Forecasting Milking Efficiency of Dairy Cows Milked in an Automatic Milking System Using the Decision Tree Technique
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Animals
- Days in milk (days, DIM)—average number of milking days;
- Milking frequency (number/day, MF)—number of milkings per cow milked by AMS per day;
- Attachment time per milking (s, AT)—the average time per milking per cow that it took the robot to attach the teatcup;
- Box time (min/day, BT)—the total time spent by a cow in the milking box during a day;
- Milk speed (kg/min, MS)—average milk flow rate per cow per day of robot operation;
- Milk yield (kg/day, MY)—total daily milk yield of a cow per day;
- Ratio of rear quarter MY to total (front and rear quarter) MY (%, RTR),
- Milking efficiency (ME, kg/min)—milk yield per day divided by box time.
Her | Number of Robots per Herd | Mean No. of Cows per Robot | Laying Area | Walking Area |
---|---|---|---|---|
A | 1 | 54 | Mats | Grates |
B | 1 | 59 | Mats | Grates |
C | 1 | 66 | Mats | Grates |
D | 2 | 53 | Straw | Grates |
E | 1 | 55 | Straw | Concrete |
F | 2 | 51 | Mats | Grates |
G | 1 | 56 | Mats | Concrete |
H | 1 | 65 | Mats | Concrete |
I | 1 | 59 | Mats | Grates |
J | 3 | 44 | Straw | Grates |
K | 1 | 55 | Mats | Concrete |
L | 1 | 63 | Mats | Grates |
M | 1 | 58 | Mats | Grates |
N | 5 | 50 | Straw | Concrete |
O | 1 | 58 | Mats | Grates |
P | 2 | 53 | Mats | Concrete |
R | 1 | 59 | Mats | Grates |
S | 3 | 52 | Mats | Grates |
T | 1 | 56 | Mats | Grates |
W | 1 | 62 | Mats | Grates |
2.2. Statistical Analysis
- yijklmnopqrs—the phenotype value of the trait (ME, MF, AT, BT, MS, MY),
- µ—a general average,
- yAMSi—the fixed effect of the ith yAMS class,
- Barnj—the fixed effect of the jth barn type,
- noCk—the fixed effect of the kth class of noC,
- nLl—the fixed effect of the lth noL,
- SCm—the fixed effect of the mth SC,
- AFCn—the fixed effect of the nth AFC class,
- DIMo—the fixed effect of the oth DIM class,
- RTRp—the fixed effect of the pth RTR class,
- (nL × SC)lm—interaction nL × SC,
- ar—the random effect of rth cows,
- eijklmnoprs—random error.
3. Results
3.1. Analysis of Milk Yield Variability and Recorded Milking Parameters with the Use of Multivariate Analysis of Variance
3.2. Forecasting ME
4. Discussion
Milking Efficiency and Parameters Affecting It
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- De Koning, K.; Rodenburg, J. Automatic Milking: State of the Art in Europe and North America; Meijering, A., Hogeveen, H., de Koning, C.J.A.M., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2004. [Google Scholar]
- Piwczyński, D.; Gondek, J.; Sitkowska, B.; Kolenda, M. Comparison of results coming from automatic milking system in selected countries in EUROPE and U.S. J. Cent. Eur. Agric. 2020, 21, 187–196. [Google Scholar] [CrossRef]
- Hogeveen, H.; Ouweltjes, W.; De Koning, C.J.A.M.; Stelwagen, K. Milking interval, milk production and milk flow-rate in an automatic milking system. Livest. Prod. Sci. 2001, 72, 157–167. [Google Scholar] [CrossRef]
- Wagner-Storch, A.M.; Palmer, R.W. Feeding behavior, milking behavior, and milk yields of cows milked in a parlor versus an automatic milking system. J. Dairy Sci. 2003, 86, 1494–1502. [Google Scholar] [CrossRef] [Green Version]
