Characteristics and Applications of Canine In Vitro Models of Bladder Cancer in Veterinary Medicine: An Up-to-Date Mini Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Evidence Acquisition
3. Evidence Synthesis
3.1. Two Dimensional (2D) Models
3.2. Three Dimensional (3D) Models
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Knapp, D.W.; Ramos-Vara, J.A.; Moore, G.E.; Dhawan, D.; Bonney, P.L.; Young, K.E. Urinary bladder cancer in dogs, a naturally occurring model for cancer biology and drug development. ILAR J. 2014, 55, 100–118. [Google Scholar] [CrossRef] [PubMed]
- Knapp, D.W.; Dhawan, D.; Ramos-Vara, J.A.; Ratliff, T.L.; Cresswell, G.M.; Utturkar, S.; Sommer, B.C.; Fulkerson, C.M.; Hahn, N.M. Naturally-occurring invasive urothelial carcinoma in dogs, a unique model to drive advances in managing muscle invasive bladder cancer in humans. Front. Oncol. 2019, 9, 1493. [Google Scholar] [CrossRef] [PubMed]
- Mutsaers, A.J.; Widmer, W.R.; Knapp, D.W. Canine transitional cell carcinoma. J. Vet. Intern. Med. 2003, 17, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Knapp, D.W.; Chan, T.C.; Kuczek, T.; Reagan, W.J.; Park, B. Evaluation of in vitro cytotoxicity of nonsteroidal anti-inflammatory drugs against canine tumor cells. Am. J. Vet. Res. 1995, 56, 801–805. [Google Scholar]
- Dhawan, D.; Ramos-Vara, J.A.; Stewart, J.C.; Zheng, R.; Knapp, D.W. Canine invasive transitional cell carcinoma cell lines: In vitro tools to complement a relevant animal model of invasive urinary bladder cancer. Urol. Oncol. Semin. Orig. Investig. 2009, 27, 284–292. [Google Scholar] [CrossRef]
- Urbasic, A.S.; Hynes, S.; Somrak, A.; Contakos, S.; Rahman, M.M.; Liu, J.; MacNeill, A.L. Oncolysis of canine tumor cells by myxoma virus lacking the serp2 gene. Am. J. Veter- Res. 2012, 73, 1252–1261. [Google Scholar] [CrossRef]
- Rathore, K.; Cekanova, M. Animal model of naturally occurring bladder cancer: Characterization of four new canine transitional cell carcinoma cell lines. BMC Cancer 2014, 14, 465. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, H.; Iwano, T.; Otsuka, S.; Kagawa, Y.; Hoshino, Y.; Hosoya, K.; Okumura, M.; Takagi, S. SiRNA knockdown of the DEK nuclear protein mRNA enhances apoptosis and chemosensitivity of canine transitional cell carcinoma cells. Vet. J. 2015, 204, 60–65. [Google Scholar] [CrossRef]
- Shapiro, S.G.; Knapp, D.W.; Breen, M. A cultured approach to canine urothelial carcinoma: Molecular characterization of five cell lines. Canine Genet. Epidemiol. 2015, 2, 15. [Google Scholar] [CrossRef] [Green Version]
- Packeiser, E.-M.; Hewicker-Trautwein, M.; Thiemeyer, H.; Mohr, A.; Junginger, J.; Schille, J.T.; Escobar, H.M.; Nolte, I. Characterization of six canine prostate adenocarcinoma and three transitional cell carcinoma cell lines derived from primary tumor tissues as well as metastasis. PLoS ONE 2020, 15, e0230272. [Google Scholar] [CrossRef] [Green Version]
- Fowles, J.S.; Dailey, D.D.; Gustafson, D.L.; Thamm, D.; Duval, D.L. The Flint Animal Cancer Center (FACC) canine tumour cell line panel: A resource for veterinary drug discovery, comparative oncology and translational medicine. Veter- Comp. Oncol. 2017, 15, 481–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, S.; Idate, R.; Cronise, K.E.; Gustafson, D.L.; Duval, D.L. Identifying candidate druggable targets in canine cancer cell lines using whole-exome sequencing. Mol. Cancer Ther. 2019, 18, 1460–1471. [Google Scholar] [CrossRef] [PubMed]
