheyras-Durand, F.; Shingfield, K. Effect of camelina oil or live yeasts (Saccharomyces cerevisiae) on ruminal methane production, rumen fermentation, and milk fatty acid composition in lactating cows fed grass silage diets. J. Dairy Sci. 2015, 98, 3166–3181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mupondwa, E.; Li, X.; Tabil, L.; Falk, K.; Gugel, R. Technoeconomic analysis of camelina oil extraction as feedstock for biojet fuel in the Canadian Prairies. Biomass Bioenergy 2016, 95, 221–234. [Google Scholar] [CrossRef]
- Blackshaw, R.; Johnson, E.; Gan, Y.; May, W.; McAndrew, D.; Barthet, V.; McDonald, T.; Wispinski, D. Alternative oilseed crops for biodiesel feedstock on the Canadian prairies. Can. J. Plant Sci. 2011, 91, 889–896. [Google Scholar] [CrossRef]
- Singh, B.K.; Bala, M.; Rai, P.K. Fatty acid composition and seed meal characteristics of Brassica and allied genera. Natl. Acad. Sci. Lett. 2014, 37, 219–226. [Google Scholar] [CrossRef]
- Zubr, J. Oil-seed crop: Camelina sativa. Ind. Crops Prod. 1997, 6, 113–119. [Google Scholar] [CrossRef]
- Kurasiak-Popowska, D.; Ryńska, B.; Stuper-Szablewska, K. Analysis of distribution of selected bioactive compounds in Camelina sativa from seeds to pomace and oil. Agronomy 2019, 9, 168. [Google Scholar] [CrossRef] [Green Version]
- Peiretti, P.; Meineri, G. Fatty acids, chemical composition and organic matter digestibility of seeds and vegetative parts of false flax (Camelina sativa L.) after different lengths of growth. Anim. Feed Sci. Technol. 2007, 133, 341–350. [Google Scholar] [CrossRef]
- Pavlista, A.; Hergert, G.; Margheim, J.; Isbell, T. Growth of spring camelina (Camelina sativa) under deficit irrigation in Western Nebraska. Ind. Crops Prod. 2016, 83, 118–123. [Google Scholar] [CrossRef] [Green Version]
- Raczyk, M.; Popis, E.; Kruszewski, B.; Ratusz, K.; Rudzińska, M. Physicochemical quality and oxidative stability of linseed (Linum usitatissimum) and camelina (Camelina sativa) cold-pressed oils from retail outlets. Eur. J. Lipid Sci. Technol. 2016, 118, 834–839. [Google Scholar] [CrossRef]
- Bonjean, A.; Goffic, F.L. The sector today and tomorrow-Plant biology-Camelina-Camelino sativo (L.) Crantz: An opportunity for European agriculture and industry. OCL-Oleagineux-Corps Gras-Lipides 1999, 6, 28–33. [Google Scholar]
- Abramovič, H.; Abram, V. Physico-chemical properties, composition and oxidative stability of Camelina sativa oil. Food Technol. Biotechnol. 2005, 43, 63–70. [Google Scholar]
- Berti, M.; Gesch, R.; Eynck, C.; Anderson, J.; Cermak, S. Camelina uses, genetics, genomics, production, and management. Ind. Crops Prod. 2016, 94, 690–710. [Google Scholar] [CrossRef]
- Hixson, S.M.; Parrish, C.C.; Anderson, D.M. Changes in tissue lipid and fatty acid composition of farmed rainbow trout in response to dietary camelina oil as a replacement of fish oil. Lipids 2014, 49, 97–111. [Google Scholar] [CrossRef] [PubMed]
- Toncea, I.; Necseriu, D.; Prisecaru, T.; Balint, L.-N.; Ghilvacs, M.; Popa, M. The seed’s and oil composition of Camelia–first Romanian cultivar of camelina (Camelina sativa, L. Crantz). Rom. Biotechnol. Lett. 2013, 18, 8594–8602. [Google Scholar]
- Moser, B.R.; Vaughn, S.F. Evaluation of alkyl esters from Camelina sativa oil as biodiesel and as blend components in ultra low-sulfur diesel fuel. Bioresour. Technol. 2010, 101, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Jurcoane, S.D.P.; Florea, C.; Petre, S.M.; Ropota, M. Camelina sativa—A useful plant source for renewable jet fuels, human nutrition and animal feed. In Proceedings of the Simpozion National Editia Xia Plante medicinale—Prezent si Perspective, Piatra Neamt, Romania, 9–10 June 2017; pp. 33–34. [Google Scholar]
- Katar, D. Determination of fatty acid composition on different false flax (Camelina sativa (L.) Crantz) Genotypes under Ankara ecological conditions. Turkish J. Field Crop. 2013, 18, 66–72. [Google Scholar]
- Belayneh, H.D.; Wehling, R.L.; Cahoon, E.; Ciftci, O.N. Extraction of omega-3-rich oil from Camelina sativa seed using supercritical carbon dioxide. J. Supercrit. Fluids 2015, 104, 153–159. [Google Scholar] [CrossRef]
- Shukla, V.; Dutta, P.; Artz, W. Camelina oil and its unusual cholesterol content. J. Am. Oil Chem. Soc. 2002, 79, 965–969. [Google Scholar] [CrossRef]
- Hrastar, R.; Petrisic, M.G.; Ogrinc, N.; Kosir, I.J. Fatty acid and stable carbon isotope characterization of Camelina sativa oil: Implications for authentication. J. Agric. Food Chem. 2009, 57, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Bătrîna, Ș.L.; Jurcoane, Ș.; Popescu, I.; Marin, F.; Imbrea, I.M.; Crista, F.; Pop, G.; Imbrea, F. Camelina sativa: A study on amino acid content. Biotechnol. Lett. 2020, 25, 1136–1142. [Google Scholar] [CrossRef]
- Zubr, J. Qualitative variation of Camelina sativa seed from different locations. Ind. Crops Prod. 2003, 17, 161–169. [Google Scholar] [CrossRef]
- Almeida, F.; Htoo, J.; Thomson, J.; Stein, H.-H. Amino acid digestibility in camelina products fed to growing pigs. Can. J. Anim. Sci. 2013, 93, 335–343. [Google Scholar] [CrossRef]
- Masella, P.; Martinelli, T.; Galasso, I. Agronomic evaluation and phenotypic plasticity of Camelina sativa growing in Lombardia, Italy. Crop Pasture Sci. 2014, 65, 453–460. [Google Scholar] [CrossRef]
