Impact of Urbanisation Intensity on Bird Diversity in River Wetlands around Chaohu Lake, China
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Research Areas
2.2. Data Collection and Analysis
2.2.1. Bird Surveys
2.2.2. Measurement of Environmental Factors
2.2.3. Statistical Analysis
3. Results
3.1. Bird Community Composition in the River Wetlands
3.2. Factors That Influence Bird Communities in River Wetlands
3.3. Influence of Urbanisation Intensity on Bird Communities in River Wetlands
3.3.1. Trends in the Urbanisation Intensity of the Different River Sections
3.3.2. Distribution Pattern of Bird Communities along the Urbanisation Intensity Gradient
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Souza, F.L.; Valente-Neto, F.; Severo-Neto, F.; Bueno, B.; Ochoa-Quintero, J.M.; Laps, R.R.; Bolzan, F.; De Oliveira Roque, F. Impervious surface and heterogeneity are opposite drivers to maintain bird richness in a Cerrado city. Landsc. Urban Plan. 2019, 192, 103643. [Google Scholar] [CrossRef]
- De Matos Sousa, N.O.; Lopes, L.E.; Costa, L.M.; Motta-Junior, J.C.; De Freitas, G.H.S.; Dornas, T.; De Vasconcelos, M.F.; Nogueira, W.; De Magalhães Tolentino, V.C.; De-Carvalho, C.B. Adopting habitat-use to infer movement potential and sensitivity to human disturbance of birds in a Neotropical Savannah. Biol. Conserv. 2021, 254, 108921. [Google Scholar] [CrossRef]
- Xu, X.; Xie, Y.; Qi, K.; Luo, Z.; Wang, X. Detecting the response of bird communities and biodiversity to habitat loss and fragmentation due to urbanization. Sci. Total Environ. 2018, 624, 1561–1576. [Google Scholar] [CrossRef] [PubMed]
- Mitsch, W.J.; Gosselink, J.G. The value of wetlands: Importance of scale and landscape setting. Ecol. Econ. 2000, 35, 25–33. [Google Scholar] [CrossRef]
- Wilson, R.M. Seeking Refuge: Birds and Landscapes of the Pacific Flyway; University of Washington Press: Seattle, WA, USA, 2010. [Google Scholar]
- Gu, D.; Zhang, Y.; Fu, J.; Zhang, X. The landscape pattern characteristics of coastal wetlands in Jiaozhou Bay under the impact of human activities. Environ. Monit. Assess. 2007, 124, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Prosser, D.J.; Nagel, J.L.; Howlin, S.; Marbán, P.R.; Day, D.D.; Erwin, R.M. Effects of local shoreline and subestuary watershed condition on waterbird community integrity: Influences of geospatial scale and season in the Chesapeake bay. Estuaries Coasts 2018, 41, 207–222. [Google Scholar] [CrossRef]
- Villamagna, A.; Murphy, B. Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): A review. Freshw. Biol. 2010, 55, 282–298. [Google Scholar] [CrossRef]
- Yang, T.; Liu, J.; Chen, Q. Assessment of plain river ecosystem function based on improved gray system model and analytic hierarchy process for the Fuyang River, Haihe River Basin, China. Ecol. Model. 2013, 268, 37–47. [Google Scholar] [CrossRef]
- Pusch, M.; Hoffmann, A. Conservation concept for a river ecosystem (River Spree, Germany) impacted by flow abstraction in a large post-mining area. Landsc. Urban Plan. 2000, 51, 165–176. [Google Scholar] [CrossRef]
- Davies, P.; Harris, J.; Hillman, T.; Walker, K. The sustainable rivers audit: Assessing river ecosystem health in the Murray–Darling Basin, Australia. Mar. Freshw. Res. 2010, 61, 764–777. [Google Scholar] [CrossRef]
- Hoyer, M.V.; Canfield, D.E., Jr. Bird abundance and species richness on Florida lakes: Influence of trophic status, lake morphology, and aquatic macrophytes. In Aquatic Birds in the Trophic Web of Lakes; Springer: Dordrecht, The Netherlands, 1994. [Google Scholar]
- Chen, X.; Chuai, X.; Yang, L.; Zhao, H. Climatic warming and overgrazing induced the high concentration of organic matter in Lake Hulun, a large shallow eutrophic steppe lake in northern China. Sci. Total Environ. 2012, 431, 332–338. [Google Scholar] [CrossRef]
- Wang, W.; Zheng, B.; Jiang, X.; Chen, J.; Wang, S. Characteristics and source of dissolved organic matter in Lake Hulun, A Large shallow eutrophic steppe lake in northern China. Water 2020, 12, 953. [Google Scholar] [CrossRef] [Green Version]
- Verena, K.; Pius, K.N. Effect of trophic status of a deep-water lake on breeding great crested grebes Podiceps cristatus during a phase of recovery from eutrophication: A long-term study. Bird Study 2019, 66, 1–10. [Google Scholar]
- Rehman, S.; Tiwary, N.K.; Urfi, A.J. Conservation monitoring of a polluted urban river: An occupancy modeling study of birds in the Yamuna of Delhi. Urban Ecosyst 2021, 24, 1399–1411. [Google Scholar] [CrossRef]
- Plummer, K.E.; Gillings, S.; Siriwardena, G.M. Evaluating the potential for bird-habitat models to support biodiversity-friendly urban planning. J. Appl. Ecol. 2020, 57, 1902–1914. [Google Scholar] [CrossRef]