- Knapp, D.W.; Glickman, N.W.; Widmer, W.R.; DeNicola, D.B.; Adams, L.G.; Kuczek, T.; Bonney, P.L.; DeGortari, A.E.; Han, C.; Glickman, L.T. Cisplatin versus cisplatin combined with piroxicam in a canine model of human invasive urinary bladder cancer. Cancer Chemother. Pharmacol. 2000, 46, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, S.I.; Craig, B.A.; Mutsaers, A.J.; Glickman, N.W.; Snyder, P.W.; deGortari, A.E.; Schlittler, D.L.; Coffman, K.T.; Bonney, P.L.; Knapp, D.W. Effects of the cyclooxygenase inhibitor, piroxicam, in combination with chemotherapy on tumor response, apoptosis, and angiogenesis in a canine model of human invasive urinary bladder cancer. Mol. Cancer Ther. 2003, 2, 183–188. [Google Scholar]
- de Brito Galvao, J.F.; Kisseberth, W.C.; Murahari, S.; Sutayatram, S.; Chew, D.J.; Inpanbutr, N. Effects of gemcitabine and gemcitabine in combination with carboplatin on five canine transitional cell carcinoma cell lines. Am. J. Vet. Res. 2012, 73, 1262–1272. [Google Scholar] [CrossRef]
- Cekanova, M.; Rathore, K. A novel derivative of doxorubicin, AD198, inhibits canine transitional cell carcinoma and osteosarcoma cells in vitro. Drug Des. Dev. Ther. 2015, 9, 5323–5335. [Google Scholar] [CrossRef] [Green Version]
- Gustafson, T.L.; Kitchell, B.E.; Biller, B. Hedgehog signaling is activated in canine transitional cell carcinoma and contributes to cell proliferation and survival. Vet. Comp. Oncol. 2017, 15, 174–183. [Google Scholar] [CrossRef]
- Grayton, J.E.; Miller, T.; Wilson-Robles, H. In vitroevaluation of Selective Inhibitors of Nuclear Export (SINE) drugs KPT-185 and KPT-335 against canine mammary carcinoma and transitional cell carcinoma tumor initiating cells. Vet. Comp. Oncol. 2017, 15, 1455–1467. [Google Scholar] [CrossRef]
- Bourn, J.; Cekanova, M. Cyclooxygenase inhibitors potentiate receptor tyrosine kinase therapies in bladder cancer cells in vitro. Drug Des. Dev. Ther. 2018, 12, 1727–1742. [Google Scholar] [CrossRef] [Green Version]
- Sakai, K.; Maeda, S.; Saeki, K.; Nakagawa, T.; Murakami, M.; Endo, Y.; Yonezawa, T.; Kadosawa, T.; Mori, T.; Nishimura, R.; et al. Anti-tumour effect of lapatinib in canine transitional cell carcinoma cell lines. Vet. Comp. Oncol. 2018, 16, 642–649. [Google Scholar] [CrossRef]
- Cronise, K.E.; Hernandez, B.G.; Gustafson, D.L.; Duval, D.L. Identifying the ErbB/MAPK signaling cascade as a therapeutic target in canine bladder cancer. Mol. Pharmacol. 2019, 96, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Hurst, E.A.; Pang, L.Y.; Argyle, D.J. The selective cyclooxygenase-2 inhibitor mavacoxib (Trocoxil) exerts anti-tumour effects in vitro independent of cyclooxygenase-2 expression levels. Vet. Comp. Oncol. 2019, 17, 194–207. [Google Scholar] [CrossRef] [PubMed]
- Byer, B.; Schlein, L.J.; Rose, B.; Séguin, B. In-vitro effects of taurolidine alone and in combination with mitoxantrone and/or piroxicam on canine transitional cell carcinoma. Can. J. Vet. Res. 2020, 84, 115–123. [Google Scholar] [PubMed]
- Klose, K.; Packeiser, E.-M.; Müller, P.; Granados-Soler, J.L.; Schille, J.T.; Goericke-Pesch, S.; Kietzmann, M.; Escobar, H.M.; Nolte, I. Metformin and sodium dichloroacetate effects on proliferation, apoptosis, and metabolic activity tested alone and in combination in a canine prostate and a bladder cancer cell line. PLoS ONE 2021, 16, e0257403. [Google Scholar] [CrossRef]