- Vollmann, J.; Moritz, T.; Kargl, C.; Baumgartner, S.; Wagentristl, H. Agronomic evaluation of camelina genotypes selected for seed quality characteristics. Ind. Crops Prod. 2007, 26, 270–277. [Google Scholar] [CrossRef]
- Vollmann, J.; Damboeck, A.; Eckl, A.; Schrems, H.; Ruckenbauer, P. Improvement of Camelina sativa, an underexploited oilseed. In Progress in New Crops; ASHS Press: Alexandria, VA, USA, 1996; Volume 1, pp. 357–362. [Google Scholar]
- Gehringer, A.; Friedt, W.; Lühs, W.; Snowdon, R. Genetic mapping of agronomic traits in false flax (Camelina sativa subsp. sativa). Genome 2006, 49, 1555–1563. [Google Scholar] [CrossRef] [PubMed]
- Ghamkhar, K.; Croser, J.; Aryamanesh, N.; Campbell, M.; Kon’kova, N.; Francis, C. Camelina (Camelina sativa (L.) Crantz) as an alternative oilseed: Molecular and ecogeographic analyses. Genome 2010, 53, 558–567. [Google Scholar] [CrossRef]
- Pollard, M.; Martin, T.M.; Shachar-Hill, Y. Lipid analysis of developing Camelina sativa seeds and cultured embryos. Phytochemistry 2015, 118, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Rodríguez, M.F.; Sánchez-García, A.; Salas, J.J.; Garcés, R.; Martínez-Force, E. Characterization of the morphological changes and fatty acid profile of developing Camelina sativa seeds. Ind. Crops Prod. 2013, 50, 673–679. [Google Scholar] [CrossRef]
- Guy, S.O.; Wysocki, D.J.; Schillinger, W.F.; Chastain, T.G.; Karow, R.S.; Garland-Campbell, K.; Burke, I.C. Camelina: Adaptation and performance of genotypes. Field Crops Res. 2014, 155, 224–232. [Google Scholar] [CrossRef]
- Gesch, R.; Archer, D.; Berti, M. Dual cropping winter camelina with soybean in the northern corn belt. Agron. J. 2014, 106, 1735–1745. [Google Scholar] [CrossRef]
- Sintim, H.Y.; Zheljazkov, V.D.; Obour, A.K.; y Garcia, A.G.; Foulke, T.K. Influence of nitrogen and sulfur application on camelina performance under dryland conditions. Ind. Crops Prod. 2015, 70, 253–259. [Google Scholar] [CrossRef]
- Jiang, Y.; Caldwell, C.D.; Falk, K.C. Camelina seed quality in response to applied nitrogen, genotype and environment. Can. J. Plant Sci. 2014, 94, 971–980. [Google Scholar] [CrossRef] [Green Version]
- Sintim, H.Y.; Zheljazkov, V.D.; Obour, A.K.; Garcia y Garcia, A.; Foulke, T.K. Evaluating agronomic responses of camelina to seeding date under rain-fed conditions. Agron. J. 2016, 108, 349–357. [Google Scholar] [CrossRef] [Green Version]
- Karčauskienė, D.; Sendžikienė, E.; Makarevičienė, V.; Zaleckas, E.; Repšienė, R.; Ambrazaitienė, D. False flax (Camelina sativa L.) as an alternative source for biodiesel production. Žemdirbystė 2014, 101, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Razmaitė, V.; Pileckas, V.; Bliznikas, S.; Šiukščius, A. Fatty acid composition of Cannabis sativa, Linum usitatissimum and Camelina sativa seeds harvested in lithuania for food use. Foods 2021, 10, 1902. [Google Scholar] [CrossRef] [PubMed]
- Lafferty, R.; Rife, C.; Foster, G. Spring camelina production guide for the Central High Plains; Blue Sun Agriculture Research and Development: Golden, CO, USA, 2009; pp. 1–8. [Google Scholar]
- Wittenberg, A.; Anderson, J.V.; Berti, M.T. Winter and summer annual biotypes of camelina have different morphology and seed characteristics. Ind. Crops Prod. 2019, 135, 230–237. [Google Scholar] [CrossRef]
- Schuster, A.; Friedt, W. Glucosinolate content and composition as parameters of quality of Camelina seed. Ind. Crops Prod. 1998, 7, 297–302. [Google Scholar] [CrossRef]
- Russo, R.; Reggiani, R. Antinutritive compounds in twelve Camelina sativa genotypes. Am. J. Plant Sci. 2012, 3, 24118. [Google Scholar] [CrossRef] [Green Version]
- Turina, E.; Prakhova, T.Y.; Prakhov, V. Assessment of productivity and adaptability of Camelina Sativa varieties. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; p. 012085. [Google Scholar]
- Kirkhus, B.; Lundon, A.R.; Haugen, J.-E.; Vogt, G.; Borge, G.I.A.; Henriksen, B.I. Effects of environmental factors on edible oil quality of organically grown Camelina sativa. J. Agric. Food Chem. 2013, 61, 3179–3185. [Google Scholar] [CrossRef]
- Raziei, Z.; Kahrizi, D.; Rostami-Ahmadvandi, H. Effects of climate on fatty acid profile in Camelina sativa. Cell. Mol. Biol. 2018, 64, 91–96. [Google Scholar] [CrossRef]
- Obour, A.K.; Obeng, E.; Mohammed, Y.A.; Ciampitti, I.A.; Durett, T.P.; Aznar-Moreno, J.A.; Chen, C. Camelina seed yield and fatty acids as influenced by genotype and environment. Agron. J. 2017, 109, 947–956. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.M.; Gesch, R.W. Calendula and camelina response to nitrogen fertility. Ind. Crops Prod. 2013, 43, 684–691. [Google Scholar] [CrossRef]
- Lošák, T.; Hlusek, J.; Martinec, J.; Vollmann, J.; Peterka, J.; Filipcik, R.; Varga, L.; Ducsay, L.; Martensson, A. Effect of combined nitrogen and sulphur fertilization on yield and qualitative parameters of Camelina sativa [L.] Crtz.(false flax). Acta Agric. Scand. Sect. B-Soil Plant Sci. 2011, 61, 313–321. [Google Scholar]
- Ahmad, Z.; Anjum, S.; Skalicky, M.; Waraich, E.A.; Muhammad Sabir Tariq, R.; Ayub, M.A.; Hossain, A.; Hassan, M.M.; Brestic, M.; Sohidul Islam, M. Selenium alleviates the adverse effect of drought in oilseed crops Camelina (Camelina sativa L.) and Canola (Brassica napus L.). Molecules 2021, 26, 1699. [Google Scholar] [CrossRef] [PubMed]