- Svennersten-Sjaunja, K.M.; Pettersson, G. Pros and cons of automatic milking in Europe. J. Anim. Sci. 2008, 86, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Rotz, C.A.; Coiner, C.U.; Soder, K.J. Automatic Milking Systems, Farm Size, and Milk Production. J. Dairy Sci. 2003, 86, 4167–4177. [Google Scholar] [CrossRef] [Green Version]
- Gygax, L.; Neuffer, I.; Kaufmann, C.; Hauser, R.; Wechsler, B. Comparison of Functional Aspects in Two Automatic Milking Systems and Auto-Tandem Milking Parlors. J. Dairy Sci. 2007, 90, 4265–4274. [Google Scholar] [CrossRef] [PubMed]
- André, G.; Berentsen, P.B.M.; Engel, B.; de Koning, C.J.A.M.; Oude Lansink, A.G.J.M. Increasing the revenues from automatic milking by using individual variation in milking characteristics. J. Dairy Sci. 2010, 93, 942–953. [Google Scholar] [CrossRef] [Green Version]
- Castro, A.; Pereira, J.M.; Amiama, C.; Bueno, J. Estimating efficiency in automatic milking systems. J. Dairy Sci. 2012, 95, 929–936. [Google Scholar] [CrossRef]
- Tremblay, M.; Hess, J.P.; Christenson, B.M.; McIntyre, K.K.; Smink, B.; van der Kamp, A.J.; de Jong, L.G.; Döpfer, D. Factors associated with increased milk production for automatic milking systems. J. Dairy Sci. 2016, 99, 3824–3837. [Google Scholar] [CrossRef]
- Løvendahl, P.; Lassen, J.; Chagunda, M.G.G. Milking Efficiency—A Milkability Trait for Automatically Milked Cows. In Proceedings of the 10th World Congress on Genetics Applied to Livestock Production, Vancouver, BC, Canada, 17–22 August 2014. [Google Scholar]
- Odorčić, M.; Rasmussen, M.D.; Paulrud, C.O.; Bruckmaier, R.M. Review: Milking machine settings, teat condition and milking efficiency in dairy cows. Animal 2019, 13, S94–S99. [Google Scholar] [CrossRef] [Green Version]
- Heringstad, B.; Bugten, H.K. Genetic evaluations based on data from automatic milking systems. ICAR Berl. 2014 2014. [Google Scholar] [CrossRef]
- Piwczyński, D.; Nogalski, Z.; Sitkowska, B. Statistical modeling of calving ease and stillbirths in dairy cattle using the classification tree technique. Livest. Sci. 2013, 154, 19–27. [Google Scholar] [CrossRef]
- Piwczyński, D.; Sitkowska, B. Statistical modelling of somatic cell counts using the classification tree technique. Arch. Anim. Breed. 2012, 55, 332–345. [Google Scholar] [CrossRef]
- Ghiasi, H.; Piwczyński, D.; Khaldari, M.; Kolenda, M. Application of classification trees in determining the impact of phenotypic factors on conception to first service in Holstein cattle. Anim. Prod. Sci. 2015, 56, 1061. [Google Scholar] [CrossRef]
- SAS Institute Inc. SAS/STAT® 9.4 User’s Guide Cary; SAS Institute Inc.: Cary, NC, USA, 2014. [Google Scholar]
- Piwczyński, D.; Sitkowska, B.; Wiśniewska, E. Application of classification trees and logistic regression to determine factors responsible for lamb mortality. Small Rumin. Res. 2012, 103, 225–231. [Google Scholar] [CrossRef]
- Grochowska, E.; Piwczyński, D.; Portolano, B.; Mroczkowski, S. Analysis of the influence of the PrP genotype on the litter size in Polish sheep using classification trees and logistic regression. Livest. Sci. 2014, 159, 11–17. [Google Scholar] [CrossRef]
- Piwczyński, D.; Sitkowska, B.; Kolenda, M.; Brzozowski, M.; Aerts, J.; Schork, P.M. Forecasting the milk yield of cows on farms equipped with automatic milking system with the use of decision trees. Anim. Sci. J. 2020, 91, e13414. [Google Scholar] [CrossRef]