- Korec, D.I.; Louke, D.S.; Breitbach, J.T.; Geisler, J.A.; Husbands, B.D.; Fenger, J.M. Characterization of receptor tyrosine kinase activation and biological activity of toceranib phosphate in canine urothelial carcinoma cell lines. BMC Vet. Res. 2021, 17, 320. [Google Scholar] [CrossRef]
- Maeda, S.; Sakai, K.; Kaji, K.; Iio, A.; Nakazawa, M.; Motegi, T.; Yonezawa, T.; Momoi, Y. Lapatinib as first-line treatment for muscle-invasive urothelial carcinoma in dogs. Sci. Rep. 2022, 12, 4. [Google Scholar] [CrossRef]
- Parfitt, S.L.; Milner, R.J.; Salute, M.E.; Hintenlang, D.E.; Farese, J.P.; Bacon, N.J.; Bova, F.J.; Rajon, D.A.; Lurie, D.M. Radiosensitivity and capacity for radiation-induced sublethal damage repair of canine transitional cell carcinoma (TCC) cell lines. Vet. Comp. Oncol. 2011, 9, 232–240. [Google Scholar] [CrossRef]
- Maeda, J.; Froning, C.E.; Brents, C.A.; Rose, B.J.; Thamm, D.H.; Kato, T.A. Intrinsic radiosensitivity and cellular characterization of 27 canine cancer cell lines. PLoS ONE 2016, 11, e0156689. [Google Scholar] [CrossRef]
- Wilding, J.L.; Bodmer, W. Cancer cell lines for drug discovery and development. Cancer Res. 2014, 74, 2377–2384. [Google Scholar] [CrossRef] [Green Version]
- Riedl, A.; Schlederer, M.; Pudelko, K.; Stadler, M.; Walter, S.; Unterleuthner, D.; Unger, C.; Kramer, N.; Hengstschläger, M.; Kenner, L.; et al. Comparison of cancer cells in 2D vs 3D culture reveals differences in AKT–mTOR–S6K signaling and drug responses. J. Cell Sci. 2017, 130, 203–218. [Google Scholar] [CrossRef] [Green Version]
- Vasyutin, I.; Zerihun, L.; Ivan, C.; Atala, A. Bladder organoids and spheroids: Potential tools for normal and diseased tissue modelling. Anticancer Res. 2019, 39, 1105–1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, V.; Magne, B.; Vaillancourt-Audet, M.; Blais, M.; Chabaud, S.; Grammond, E.; Piquet, L.; Fradette, J.; Laverdière, I.; Moulin, V.J.; et al. Human organ-specific 3D cancer models produced by the stromal self-assembly method of tissue engineering for the study of solid tumors. BioMed Res. Int. 2020, 2020, 6051210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elbadawy, M.; Usui, T.; Mori, T.; Tsunedomi, R.; Hazama, S.; Nabeta, R.; Uchide, T.; Fukushima, R.; Yoshida, T.; Shibutani, M.; et al. Establishment of a novel experimental model for muscle-invasive bladder cancer using a dog bladder cancer organoid culture. Cancer Sci. 2019, 110, 2806–2821. [Google Scholar] [CrossRef] [PubMed]
- Elbadawy, M.; Sato, Y.; Mori, T.; Goto, Y.; Hayashi, K.; Yamanaka, M.; Azakami, D.; Uchide, T.; Fukushima, R.; Yoshida, T.; et al. Anti-tumor effect of trametinib in bladder cancer organoid and the underlying mechanism. Cancer Biol. Ther. 2021, 22, 357–371. [Google Scholar] [CrossRef]
- Abugomaa, A.; Elbadawy, M.; Yamanaka, M.; Goto, Y.; Hayashi, K.; Mori, T.; Uchide, T.; Azakami, D.; Fukushima, R.; Yoshida, T.; et al. Establishment of 2.5D organoid culture model using 3D bladder cancer organoid culture. Sci. Rep. 2020, 10, 9393. [Google Scholar] [CrossRef]
- Wang, S.; Gao, D.; Chen, Y. The potential of organoids in urological cancer research. Nat. Rev. Urol. 2017, 14, 401–414. [Google Scholar] [CrossRef]
Cell Line Name | First Report Date | Development | Characteristics of Primary Tumor | Doubling Time | Reference (First Report) | |||
---|---|---|---|---|---|---|---|---|
Breed of Origin | Age at Sampling | Gender | Pathological Data | |||||
K9TCC | 1995 | Cultured cells from bladder tumor biopsy samples | Mixed breed | NR | Female | Invasive TCC | 24 h | [4] |