- Wittkop, B.; Snowdon, R.; Friedt, W. Status and perspectives of breeding for enhanced yield and quality of oilseed crops for Europe. Euphytica 2009, 170, 131–140. [Google Scholar] [CrossRef]
- Lu, C.; Napier, J.A.; Clemente, T.E.; Cahoon, E.B. New frontiers in oilseed biotechnology: Meeting the global demand for vegetable oils for food, feed, biofuel, and industrial applications. Curr. Opin. Biotechnol. 2011, 22, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Salas, H.; Castillejos, L.; Ferret, A. Camelina meal, camelina expeller and camelina hulls: Nutritional characterization and in vitro digestibility. In Proceedings of the XVII Jornadas sobre Producción Animal, Zaragoza, Spain, 30–31 May 2017; pp. 147–149. [Google Scholar]
- Puzio, I.; Graboś, D.; Bieńko, M.; Radzki, R.P.; Nowakiewicz, A.; Kosior-Korzecka, U. Camelina Oil Supplementation Improves Bone Parameters in Ovariectomized Rats. Animals 2021, 11, 1343. [Google Scholar] [CrossRef] [PubMed]
- Boyle, C.; Hansen, L.; Hinnenkamp, C.; Ismail, B.P. Emerging camelina protein: Extraction, modification, and structural/functional characterization. J. Am. Oil Chem. Soc. 2018, 95, 1049–1062. [Google Scholar] [CrossRef]
- Karvonen, H.M.; Aro, A.; Tapola, N.S.; Salminen, I.; Uusitupa, M.I.; Sarkkinen, E.S. Effect of [alpha]-linolenic acid [ndash] rich Camelina sativa oil on serum fatty acid composition and serum lipids in hypercholesterolemic subjects. Metab. Clin. Exp. 2002, 51, 1253–1260. [Google Scholar] [CrossRef] [PubMed]
- Pekel, A.; Kim, J.; Chapple, C.; Adeola, O. Nutritional characteristics of camelina meal for 3-week-old broiler chickens. Poult. Sci. 2015, 94, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Cais-Sokolińska, D.; Majcher, M.; Pikul, J.; Bielińska, S.; Czauderna, M.; Wójtowski, J. The effect of Camelina sativa cake diet supplementation on sensory and volatile profiles of ewe’s milk. Afr. J. Biotechnol. 2011, 10, 7245–7252. [Google Scholar]
- Szterk, A.; Roszko, M.; Sosińska, E.; Derewiaka, D.; Lewicki, P. Chemical composition and oxidative stability of selected plant oils. J. Am. Oil Chem. Soc. 2010, 87, 637–645. [Google Scholar] [CrossRef]
- Ratusz, K.; Symoniuk, E.; Wroniak, M.; Rudzińska, M. Bioactive compounds, nutritional quality and oxidative stability of cold-pressed camelina (Camelina sativa L.) oils. Appl. Sci. 2018, 8, 2606. [Google Scholar] [CrossRef] [Green Version]
- Cieslak, A.; Stanisz, M.; Wojtowski, J.; Pers-Kamczyc, E.; Szczechowiak, J.; El-Sherbiny, M.; Szumacher-Strabel, M. Camelina sativa affects the fatty acid contents in M. longissimus muscle of lambs. Eur. J. Lipid Sci. Technol. 2013, 115, 1258–1265. [Google Scholar] [CrossRef]
- Moloney, A.; Woods, V.; Crowley, J. A note on the nutritive value of camelina meal for beef cattle. Irish J. Agric. Food Res. 1998, 37, 243–247. [Google Scholar]
- Mihhejev, K.; Henno, M.; Ots, M.; Rihma, E.; Elias, P.; Kuusik, S.; Kärt, O. Effects of fat-rich oil cakes on cheese fatty acid composition, and on cheese quality. Vet. Zootech. 2007, 40, 55–61. [Google Scholar]
- Maxin, G.; Ouellet, D.; Lapierre, H. Ruminal degradability of dry matter, crude protein, and amino acids in soybean meal, canola meal, corn, and wheat dried distillers grains. J. Dairy Sci. 2013, 96, 5151–5160. [Google Scholar] [CrossRef] [PubMed]
- Schulz, F.; Westreicher-Kristen, E.; Knappstein, K.; Molkentin, J.; Susenbeth, A. Replacing maize silage plus soybean meal with red clover silage plus wheat in diets for lactating dairy cows. J. Dairy Sci. 2018, 101, 1216–1226. [Google Scholar] [CrossRef] [PubMed]
- Paula, E.; Monteiro, H.; Silva, L.; Benedeti, P.; Daniel, J.; Shenkoru, T.; Broderick, G.; Faciola, A. Effects of replacing soybean meal with canola meal differing in rumen-undegradable protein content on ruminal fermentation and gas production kinetics using 2 in vitro systems. J. Dairy Sci. 2017, 100, 5281–5292. [Google Scholar] [CrossRef] [Green Version]
- Mjoun, K.; Kalscheur, K.; Hippen, A.; Schingoethe, D. Ruminal degradability and intestinal digestibility of protein and amino acids in soybean and corn distillers grains products. J. Dairy Sci. 2010, 93, 4144–4154. [Google Scholar] [CrossRef] [Green Version]
- Lamminen, M.; Halmemies-Beauchet-Filleau, A.; Kokkonen, T.; Vanhatalo, A.; Jaakkola, S. The effect of partial substitution of rapeseed meal and faba beans by Spirulina platensis microalgae on milk production, nitrogen utilization, and amino acid metabolism of lactating dairy cows. J. Dairy Sci. 2019, 102, 7102–7117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heuzé, V.; Tran, G.; Sauvant, D.; Lessire, M.; Lebas, F. Rapeseed Meal. Feedipedia, a Programme by INRA, CIRAD, AFZ and FAO. 2017. Available online: https://feedipedia.org/node/52 (accessed on 1 January 2022).
- Bora, P. Anti-nutritional factors in foods and their effects. J. Acad. Ind. Res. 2014, 3, 285–290. [Google Scholar]
- Mzengereza, K.; Ishikawa, M.; Koshio, S.; Yokoyama, S.; Yukun, Z.; Shadrack, R.S.; Seo, S.; Kotani, T.; Dossou, S.; Basuini, M.F.E. Growth Performance, Growth-Related Genes, Digestibility, Digestive Enzyme Activity, Immune and Stress Responses of de novo Camelina Meal in Diets of Red Seabream (Pagrus major). Animals 2021, 11, 3118. [Google Scholar] [CrossRef] [PubMed]
- Sizmaz, O.; Calik, A.; Sizmaz, S.; Yildiz, G. A comparison of camelina meal and soybean meal degradation during incubation with rumen fluid as tested in vitro. Ank. Univ. Vet. Fak. Derg. 2016, 63, 157–161. [Google Scholar]