- Vosman, J.J.; De Jong, G.; Eding, H. Breeding of Cows Suitable for an Automatic Milking System. In Proceedings of the INTERBULL BULLETIN, Berlin, Germay, 20–21 May 2014. [Google Scholar]
- Carlström, C.; Pettersson, G.; Johansson, K.; Strandberg, E.; Stålhammar, H.; Philipsson, J. Feasibility of using automatic milking system data from commercial herds for genetic analysis of milkability. J. Dairy Sci. 2013, 96, 5324–5332. [Google Scholar] [CrossRef] [Green Version]
- John, A.J.; Clark, C.E.F.F.; Freeman, M.J.; Kerrisk, K.L.; Garcia, S.C.; Halachmi, I. Review: Milking robot utilization, a successful precision livestock farming evolution. Animal 2016, 10, 1484–1492. [Google Scholar] [CrossRef]
- Løvendahl, P.; Chagunda, M.G.G. Covariance among milking frequency, milk yield, and milk composition from automatically milked cows. J. Dairy Sci. 2011, 94, 5381–5392. [Google Scholar] [CrossRef] [Green Version]
- Bach, A.; Busto, I. Effects on milk yield of milking interval regularity and teat cup attachment failures with robotic milking systems. J. Dairy Res. 2005, 72, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Piwczyński, D.; Sitkowska, B.; Ptak, E. Genetic relationship among somatic cell score and some milking traits in Holstein-Friesian primiparous cows milked by an automated milking system. Animal 2021, 15, 100094. [Google Scholar] [CrossRef] [PubMed]
- Carlström, C.; Strandberg, E.; Johansson, K.; Pettersson, G.; Stålhammar, H.; Philipsson, J. Genetic evaluation of in-line recorded milkability from milking parlors and automatic milking systems. J. Dairy Sci. 2014, 97, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Spolders, M.; Meyer, U.; Flachowsky, G.; Coenen, M. Differences between primiparous and multiparous cows in voluntary milking frequency in an automatic milking system. Ital. J. Anim. Sci. 2004, 3, 167–175. [Google Scholar] [CrossRef] [Green Version]
- Siewert, J.M.; Salfer, J.A.; Endres, M.I. Factors associated with productivity on automatic milking system dairy farms in the Upper Midwest United States. J. Dairy Sci. 2018, 101, 8327–8334. [Google Scholar] [CrossRef]
- Tse, C.; Barkema, H.W.; DeVries, T.J.; Rushen, J.; Pajor, E.A. Impact of automatic milking systems on dairy cattle producers’ reports of milking labour management, milk production and milk quality. Animal 2018, 12, 2649–2656. [Google Scholar] [CrossRef]
- Lee, A.R.; Krawczel, P.D.; Ternman, E.; Schneider, L.G.; Løvendahl, P.; Munksgaard, L. Evaluating the effects of mean stocking density on automatic milking system use and total milk production in Holstein cows. In Proceedings of the 2nd International Precision Dairy Farming Conference, Denver, CO, USA, 18–20 June 2019; University of Minnesota: Minneapolis, MN, USA, 2019; pp. 71–72. [Google Scholar]
- Sitkowska, B.; Piwczyński, D.; Kolenda, M. The relationships between udder-quarter somatic-cell counts and milk and milking parameters in cows managed with an automatic milking system. Anim. Prod. Sci. 2020, 60, 1830. [Google Scholar] [CrossRef]
- PFHBiPM. Evaluation and Breeding of Dairy Cattle in 2020. 2021. Available online: https://pfhb.pl/fileadmin/user_upload/OCENA/publikacje/publikacje_2020/ENG/PFHBiPM_Evaluation_for_2019_eng_web_v02.pdf (accessed on 20 February 2022). (In Polish).