K9TCC-PU-AxA | 2009 | Cultured cells from bladder tumor biopsy samples | NR | NR | Female | Invasive TCC G3 | 23.5 h | [5] |
K9TCC-PU-AxC | 2009 | Cultured cells from bladder tumor biopsy samples | NR | NR | Female | Invasive TCC G3 | 36.2 h | [5] |
K9TCC-PU-In | 2009 | Cultured cells from bladder tumor biopsy samples | German Shepherd | NR | Female | Invasive TCC G3 | 41.2 h | [5] |
K9TCC-PU-Mx | 2009 | Cultured cells from bladder tumor biopsy samples | German Shepherd | NR | Female | Invasive TCC G3 | 23.5 h | [5] |
K9TCC-PU-Nk | 2009 | Cultured cells from bladder tumor biopsy samples | NR | NR | Female | Invasive TCC G3 | 58.4 h | [5] |
K9TCC-PU-Pu | 2009 | Cultured cells from bladder tumor biopsy samples | NR | NR | Female | Invasive TCC G3 | 51.8 h | [5] |
K9TCC-PU-Sh | 2009 | Cultured cells from bladder tumor biopsy samples | Collie | NR | Female | Invasive TCC G3 | 29.1 h | [5] |
Bliley | 2012 | NR | Shetland Sheepdog | NR | Female | TCC | 20 h | [6] |
K9TCC#1Lille | 2014 | Cultured cells from bladder tumor biopsy samples | Pointer | 16 years | Female | Invasive TCC | 47.4 h | [7] |
K9TCC#2Dakota | 2014 | Cultured cells from bladder tumor biopsy samples | Bichon Fries | 13 years | Female | Invasive TCC | 31.96 h | [7] |
K9TCC#4Molly | 2014 | Cultured cells from bladder tumor biopsy samples | Maltese | 10 years | Female | Invasive TCC | 44.69 h | [7] |
K9TCC#5Lilly | 2014 | Cultured cells from bladder tumor biopsy samples | Mixed breed | 13 years | Female | Invasive TCC | 48.3 h | [7] |
LCTCC | 2015 | Cultured cells from bladder tumor biopsy samples | NR | NR | NR | TCC | NR | [8] |
MCTCC | 2015 | Cultured cells from bladder tumor biopsy samples | NR | NR | NR | TCC | NR | [8] |
MegTCC | 2015 | Cultured cells from bladder tumor biopsy samples | NR | NR | NR | TCC | NR | [8] |
MonoTCC | 2015 | Cultured cells from bladder tumor biopsy samples | NR | NR | NR | TCC | NR | [8] |
K9TCC-PU-An | 2015 | Cultured cells from bladder tumor biopsy samples | Scottish Terrier | NR | Female | Invasive TCC | NR | [9] |
TihoDUrtTCC1506 | 2020 | Cultured cells from bladder tumor biopsy samples | Labrador Retriever | 10 years | Female | Invasive TCC | 19.9 h | [10] |
Cell Line Name | Expression of Cancer-Related Markers | Available Molecular Data | Reference | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Uroplakin | Cytokeratin | E-Cadherin | Vimentin | Ki67 | PDGFR | EGFR | COX-2 | p53 | |||
K9TCC | NR | High | High | Moderate | NR | NR | NR | High | Low | Array-based CGH, CNV analysis, transcriptome analysis | [4,5,9] |
K9TCC-PU-AxA | NR | High | High | Moderate | NR | NR | NR | High | High | NR | [5] |
K9TCC-PU-AxC | NR | High | High | High | NR | NR | NR | High | High | NR | [5] |
K9TCC-PU-In | NR | High | High | Moderate | NR | NR | NR | High | High | Array-based CGH, CNV analysis | [5,9] |
K9TCC-PU-Mx | NR | High | High | Low | NR | NR | NR | High | Low | Array-based CGH, CNV analysis | [5,9] |
K9TCC-PU-Nk | NR | High | High | Moderate | NR | NR | NR | High | Low | NR | [5] |
K9TCC-PU-Pu | NR | High | High | Moderate | NR | NR | NR | High | Low | NR | [5] |
K9TCC-PU-Sh | NR | High | High | Moderate | NR | NR | NR | High | Low | Array-based CGH, CNV analysis | [5,9] |
Bliley | NR | NR | NR | NR | NR | NR | NR | NR | NR | Deep exome analysis, transcriptome analysis | [6,11,12] |
K9TCC#1Lilly | High | High | NR | Low | High | High | Moderate | High | NR | NR | [7] |
K9TCC#2Dakota | High | High | NR | Low | High | High | Moderate | High | NR | NR | [7] |