- Matthäus, B.; Angelini, L.G. Anti-nutritive constituents in oilseed crops from Italy. Ind. Crops Prod. 2005, 21, 89–99. [Google Scholar] [CrossRef]
- Fahey, J.W.; Zalcmann, A.T.; Talalay, P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 2001, 56, 5–51. [Google Scholar] [CrossRef]
- Tripathi, M.; Mishra, A. Glucosinolates in animal nutrition: A review. Anim. Feed Sci. Technol. 2007, 132, 1–27. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Dinovi, M.; Edler, L.; Grasl-Kraupp, B. Erucic acid in feed and food. EFSA J. 2016, 14, e04593. [Google Scholar]
- Hrastar, R.; Abramovič, H.; Košir, I.J. In situ quality evaluation of Camelina sativa landrace. Eur. J. Lipid Sci. Technol. 2012, 114, 343–351. [Google Scholar] [CrossRef]
- Brandao, V.; Dai, X.; Paula, E.; Silva, L.; Marcondes, M.; Shenkoru, T.; Poulson, S.; Faciola, A. Effect of replacing calcium salts of palm oil with camelina seed at 2 dietary ether extract levels on digestion, ruminal fermentation, and nutrient flow in a dual-flow continuous culture system. J. Dairy Sci. 2018, 101, 5046–5059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pekel, A.; Horn, N.; Adeola, O. The efficacy of dietary xylanase and phytase in broiler chickens fed expeller-extracted camelina meal. Poult. Sci. 2017, 96, 98–107. [Google Scholar] [CrossRef]
- Rajapakse, B. Nutritive evaluation of mechanically-pressed camelina (Camelina sativa), carinata (Brassica carinata) and soybean (Glycine max) meals for broiler chickens. Master’s Thesis, Dalhousie University, Halifax, NS, Canada, 2015. [Google Scholar]
- Hanschen, F.S. Domestic boiling and salad preparation habits affect glucosinolate degradation in red cabbage (Brassica oleracea var. capitata f. rubra). Food Chem. 2020, 321, 126694. [Google Scholar] [CrossRef] [PubMed]
- Jing, B.; Guo, R.; Wang, M.; Zhang, L.; Yu, X. Influence of seed roasting on the quality of glucosinolate content and flavor in virgin rapeseed oil. Lwt 2020, 126, 109301. [Google Scholar] [CrossRef]
- Oerlemans, K.; Barrett, D.M.; Suades, C.B.; Verkerk, R.; Dekker, M. Thermal degradation of glucosinolates in red cabbage. Food Chem. 2006, 95, 19–29. [Google Scholar] [CrossRef]
- Fredlund, K.; Asp, N.-G.; Larsson, M.; Marklinder, I.; Sandberg, A.-S. Phytate reduction in whole grains of wheat, rye, barley and oats after hydrothermal treatment. J. Cereal Sci. 1997, 25, 83–91. [Google Scholar] [CrossRef]
- Mukhopadhyay, N.A. Effect of fermentation on the nutritive value of sesame seed meal in the diets for rohu, Labeo rohita (Hamilton), fingerlings. Aquaculture Nutr. 1999, 5, 229–236. [Google Scholar] [CrossRef]
- Zeb, A.; Bibi, N.; Badshah, A.; Ter Meulen, U. Effect of dry and wet heat treatments on rapeseed phenolics. Adv. Food Sci. 2006, 28, 18–22. [Google Scholar]
- Stedman, J.; Hill, R. Voluntary food intake in a limited time of lambs and calves given diets containing rapeseed meal from different types and varieties of rape, and rapeseed meal treated to reduce the glucosinolate concentration. Anim. Sci. 1987, 44, 75–82. [Google Scholar] [CrossRef]
- Clements, K.; Gleeson, V.; Slaytor, M. Short-chain fatty acid metabolism in temperate marine herbivorous fish. J. Comp. Physiol. B 1994, 164, 372–377. [Google Scholar] [CrossRef]
- Chiang, G.; Lu, W.; Piao, X.; Hu, J.; Gong, L.; Thacker, P. Effects of feeding solid-state fermented rapeseed meal on performance, nutrient digestibility, intestinal ecology and intestinal morphology of broiler chickens. Asian-Australas. J. Anim. Sci. 2009, 23, 263–271. [Google Scholar] [CrossRef]
- Ahmed, A.; Zulkifli, I.; Farjam, A.S.; Abdullah, N.; Liang, J.B.; Awad, E.A. Effect of solid state fermentation on nutrient content and ileal amino acids digestibility of canola meal in broiler chickens. Ital. J. Anim. Sci. 2014, 13, 3293. [Google Scholar] [CrossRef] [Green Version]
- Heerd, D.; Yegin, S.; Tari, C.; Fernandez-Lahore, M. Pectinase enzyme-complex production by Aspergillus spp. in solid-state fermentation: A comparative study. Food Bioprod. Process. 2012, 90, 102–110. [Google Scholar] [CrossRef]
- Olukomaiya, O.O. Utilization of Solid-State Fermented Canola Meal, Camelina Meal and Lupin as Potential Protein Sources in the Diets of Broiler Chickens. Ph.D. Thesis, The University of Queensland, Brisbane, QLD, Australia, 2021. [Google Scholar]
- Olukomaiya, O.; Fernando, C.; Mereddy, R.; Li, X.; Sultanbawa, Y. Nutritional analysis of solid-state fermented canola meal (an improved protein source for broilers). In Proceedings of the 22nd European Symposium on Poultry Nutrition, Gdansk, Poland, 10–13 June 2019. [Google Scholar]
- Olukomaiya, O.O.; Fernando, C.; Mereddy, R.; Li, X.; Sultanbawa, Y. Nutritional composition of solid-state fermented camelina meal (an enriched protein source for broiler chickens). Multidiscip. Digit. Publ. Inst. Proc. 2020, 36, 106. [Google Scholar]
- Olukomaiya, O.O.; Adiamo, O.Q.; Fernando, W.C.; Mereddy, R.; Li, X.; Sultanbawa, Y. Effect of solid-state fermentation on proximate composition, anti-nutritional factor, microbiological and functional properties of lupin flour. Food Chem. 2020, 315, 126238. [Google Scholar] [CrossRef] [PubMed]
- Thacker, P.; Widyaratne, G. Effects of expeller pressed camelina meal and/or canola meal on digestibility, performance and fatty acid composition of broiler chickens fed wheat–soybean meal-based diets. Arch. Anim. Nutr. 2012, 66, 402–415. [Google Scholar] [CrossRef] [PubMed]