- Eslamizad, M.; Dehghan-Banadaky, M.; Rezayazdi, K.; Moradi-Shahrbabak, M. Effects of 6 times daily milking during early versus full lactation of Holstein cows on milk production and blood metabolites. J. Dairy Sci. 2010, 93, 4054–4061. [Google Scholar] [CrossRef]
- Mostert, B.E.; Theron, H.E.; Kanfer, F.H.J. The effect of calving season and age at calving on production traits of South African dairy cattle. S. Afr. J. Anim. Sci. 2001, 31, 205–214. [Google Scholar] [CrossRef]
- Nilforooshan, M.A.; Edriss, M.A. Effect of age at first calving on some productive and longevity traits in Iranian Holsteins of the Isfahan province. J. Dairy Sci. 2004, 87, 2130–2135. [Google Scholar] [CrossRef] [Green Version]
- Speroni, M.; Pirlo, G.; Lolli, S. Effect of automatic milking systems on milk yield in a hot environment. J. Dairy Sci. 2006, 89, 4687–4693. [Google Scholar] [CrossRef]
Variable | N | Mean | SD | CV (%) |
---|---|---|---|---|
Number of cows per robot (n) | 713,206 | 55.37 | 8.36 | 15.09 |
Age at 1st calving (days) | 713,206 | 907.30 | 237.26 | 26.15 |
Days in milk (days) | 713,206 | 149.65 | 84.22 | 56.28 |
Milking frequency (n/day) | 713,206 | 2.83 | 0.91 | 31.95 |
Attachment time (s) | 713,206 | 6.03 | 3.92 | 65.05 |
Box time (min/day) | 713,206 | 18.41 | 7.57 | 41.12 |
Milk speed (kg/min) | 713,206 | 2.59 | 0.91 | 34.93 |
Milk yield (kg/day) | 713,206 | 29.03 | 9.92 | 34.17 |
Rear quarter to total quarter MY ratio (%) | 658,159 | 54.49 | 7.02 | 12.88 |
Milking efficiency (kg/min) | 713,206 | 1.67 | 0.46 | 27.33 |
Factor | Level | ME | MF | AT | BT | MS | MY |
---|---|---|---|---|---|---|---|
Year of AMS operation | 1 | 1.71 A | 2.93 A | 5.91 A | 18.74 A | 2.67 A | 30.30 A |
2 | 1.71 B | 2.88 AB | 6.08 AB | 18.65 AB | 2.65 AB | 30.29 B | |
3 | 1.69 AB | 2.77 AB | 6.00 AB | 18.36 AB | 2.59 AB | 29.56 AB | |
Barn type | Adapted | 1.69 | 2.88 | 6.15 A | 18.98 A | 2.63 | 30.34 |
New | 1.72 | 2.84 | 5.82 A | 18.19 A | 2.65 | 29.76 | |
Number of cows per robot | 45–50 | 1.65 A | 2.89 A | 5.95 Aa | 18.62 A | 2.59 A | 29.26 A |
51–55 | 1.69 AB | 2.91 AB | 5.93 B | 18.73 AB | 2.63 AB | 30.08 AB | |
56–60 | 1.71 ABC | 2.88 ABC | 6.00 BCa | 18.66 BC | 2.64 ABC | 30.26 ABC | |
61–75 | 1.76 ABC | 2.76 ABC | 6.12 ABC | 18.32 ABC | 2.70 ABC | 30.61 ABC | |
Lactation number | 1 | 1.61 A | 2.83 A | 6.12 A | 18.49 A | 2.52 A | 28.17 A |
2 or 3 | 1.79 A | 2.88 A | 5.88 A | 18.68 A | 2.76 A | 31.93 A | |
Season of calving | Autumn | 1.70 A | 2.90 A | 5.99 | 18.91 A | 2.63 A | 30.49 A |
Spring | 1.74 AB | 2.77 AB | 6.06 A | 18.11 AB | 2.69 AB | 29.76 AB | |
Summer | 1.68 ABC | 2.85 BC | 5.99 | 18.57 ABC | 2.60 ABC | 29.47 ABC | |
Winter | 1.70 BC | 2.91 BC | 5.97 A | 18.74 BC | 2.63 BC | 30.49 BC | |
Age at first calving (months) | ≤24 | 1.67 Aa | 2.76 A | 5.65 A | 18.43 A | 2.61 Aa | 28.03 A |
[24–25) | 1.59 Ba | 2.66 B | 6.33 A | 15.92 AB | 2.38 B | 25.42 AB | |
[25–26) | 1.71 Bb | 2.90 ABC | 5.89 | 18.86 BC | 2.64 BCa | 30.73 ABC | |