K9TCC#4Molly | Low | Moderate | NR | Low | Moderate | High | Moderate | High | NR | NR | [7] |
K9TCC#5Lilly | Moderate | Moderate | NR | Low | High | Moderate | Moderate | High | NR | NR | [7] |
TihoDUrtTCC1506 | Low | High | High | Low | NR | NR | NR | High | Moderate | NR | [10] |
Author | Therapeutic Agent | Cell Lines Used | Main Results | Reference |
---|---|---|---|---|
Knapp et al. | Piroxicam (COX-2 inhibitor) | K9TCC | Piroxicam had no direct cytotoxicity against canine BC cells Piroxicam increased cytotoxicity of chemotherapeutic agents | [4] |
Galvao et al. | Gemcitabine + carboplatin (chemotherapeutic drugs) | K9TCC-PU: -AxA, -AxC, -Pu, -Sh | The combination of gemcitabine and carboplatin had synergistic antitumor effects on canine BC cells | [15] |
Rathore et al. | AD198 (derivate of doxorubicin, chemotherapeutic drug) | K9TCC#Lillie, K9TCC#2Dakota, K9TCC#4Molly | AD198 inhibited cell viability of canine BC cells more efficiently as compared to doxorubicin at the same concentration | [16] |
Gustafson et al. | Cyclopamine GANT6 (hedgehog signaling pathways inhibitors) | K9TCC, K9TCC-PU-Sh | Cyclopamine and GANT6 led to significantly decreased canine BC cells proliferation but had a smaller effect on apoptosis | [17] |
Grayton et al. | KPT-185 KPT-335 (selective inhibitors of nuclear export) | Bliley | Canine BC cells were resistant to both drugs | [18] |
Bourn et al. | Axitinib Masitinib (receptor tyrosine kinase inhibitors) | K9TCC#1Lillie, K9TCC#5Lilly | Axitinib and masitinib inhibited cell viability and increased apoptosis in a dose-dependent manner in tested canine BC cell lines | [19] |
Sakai et al. | Lapatinib (tyrosine kinase inhibitor of HER2 and EGFR) | LCTCC, MCTCC | Lapatinib inhibited canine BC cell growth in a dose-dependent manner | [20] |
Cronise et al. | Vemurafenib (BRAF inhibitor) | Bliley | BRAF mutant BC cell lines were insensitive to vemurafenib | [21] |
Hurst et al. | Mavacoxib (selective COX-2 inhibitor) | K9TCC, K9TCC-PU: -AxA, - In, -Sh | Mavacoxib reduced cell viability in a dose-dependent manner in all tested canine BC cell lines | [22] |
Byer et al. | Taurolidine (inhibitor of angiogenesis) | Bliley | Taurolidine showed significant effects on canine BC cell viability | [23] |
Klose et al. | Metformin (biguanide antihyperglycemic agent) | TCC1506 | Metformin inhibited the metabolic activity and cell proliferation of the canine BC cells | [24] |
Korec et al. | Toceranib (multi-target receptor tyrosine kinase inhibitor) | K9TCC-PU-AxA, -AxC, -Nk, -Pu, -Sh | Toceranib at physiologically relevant concentrations has no direct anti-proliferative effect on canine BC cells | [25] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowak, Ł.; Krajewski, W.; Małkiewicz, B.; Szydełko, T.; Pawlak, A. Characteristics and Applications of Canine In Vitro Models of Bladder Cancer in Veterinary Medicine: An Up-to-Date Mini Review. Animals 2022, 12, 516. https://doi.org/10.3390/ani12040516
Nowak Ł, Krajewski W, Małkiewicz B, Szydełko T, Pawlak A. Characteristics and Applications of Canine In Vitro Models of Bladder Cancer in Veterinary Medicine: An Up-to-Date Mini Review. Animals. 2022; 12(4):516. https://doi.org/10.3390/ani12040516
Chicago/Turabian StyleNowak, Łukasz, Wojciech Krajewski, Bartosz Małkiewicz, Tomasz Szydełko, and Aleksandra Pawlak. 2022. "Characteristics and Applications of Canine In Vitro Models of Bladder Cancer in Veterinary Medicine: An Up-to-Date Mini Review" Animals 12, no. 4: 516. https://doi.org/10.3390/ani12040516