- Demorest, Z.L.; Coffman, A.; Baltes, N.J.; Stoddard, T.J.; Clasen, B.M.; Luo, S.; Retterath, A.; Yabandith, A.; Gamo, M.E.; Bissen, J. Direct stacking of sequence-specific nuclease-induced mutations to produce high oleic and low linolenic soybean oil. BMC Plant Biol. 2016, 16, 225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haun, W.; Coffman, A.; Clasen, B.M.; Demorest, Z.L.; Lowy, A.; Ray, E.; Retterath, A.; Stoddard, T.; Juillerat, A.; Cedrone, F. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol. J. 2014, 12, 934–940. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Kang, J. Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium-mediated transformation. Plant Cell Rep. 2008, 27, 273–278. [Google Scholar] [CrossRef]
- Kang, J.; Snapp, A.R.; Lu, C. Identification of three genes encoding microsomal oleate desaturases (FAD2) from the oilseed crop Camelina sativa. Plant Physiol. Biochem. 2011, 49, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.; Silva, J.E.; Podicheti, R.; Macrander, J.; Yang, W.; Nazarenus, T.J.; Nam, J.W.; Jaworski, J.G.; Lu, C.; Scheffler, B.E. Camelina seed transcriptome: A tool for meal and oil improvement and translational research. Plant Biotechnol. J. 2013, 11, 759–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morineau, C.; Bellec, Y.; Tellier, F.; Gissot, L.; Kelemen, Z.; Nogué, F.; Faure, J.D. Selective gene dosage by CRISPR-Cas9 genome editing in hexaploid Camelina sativa. Plant Biotechnol. J. 2017, 15, 729–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, W.Z.; Henry, I.M.; Lynagh, P.G.; Comai, L.; Cahoon, E.B.; Weeks, D.P. Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnol. J. 2017, 15, 648–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozseyhan, M.E.; Kang, J.; Mu, X.; Lu, C. Mutagenesis of the FAE1 genes significantly changes fatty acid composition in seeds of Camelina sativa. Plant Physiol. Biochem. 2018, 123, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, A.; Coutu, C.; Harrington, M.; Rozwadowski, K.; Hegedus, D.D. Engineering a feedback inhibition-insensitive plant dihydrodipicolinate synthase to increase lysine content in Camelina sativa seeds. Transgenic Res. 2021, 31, 131–148. [Google Scholar] [CrossRef] [PubMed]
- Lyzenga, W.J.; Harrington, M.; Bekkaoui, D.; Wigness, M.; Hegedus, D.D.; Rozwadowski, K.L. CRISPR/Cas9 editing of three CRUCIFERIN C homoeologues alters the seed protein profile in Camelina sativa. BMC Plant Biol. 2019, 19, 292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lock, A.L.; Shingfield, K.J. Optimising milk composition. BSAP Occas. Publ. 2004, 29, 107–188. [Google Scholar] [CrossRef]
- Harvatine, K.; Allen, M. Effects of fatty acid supplements on feed intake, and feeding and chewing behavior of lactating dairy cows. J. Dairy Sci. 2006, 89, 1104–1112. [Google Scholar] [CrossRef]
- Dai, X.; Weimer, P.J.; Dill-McFarland, K.A.; Brandao, V.L.; Suen, G.; Faciola, A.P. Camelina seed supplementation at two dietary fat levels change ruminal bacterial community composition in a dual-flow continuous culture system. Front. Microbiol. 2017, 8, 2147. [Google Scholar] [CrossRef] [PubMed]
- Wachira, A.; Sinclair, L.; Wilkinson, R.; Hallett, K.; Enser, M.; Wood, J. Rumen biohydrogenation of n-3 polyunsaturated fatty acids and their effects on microbial efficiency and nutrient digestibility in sheep. J. Agric. Sci. 2000, 135, 419–428. [Google Scholar] [CrossRef]
- Chilliard, Y.; Glasser, F.; Ferlay, A.; Bernard, L.; Rouel, J.; Doreau, M. Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur. J. Lipid Sci. Technol. 2007, 109, 828–855. [Google Scholar] [CrossRef]
- Shingfield, K.; Bonnet, M.; Scollan, N. Recent developments in altering the fatty acid composition of ruminant-derived foods. Animal 2013, 7, 132–162. [Google Scholar] [CrossRef]
- Destaillats, F.; Wolff, R.L.; Precht, D.; Molkentin, J. Study of individual trans-and cis-16: 1 isomers in cow, goat, and ewe cheese fats by gas-liquid chromatography with emphasis on the trans-Δ3 isomer. Lipids 2000, 35, 1027–1032. [Google Scholar] [CrossRef] [PubMed]
- Harfoot, C.G. Lipid metabolism in the rumen. In Lipid Metabolism in Ruminant Animals; Christie, W.W., Ed.; Pergamon Press: New York, NY, USA, 1981; pp. 21–55. [Google Scholar]
Item | Camelina Seed | Camelina Meal | Camelina Expeller | Camelina Cake |
---|---|---|---|---|
Moisture (%) | 6.59–11.4 | 6–8.85 | 6.55–11.8 | 7.2–9.11 |
Dry matter (%) | 88.6–93.41 | 91.15–94 | 88.2–93.45 | 90.89–92.8 |
Crude Protein (%) | 27–34 | 26.5–41.1 | 19.35–35.70 | 38.42 |
NEL Mcal/kg of DM | 2.58 | 2.02 | - | - |
Digestible Energy (kcal/kg) | - | - | 2172 | - |
Gross Energy (kcal/kg) | 5139 | 5429 | - | 50.57–51.97 |
Organic matter (%) | - | - | - | - |
Crude Fiber | - | - | - | 12–16.92 |
Ether Extract | 18 | - | - | 10.52–12.70 |
ADF | 14.68–15.1 | 11.1–19.3 | 18.8 | 17.2–22.53 |
NDF | 28.6–30.24 | 23.3–39.9 | 22.7–29.2 | 25.4–38.3 |
References | [7,15,22,25] | [7,8,9,14,26] | [2,18,20,22,24] | [16,17,21] |
Mineral | Camelina Meal | Camelina Seed | Camelina Cake | Cold Pressed Camelina Meal |
---|---|---|---|---|
Macro Minerals (ppm) | ||||
P | 7468–10,000 | 7450–7800 | 6800–8000 | 9700–11,000 |
K | 10,788–15,000 | 8600 | - | 13,200 |
Ca | 2100–3300 | 2600–3700 | 2800–3100 | 3300–3600 |