[26–36) | 1.76 AB | 3.08 ABCD | 5.95 | 21.61 ABCD | 2.75 AB | 34.92 ABCD | |
≥36 | 1.80 ABb | 2.88 ABD | 6.17 A | 18.09 BD | 2.82 ABC | 31.15 ABD | |
Days in milk (days) | 50 | 1.64 A | 3.00 A | 6.25 Aa | 21.25 A | 2.47 A | 32.63 A |
51–100 | 1.70 AB | 3.06 AB | 6.30 Ba | 21.51 AB | 2.55 AB | 34.24 AB | |
101–150 | 1.72 ABC | 2.97 ABC | 6.05 ABC | 19.47 ABC | 2.65 ABC | 31.74 ABC | |
151–200 | 1.73 ABCD | 2.87 BCD | 5.83 ABCD | 17.91 ABCD | 2.71 ABCD | 29.63 ABCD | |
201–250 | 1.73 ABCE | 2.74 ABCDE | 5.77 ABCD | 16.53 ABCDE | 2.73 ABCDa | 27.49 ABCDE | |
251–305 | 1.71 ABCDE | 2.51 ABCDE | 5.79 ABC | 14.83 ABCDE | 2.72 ABCDa | 24.58 ABCDE | |
Rear quarter to total quarter MY ratio (%) | 34–50 | 1.67 A | 2.76 A | 5.98 A | 18.03 A | 2.61 A | 28.57 A |
51–55 | 1.73 AB | 2.87 AB | 5.92 AB | 18.44 AB | 2.70 AB | 30.49 AB | |
56–60 | 1.73 AC | 2.91 ABC | 5.94 C | 18.76 ABC | 2.68 ABC | 30.89 ABC | |
61–73 | 1.67 BC | 2.89 ABC | 6.15 ABC | 19.11 ABC | 2.57 ABC | 30.26 ABC |
Trait | Milking Efficiency | p-Value |
---|---|---|
No. of cows per robot (n) | −0.043 | <0.0001 |
Age at 1st calving (days) | 0.081 | <0.0001 |
Milking frequency (n/day) | −0.079 | 0.5544 |
Attachment time (s) | −0.161 | <0.0001 |
Box time (min/day) | −0.483 | <0.0001 |
Milk speed (kg/min) | 0.879 | <0.0001 |
Milk yield (kg/day) | 0.229 | <0.0001 |
Rear quarter to total quarter MY ratio (%) | −0.020 | <0.0001 |
Variable | Number of Splits | Importance | Importance of Validation |
---|---|---|---|
Milk yield | 4 | 1.000 | 1.000 |
Milking frequency | 2 | 0.984 | 0.982 |
Attachment time | 10 | 0.917 | 0.921 |
Days in milk | 5 | 0.678 | 0.679 |
Lactation number | 2 | 0.550 | 0.547 |
Number of cows per robot | 1 | 0.531 | 0.529 |
Rear quarter to total quarter MY ratio | 3 | 0.259 | 0.265 |
Age at 1st calving | 1 | 0.131 | 0.125 |
Season of calving | 1 | 0.104 | 0.102 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aerts, J.; Kolenda, M.; Piwczyński, D.; Sitkowska, B.; Önder, H. Forecasting Milking Efficiency of Dairy Cows Milked in an Automatic Milking System Using the Decision Tree Technique. Animals 2022, 12, 1040. https://doi.org/10.3390/ani12081040
Aerts J, Kolenda M, Piwczyński D, Sitkowska B, Önder H. Forecasting Milking Efficiency of Dairy Cows Milked in an Automatic Milking System Using the Decision Tree Technique. Animals. 2022; 12(8):1040. https://doi.org/10.3390/ani12081040
Chicago/Turabian StyleAerts, Joanna, Magdalena Kolenda, Dariusz Piwczyński, Beata Sitkowska, and Hasan Önder. 2022. "Forecasting Milking Efficiency of Dairy Cows Milked in an Automatic Milking System Using the Decision Tree Technique" Animals 12, no. 8: 1040. https://doi.org/10.3390/ani12081040
APA StyleAerts, J., Kolenda, M., Piwczyński, D., Sitkowska, B., & Önder, H. (2022). Forecasting Milking Efficiency of Dairy Cows Milked in an Automatic Milking System Using the Decision Tree Technique. Animals, 12(8), 1040. https://doi.org/10.3390/ani12081040