Mg | 3794–5000 | 3400–4053 | - | 5000 |
S | 6723–11,200 | 6100 | - | 9900 |
Na | 14.5–100 | - | - | <0.015 |
Micro Minerals (ppm) | ||||
Fe | 148–267 | 95.51–145 | - | 133.42 |
Mn | 13.94–25.2 | 23.15 | - | 34.73 |
Zn | 50.42–50.90 | 42.15–70.8 | - | 67.7 |
Cu | 6.55–7.52 | 6.74–12 | - | 9.79 |
Al | 1.78–35.16 | - | - | - |
Cl | 2000 | - | - | - |
References | [5,8,14,28] | [23,25] | [19] | [21,23] |
Fatty Acid, % | Camelina Seed | Camelina Meal | Camelina Expeller | Camelina Cake | Camelina Forage | Camelina Oil |
---|---|---|---|---|---|---|
Myristic (C14:0) | 0.09–0.2 | 0.17 | - | 0.13–0.14 | 0.63 | 0.06 |
Pentadecylic (C15:0) | - | - | - | 005–0.06 | - | - |
Palmitic acid, (C16:0) | 5.1–10.3 | 9.12–9.19 | 7.22–14 | 7.19–7.46 | 18.59 | 5.2–7.00 |
Palmitoleic (cis-9 C16:1) | 0.1–0.9 | 0.32-.52 | 0.16 | - | - | 0.08 |
Stearic (C18:0) | 2.19–2.81 | 2.27–2.9 | 2.02–2.64 | - | 0.1 | 2.2–3.08 |
Elaidic (trans-9 C18:1) | 12.14–19 | - | 13.14 | - | - | 10.57–19.37 |
Oleic (C18:1) | 11.9–19.9 | 17.71–21.7 | 23.7 | - | 7.9 | 15.10–18.70 |
Linoleic (C18:2) | 13.5–20.9 | 24.35–28.8 | 22.34–31.1 | - | 13.5 | 16.00–19.60 |
Linolenic (C18:3) | 28.6–41.3 | 24.2–46.3 | 14.3–31.98 | - | 43.25 | 28.00–38.10 |
Arachidic (C20:0) | 1.2–1.8 | 1.17 | 0.81–15.3 | - | 3.23 | 1.22–2.33 |
Eicosenoic (C20:1) | 13.3–25.4 | 10.1–13.3 | 11.93 | - | - | 11.60–15.1 |
Gondoic (C20:1 n-9) | 11.9–15.57 | 11.23–13.3 | - | 10.18–10.56 | 0.2 | 10.56–15.19 |
Behenoic (22:0) | 0.3–6.2 | - | 3.4 | 0.36–0.38 | 0.75 | 0.26–0.44 |
Erucic (C22:1 n-9) | 1.6–4.2 | 0.77 | 2.86 | 2.84–3.32 | - | 1.6–4.2 |
Lignoceric (C24:0) | 0.2 | - | - | 0.25–0.28 | - | 0.13–0.28 |
Nervonic (C24:1 n-9) | 0.6–0.7 | - | - | 0.64–0.8 | - | 0.48–0.79 |
Total SFA | 9.04–13.13 | 9.67–9.86 | - | - | - | 10.2–11.3 |
Total MUFA | 31.0–37.7 | 33.5–33.87 | - | - | - | 31.6–34.6 |
PUFA | 51.8–57.4 | - | - | - | - | 55.2 |
References | [7,11,30,31,32,33,35,38,39,48,49,50,51] | [7,14,31,34,36] | [2,11] | [19] | [13] | [40,50,52,53,54,55,56,57,58,59] |
Amino Acid, % | Camelina Seed | Camelina Meal | Camelina Expeller | Camelina Cake |
---|---|---|---|---|
Arginine | 8.15–8.57 | 2.81–4.06 | 2.75–2.99 | 2.90–3.45 |
Histidine | 2.60–4.06 | 0.6–2.02 | 0.78–1.01 | 0.85–1.09 |
Isoleucine | 3.96–4.62 | 1.1–2.13 | 1.18–1.21 | 1.29–1.62 |
Leucine | 6.63–7.12 | 1.77–3.32 | 2.14–2.24 | 2.34–2.70 |
Lysine | 4.52–4.46 | 1.35–2.4 | 1.57–1.67 | 1.77–2.07 |
Methionine | 1.72–2.85 | 0.6–1.26 | 0.61–0.63 | 0.63–0.73 |
Phenylalanine | 4.19–5.22 | 1.1–2.37 | 1.4–1.48 | 0.48–1.74 |
Threonine | 2.75–2.89 | 1.08–1.86 | 1.32–1.38 | 1.46–1.64 |
Valine | 5.42–6.34 | 1.54–3.14 | 1.72–1.86 | 1.80–2.17 |
Alanine | 4.61–6.14 | 1.28–3.07 | 1.4–1.45 | 1.56–1.87 |
Aspartic acid | 8.71–9.04 | 2.25–4.36 | 2.47–2.99 | 3.22–3.35 |
Cystine | 1.94–2.12 | 0.64–1.04 | 0.28–0.85 | 0.30–0.90 |
Glutamic acid | 14.98–16.12 | 4.26–7.43 | 5.34–6.07 | 6.54–6.81 |
Glycine | 5.25–6.06 | 1.36–3.44 | 1.7–1.84 | 1.98–2014 |
Proline | 5.09–6.07 | 1.93–3.02 | 1.63–1.98 | 2.11–2.13 |
Serine | 5.04–5.96 | 1.15–3.23 | 1.21–1.48 | 1.3–1.74 |
Tyrosine | 3.04–3.64 | 0.63–1.82 | 0.9–0.97 | 0.97–1.14 |
References | [60,61] | [12,14,21,23] | [18,22] | [16,17,19] |
Item (%) | Camelina Meal | Canola Meal | Soybean Meal | Rapeseed Meal |
---|---|---|---|---|
Dry matter | 92.2 | 91.4 | 90.2 | 87.7 |
Organic matter | 93.9 | 92.2 | 92.7 | - |
Crude protein | 41.9 | 39.4–40.1 | 49.6–54.9 | 34.5 |
NDF | 33.4 | 28.5 | 10.3–18.8 | 31.8 |
ADF | 23.8 | 19.4–27.6 | 6.2–19.5 | 21.6 |
Ether extract | 7.03 | 4.56 | 1.1–1.92 | 4.11 |
Ash | 5.98 | 7.69 | 6.9 | 8.4 |
Amino acids, % CP | ||||
Histidine | 1.72 | 2.52 | 2.55 | 2.13 |
Isoleucine | 2.17 | 3.53 | 3.89 | 3.76 |
Leucine | 3.24 | 6.39 | 7.52 | 6.49 |
Lysine | 2.27 | 4.87 | 5.91 | 4.8 |
Methionine | 1.08 | 1.88 | 1.55 | 1.56 |
Phenylalanine | 2.27 | 3.74 | 5.02 | 3.59 |
Threonine | 1.59 | 3.87 | 4.07 | 4.32 |
Tryptophan | - | 1.35 | - | 1.14 |
Valine | 2.81 | 4.47 | 3.76 | 4.77 |
Arginine | 4.13 | 5.9 | - | 5.58 |
Alanine | 2.81 | 4.43 | 4.26 | 4.16 |
Glycine | 3 | 5.13 | 4.21 | 4.54 |
Proline | 2.98 | 6.2 | 5.07 | 5.45 |
Serine | 2.81 | 4.13 | 5.44 | 4.11 |
Tyrosine | 0.78 | 2.9 | 3.66 | 2.85 |
Glutamic acid | 7.6 | 22.7 | 14.99 | 15.6 |
Cysteine | 0.94 | 2.43 | 1.47 | 2.58 |
Aspartic acid | 4.35 | 7.34 | 11.43 | 6.78 |
Minerals, % DM | ||||
Ca | 0.31 | 0.89 | 0.7 | 0.8 |
P | 0.82 | 1.11 | 0.73 | 1.1 |
References | [5] | [5,9,101] | [101,102,103,104] | [105,106] |
Antinutritional Factors | Meals of Different Genotypes of Camelina sativa | Screw-Pressed Camelina Cake | Camelina Expellers | Camelina Meal | ||||||
---|---|---|---|---|---|---|---|---|---|---|
CS Lindo | CS Ukrajin Skaja | CS Soledo | CS Volynskaja | CS Zarja Socialisma | CS Bavaria | |||||
GSL (mmol kg−1) | 21.9 | 23.7 | 23.1 | 24.3 | 23.6 | 19.9 | 36.3 | 36.3 | - | - |
Phytic acid (g kg−1) | 24.1 | 22.2 | 21 | 24.8 | 12 | 22.2 | - | - | - | 40.7 |
Condensed tannins (g kg−1) | 2.11 | 1.98 | 1.81 | 2.09 | 2.11 | 1.89 | 2 | 1.9 | - | 34.2 |
Sinapine (g kg−1) | 2.19 | 3.04 | 2.64 | 3.27 | 2.55 | 2.56 | - | - | - | - |
GSL-9 (mg g−1) | - | - | - | - | - | - | - | - | 3.48 | - |
GSL-10 (mg g−1) | - | - | - | - | - | - | - | - | 7.72 | - |
GSL-11 (mg g−1) | - | - | - | - | - | - | - | - | 1.25 | - |
Total GSL (mg g−1) | - | - | - | - | - | - | - | - | 12.45 | - |
References | [12] | [16] | [18] | [8] | [108] |
Treatment | Inclusion Rate 1 | Study Type | DMI, Kg/d | OM Digestibility, % | DM Digestibility, % | NDF, % | ADF, % | Protein, % | pH | TVFA, mM | Acetate, mmol/100 mmol | Butyrate, mmol/100 mmol | Propionate, mmol/100 mmol | Acetate: Propionate | References |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CS | 2.9 x | In vivo | 20.6 | - | - | - | - | - | 6.02 | - | 54.9 b* | 16.6 | 21.9 b* | - | [7] |
CM | 9.5 | 19.8 | - | - | - | - | - | 6.02 | - | 51.4 c* | 16.1 | 25.5 a* | - | ||
Control | 0.00 | 21.0 | - | - | - | - | - | 6.11 | - | 57.7 a** | 15.6 | 21.2 c* | - | ||
CO | 2.9 y | In vivo | 23.3 * | 68.5 | - | 54.6 | - | - | - | - | - | - | - | - | [2] |
CE | 20 | 22.7 * | 68.0 | - | 52.5 | - | - | - | - | - | - | - | - | ||
Control | 0 | 23.3 | 69.9 | - | 55.0 | - | - | - | - | - | - | - | - | ||
CM | 10 | In vivo | 4.91 | 66.4 a* | 66.5 | 57.0 | 53.0 | 63.3 | 6.8 | 80.9 | 67.6 | 9.3 c* | 20.9 | 3.25 | [8] |
LINM | 10 | 4.93 | 63.6 b* | 64.0 | 56.2 | 56.6 | 59.4 | 6.8 | 78.0 | 67.1 | 9.9 b* | 20.8 | 3.24 | ||
DDGS | 10 | 5.10 | 64.7 ab* | 65.0 | 56.9 | 56.3 | 60.8 | 6.7 | 77.5 | 66.6 | 11.0 a* | 20.8 | 3.32 | ||
CM0 | 0 | In vitro | - | 51.1 | 45.0 | 52.5 * | 32.2 | 54.8 | - | 76.5 | 63.7 *** | 14.1 | 19.4 *** | 3.28 *** | [9] |
CM50 | 10.1 | - | 48.4 | 44.5 | 48.0 * | 32.6 | 51.1 | - | 78.9 | 57.2 *** | 13.6 | 25.9 *** | 2.22 *** | ||
CM100 | 20.2 | - | 47.2 | 43.2 | 45.0 * | 29.7 | 53.4 | - | 77.6 | 54.9 ** | 14.2 | 27.9 ** | 1.98 ** | ||
CS | 4.2 | In vivo | 24.2 | - | - | - | - | - | 6.31 | - | 60.52 | 10.32 | 25.58 | 2.40 | [11] |
CE | 9.5 | 24.4 | - | - | - | - | - | 6.25 | - | 60.52 | 11.10 | 26.00 | 2.38 | ||
DDGS | 18 | 23.7 | - | - | - | - | - | 6.37 | - | 62.31 | 12.55 | 23.42 | 2.86 | ||
WFS | 4.7 | 25.9 | - | - | - | - | - | 6.28 | 61.53 | 10.56 | 23.79 | 2.55 | |||
CM | In vitro | - | 44.55 | - | - | - | - | 6.79 | 62.11 * | 35.79 * | 7.51 | 12.47 | 2.88 | [3] | |
SBM | - | 47.04 | - | - | - | - | 6.92 | 72.58 * | 42.91 * | 8.17 | 14.10 | 3.05 | |||
CS (5% EE) | 7.7 | In vitro | - | 53.9 * | 50.2 * | 47.0 * | 40.1 * | 49.2 * | - | 85.1 ** | 49.1 c** | 14.9 | 30.1 ** | 1.64 c* | [115] |
CS (8%EE) | 17.7 | - | 53.3 | 48.1 | 44.8 | 36.7 | 51.5 | - | 79.4 | 50.1 c** | 14.9 | 28.9 | 1.77 c* | ||
CaPO | 5% EE | - | 58.7 * | 56.1 * | 56.1 * | 49.1 * | 55.5 * | - | 89.9 ** | 55.8 b** | 14.6 | 25.9 ** | 2.21 b* | ||
8% E.E. | - | 57.1 | 54.9 | 57.6 | 52.4 | 56.9 | - | 89.1 | 60.6 a** | 12.9 | 23.5 | 2.60 a* |
Treatment | Inclusion Rate (% DM Basis) | Milk Production (kg/d) | Lactose (g/d) | Protein (g/d) | Fat (g/d) | Lactose (%) | Protein (%) | Fat (%) | References |
---|---|---|---|---|---|---|---|---|---|
CS | 2.9% x | 34.40 | - | 967 | 865 b*** | 4.86 | 2.83 | 2.51 b*** | [7] |
CM | 9.5% | 32.50 | - | 902 | 481 c*** | 4.75 | 2.76 | 1.44 c*** | |
Control | 0.00 | 33.80 | - | 980 | 1063 a*** | 4.93 | 2.89 | 3.14 a*** | |
CO | 2.9% y | 31.20 | 1450 | 992 | 1234 | 4.61 | 3.23 | 3.93 | [2] |
CE | 20% | 32.20 | 1485 | 1014 | 1192 | 4.61 | 3.15 | 3.67 | |
Control (0) | 0 | 31.10 | 1431 | 1013 | 1225 | 4.60 | 3.30 | 3.96 | |
CS | 4.2% | 36.50 * | 1699 | 1161 | 1258 b** | 4.66 | 3.20 | 3.48 b** | [11] |
CE | 9.5% | 37.00 | 1729 | 1133 | 1000 c** | 4.69 | 3.07 | 2.71 c** | |
DDGS | 18% | 37.40 | 1748 | 1182 | 1355 a** | 4.66 | 3.16 | 3.63 a** | |
WFS | 4.7% | 35.60 * | 1652 | 1146 | 1328 | 4.64 | 3.22 | 3.74 | |
CM | 0% (31% SFM) | 19.27 | - | - | - | 4.45 | 2.85 | 3.39 | [10] |
CM50 | 50% (15.5 SFM + 15.5% CM) | 18.35 | - | - | - | 4.45 | 2.91 | 3.17 | |
CM100 | 100 (30.1% CM) | 19.63 | - | - | - | 4.45 | 2.95 | 3.16 |
Treatment | Inclusion Rate (%, DM Basis) | SFA (%) | MUFA (%) | PUFA (%) | n-3 FA (%) | n-6 FA (%) | n-6/n-3 | References |
---|---|---|---|---|---|---|---|---|
CS | 2.9% x | 66.6 b*** | 30.7 b*** | 2.70 a* | - | - | - | [7] |
CM | 9.5% | 57.4 c*** | 39.7 a*** | 2.92 a* | - | - | - | |
Control | 0.00 | 72.7 a*** | 25.1 c*** | 2.16 b* | - | - | - | |
CO | 2.9% y | 65.4 b*** | 28.2 b*** | 5.93 b*** | - | - | - | [2] |
CE | 20% | 62.6 c*** | 29.7 a* | 7.27 a*** | - | - | - | |
Control | 0 | 71.0 a*** | 23.2 c*** | 5.33 c*** | - | - | - | |
CM | 0% (31% SFM) | 64.98 *** | 27.67 ** | 5.52 *** | 0.62 | 4.92 *** | 9.45 * | [10] |
CM50 | 50% (15.5 SFM + 15.5% CM) | 61.87 *** | 29.58 ** | 6.43 *** | 0.61 | 5.81 *** | 9.60 * | |
CM100 | 100 (30.1% CM) | 60.34 *** | 30.48 ** | 6.31 *** | 0.67 | 6.64 *** | 10.25 * |
FA (% of Total FA) | Hurtaud and Peyraud [7] x | Toma et al. [10] | Halmemies-Beauchet-Filleau et al. [2] y | Bayat et al. [40] 1 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Control | CS (2.9%) | CM (9.5%) | Control | CM50 | CM100 1 | Control | CO (2.9%) | CE (20%) | Control | CO (6%) | |
C4:0 | 2.44 | 2.16 | 1.40 | 0.11 | 0.08 | 0.06 | 3.35 | 3.57 | 3.67 | 3.10 | 3.18 |
C5:0 | 0.023 | 0.025 | 0.024 | - | - | - | - | - | - | - | - |
C6:0 | 1.95 | 1.84 | 0.99 | - | - | - | 1.76 | 1.69 | 1.69 | 1.90 | 1.56 |
C7:0 | 0.020 | 0.022 | 0.019 | - | - | - | - | - | - | - | - |
C8:0 | 1.34 | 1.27 | 0.61 | - | - | - | 1.23 | 1.14 | 1.09 | 1.12 | 0.79 |
C9:0 | 0.048 | 0.037 | 0.029 | - | - | - | - | - | - | - | - |
C10:0 | 3.33 | 3.16 | 1.59 | - | - | - | 3.19 | 2.72 | 2.57 | 2.66 | 1.55 |
cis-9 C10:1 | - | - | - | - | - | - | 0.30 | 0.27 | 0.26 | 0.296 | 0.193 |
C11:0 | 0.085 | 0.058 | 0.054 | - | - | - | - | - | - | - | - |
C12:0 | 4.13 | 4.04 | 2.61 | 3.46 | 3.46 | 3.46 | 3.91 | 3.20 | 3.09 | 3.24 | 1.84 |
cis-9 C12:1 | - | - | - | - | - | - | 0.09 | 0.07 | 0.07 | 0.082 | 0.043 |
trans-9 C12:1 | - | - | - | - | - | - | 0.08 | 0.07 | 0.07 | 0.081 | 0.046 |
C13:0 | 0.132 | 0.130 | 0.131 | - | - | - | - | - | - | - | - |
C14:1 | 1.28 | 1.42 | 1.96 | 12.66 | 12.67 | 12.44 | - | - | - | - | - |
C14:0 | 12.99 | 12.95 | 11.77 | - | - | - | 13.0 | 11.6 | 11.9 | 12.1 | 8.10 |
cis-9 C14:1 | - | - | - | - | - | - | 0.97 | 0.85 | 0.99 | 1.12 | 0.77 |
trans-9 C14:1 | - | - | - | - | - | - | 0.014 | 0.012 | 0.014 | 0.230 | 0.456 |
Iso-C15 | 0.24 | 0.23 | 0.23 | - | - | - | - | - | - | - | - |
C15:1 | 0.57 | 0.53 | 0.54 | - | - | - | - | - | - | - | - |
C15:0 | 1.35 | 1.21 | 1.42 | - | - | - | 2.22 | 1.92 | 1.98 | 2.36 | 1.55 |
C16:0 | 2.14 | 2.25 | 4.14 | 31.01 | 20.03 | 28.20 | 32.4 | 27.1 | 26.8 | 34.4 | 21.3 |
C16:1 | 37.0 | 32.2 | 31.9 | 1.50 | 1.39 | 1.38 | 1.89 | 1.67 | 1.93 | 2.43 | 2.10 |
cis C16:1 | - | - | - | - | - | - | 1.60 | 1.36 | 1.52 | 2.20 | 1.64 |
trans C16:1 | - | - | - | - | - | - | 0.29 | 0.21 | 0.31 | 0.230 | 0.456 |
Iso-C17 | 0.40 | 0.41 | 0.57 | - | - | - | - | - | - | - | - |
C17:1 | 0.91 | 0.88 | 1.04 | - | - | - | - | - | - | - | - |
C17:0 | 0.58 | 0.54 | 0.59 | - | - | - | 1.21 | 1.11 | 1.23 | 1.18 | 0.86 |
C18:3 | 0.20 | 0.32 | 0.36 | - | - | - | - | - | - | - | - |
trans-6-8 C18:1 | 0.26 | 0.57 | 0.64 | - | - | - | - | - | - | - | - |
cis C18:1 | - | - | - | - | - | - | 14.5 | 18.1 | 15.7 | 17.5 | 25.3 |
trans C18:1 | - | - | - | - | - | - | 4.02 | 4.91 | 8.28 | 2.31 | 6.71 |
trans-9, trans-12 C18:2 | 0.09 | 0.18 | 0.67 | - | - | - | - | - | - | - | - |
cis-9, cis-12 C18:2 | 1.86 | 2.20 | 1.89 | - | - | - | - | - | - | - | - |
CLA | - | - | - | - | - | - | 0.59 | 0.79 | 1.33 | 0.38 | 0.95 |
C18:3 n-3 | - | - | - | - | - | - | 1.10 | 1.17 | 1.06 | 0.454 | 0.489 |
C18:3 n-6 | - | - | - | - | - | - | 0.05 | 0.06 | 0.05 | 0.015 | 0.007 |
cis-9,truns-11, cis-15 C18:3 | - | - | - | - | - | - | 0.03 | 0.05 | 0.05 | 0.036 | 0.056 |
cis-9,trans-11,trans-15 C18:3 | - | - | - | - | - | - | 0.014 | 0.023 | 0.055 | - | - |
C18:4 n-3 | - | - | - | - | - | - | 0.02 | 0.02 | 0.02 | - | - |
trans-9 C18:1 | 0.26 | 0.55 | 0.58 | 23.05 | 25.13 | 25.34 | - | - | - | - | - |
trans-10 C18:1 | 1.02 | 3.44 | 11.27 | - | - | - | - | - | - | - | - |
trans-11 C18:1 | 1.26 | 2.19 | 3.34 | - | - | - | - | - | - | - | - |
trans-12 C18:1 | 0.15 | 0.18 | 0.52 | - | - | - | - | - | - | - | - |
cis-9 C18:1 | 16.4 | 17.3 | 14.1 | - | - | - | - | - | - | - | - |
trans-15, cis-11 | 0.68 | 1.03 | 1.47 | - | - | - | - | - | - | - | - |
C18:1 | - | - | - | - | - | - | 18.5 | 23.0 | 24.0 | - | - |
C18:1 cis-12 | 0.23 | 0.43 | 0.07 | - | - | - | - | - | - | - | - |
C18:0 | 6.61 | 6.09 | 3.40 | 9.16 | 9.17 | 8.85 | - | - | - | 8.78 | 12.9 |
C20:0 | - | - | - | - | - | - | 0.42 | 0.77 | 0.57 | 0.178 | 1.69 |
cis C20:1 | - | - | - | - | - | - | 0.50 | 1.24 | 1.20 | 0.247 | 2.48 |
trans C20:1 | - | - | - | - | - | - | 0.08 | 0.23 | 0.29 | 0.040 | 0.585 |
C20:1 | - | - | - | - | - | - | 0.58 | 1.47 | 1.49 | 0.287 | 3.07 |
C20:2 n-6 | - | - | - | - | - | - | 0.045 | 0.073 | 0.088 | 0.024 | 0.063 |
C20:3 n-3 | - | - | - | - | - | - | 0.020 | 0.037 | 0.037 | 0.008 | 0.046 |
C20:3 n-6 | - | - | - | - | - | - | 0.093 | 0.087 | 0.073 | 0.047 | 0.033 |
C20:4 n-3 | - | - | - | - | - | - | 0.09 | 0.07 | 0.08 | 0.034 | 0.026 |
C20:4 n-6 | - | - | - | - | - | - | 0.07 | 0.08 | 0.07 | 0.066 | 0.046 |
C20:5 n-3 | - | - | - | - | - | - | 0.13 | 0.11 | 0.10 | 0.049 | 0.032 |
C22:0 | - | - | - | - | - | - | 0.10 | 0.12 | 0.10 | 0.054 | 0.157 |
C22:1 | - | - | - | - | - | - | 0.07 | 0.19 | 0.18 | 0.025 | 0.286 |
C22:2 n-6 | - | - | - | - | - | - | 0.006 | 0.008 | 0.012 | - | - |
C22:3 n-3 | - | - | - | - | - | - | 0.003 | 0.012 | 0.015 | - | - |
C22:4 n-6 | - | - | - | - | - | - | 0.018 | 0.016 | 0.015 | 0.018 | 0.013 |
C22:5 n-3 | - | - | - | - | - | - | 0.074 | 0.071 | 0.060 | 0.060 | 0.038 |
C22:6 n-3 | - | - | - | - | - | - | 0.004 | 0.003 | 0.003 | - | - |
C26:0 | - | - | - | - | - | - | 0.013 | 0.011 | 0.012 | 0.030 | 0.013 |
C28:0 | - | - | - | - | - | - | 0.003 | 0.003 | 0.004 | - | - |
trans FA | - | - | - | - | - | - | 6.56 | 8.47 | 11.7 | 3.37 | 11.8 |
SFA | 72.7 | 66.6 | 57.4 | 64.98 | 61.87 | 60.34 | 71.0 | 65.4 | 62.6 | 72.1 | 56.0 |
UFA | 27.3 | 33.4 | 42.6 | - | - | - | - | - | - | - | - |
MU FA | 25.1 | 30.7 | 39.7 | 27.67 | 29.58 | 30.48 | 23.2 | 28.2 | 29.7 | 24.7 | 39.1 |
PUFA | 2.16 | 2.70 | 2.92 | 5.52 | 6.43 | 6.31 | 5.33 | 5.93 | 7.27 | 2.89 | 4.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riaz, R.; Ahmed, I.; Sizmaz, O.; Ahsan, U. Use of Camelina sativa and By-Products in Diets for Dairy Cows: A Review. Animals 2022, 12, 1082. https://doi.org/10.3390/ani12091082
Riaz R, Ahmed I, Sizmaz O, Ahsan U. Use of Camelina sativa and By-Products in Diets for Dairy Cows: A Review. Animals. 2022; 12(9):1082. https://doi.org/10.3390/ani12091082
Chicago/Turabian StyleRiaz, Roshan, Ibrar Ahmed, Ozge Sizmaz, and Umair Ahsan. 2022. "Use of Camelina sativa and By-Products in Diets for Dairy Cows: A Review" Animals 12, no. 9: 1082. https://doi.org/10.3390/ani12091082
APA StyleRiaz, R., Ahmed, I., Sizmaz, O., & Ahsan, U. (2022). Use of Camelina sativa and By-Products in Diets for Dairy Cows: A Review. Animals, 12(9), 1082. https://doi.org/10.3390/ani12091082