- Ye, P.; Hao, X.; Cao, Y. Analysis on ecological protection of urban wetland. Nat. Resour. Conserv. Res. 2018, 1, 1. [Google Scholar] [CrossRef]
- Smith, R.J.; Schaefer, J.M. Avian characteristics of an urban riparian strip corridor. Wilson Bull. 1992, 104, 732–738. [Google Scholar]
- Kang, W.; Minor, E.S.; Park, C.R.; Lee, D. Effects of habitat structure, human disturbance, and habitat connectivity on urban forest bird communities. Urban Ecosyst. 2015, 18, 857–870. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, X. Study on the landscape ecological design of regional environment around Chaohu Lake. DEStech Trans. Comput. Sci. Eng. 2016, 3, 285–288. [Google Scholar] [CrossRef]
- Guan, H.; Zhu, C.; Zhu, T.; Wu, L.; Li, Y. Grain size, magnetic susceptibility and geochemical characteristics of the loess in the Chaohu lake basin: Implications for the origin, palaeoclimatic change and provenance. J. Asian Earth Sci. 2016, 117, 170–183. [Google Scholar] [CrossRef]
- Wang, Q.; Pang, X.; Wang, Z.; Yuan, X.; Zhang, Y. Research progress on the impact of urbanization on river macrobenthic communities. Ecol. J. 2017, 37, 6275–6288. (In Chinese) [Google Scholar]
- Zheng, L.G.; Liu, G.J.; Kang, Y.; Yang, R.K. Some potential hazardous trace elements contamination and their ecological risk in sediments of western Chaohu Lake, China. Environ. Monit. Assess. 2010, 166, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yang, X.; Dong, X.; Liu, Q. Nutrient dynamics linked to hydrological condition and anthropogenic nutrient loading in Chaohu Lake (southeast China). Hydrobiologia 2011, 661, 223–234. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, L.; Xu, R.; Han, D.; Liu, B.; Cao, L.; Wang, X.; Xue, W. A preliminary study on bird diversity in shore habitats of Chaohu Lake. Chin. J. Zool. 2010, 3, 139–147. [Google Scholar]
- Shang, G.; Shang, J. Spatial and temporal variations of eutrophication in western Chaohu Lake, China. Environ. Monit. Assess. 2007, 130, 99–109. [Google Scholar] [CrossRef]
- Chen, X.; Yang, X.; Dong, X.; Liu, E. Environmental changes in Chaohu Lake (southeast, China) since the mid-20th century: The interactive impacts of nutrients, hydrology and climate. Limnologica 2013, 43, 10–17. [Google Scholar] [CrossRef]
- Yang, C.; Yang, P.; Geng, J.; Yin, H.; Chen, K. Sediment internal nutrient loading in the most polluted area of a shallow eutrophic lake (Lake Chaohu, China) and its contribution to lake eutrophication. Environ. Pollut. 2020, 262, 114292. [Google Scholar] [CrossRef]
- Schiff, R.; Gaboury, B. Effects of impervious cover at multiple spatial scales on coastal watershed streams. JAWRA J. Am. Water Resour. Assoc. 2007, 43, 712–730. [Google Scholar] [CrossRef]
- Yang, X.; Cui, H.; Liu, X.; Wu, Q.; Zhang, H. Water pollution characteristics and analysis of Chaohu Lake basin by using different assessment methods. Environ. Sci. Pollut. Res. 2020, 27, 18168–18181. [Google Scholar] [CrossRef]
- Wang, Y.; Guan, L.; Chen, X.; Li, Q.; Fang, R.; Jiang, R.; Kong, Y. The effects of Liuku-Pianma highway operation on bird behaviours in the three parallel rivers of Yunnan protected areas. Sichuan J. Zool. 2012, 31, 158–164. [Google Scholar]
- Zhu, G.; Ni, L.; Fang, T.; Guo, L.; Zhang, M. Community structure and floristic compositions of aquatic plant communities in the inflowing rivers of East Chaohu Lake and their relationships to environmental factors. Chin. J. Appl. Environ. Biol. 2012, 18, 889–896. [Google Scholar] [CrossRef]
- Maloney, R.; Rebergen, A.; Nilsson, R.; Wells, N. Bird density and diversity, in braided river beds in the Upper Waitaki Basin, South Island, New Zealand. Notornis 1997, 44, 219–232. [Google Scholar]
- Suri, J.; Anderson, P.M.; Charles-Dominique, T.; Hellard, E.; Cumming, G.S. More than just a corridor: A suburban river catchment enhances bird functional diversity. Landsc. Urban Plan. 2017, 157, 331–342. [Google Scholar] [CrossRef]
- Zhou, J.; Zhou, L.; Xu, W. Diversity of wintering waterbirds enhanced by restoring aquatic vegetation at Shengjin Lake, China. Sci. Total Environ. 2020, 737, 140190. [Google Scholar] [CrossRef]
- Andrade, R.; Bateman, H.L.; Franklin, J.; Allen, D. Waterbird community composition, abundance, and diversity along an urban gradient. Landsc. Urban Plan. 2018, 170, 103–111. [Google Scholar] [CrossRef]
- Zhou, L.; Qiu, Q.; Tang, J.; Xu, Y.; Wang, X. Characteristics of spring green algae blooms and their influencing factors in an urban lake, Moon Lake in Ningbo City, China. J. Lake Sci. 2019, 31, 1023–1034. [Google Scholar]
- Zhou, Y.; Ning, L.; Bai, X. Spatial and temporal changes of human disturbances and their effects on landscape patterns in the Jiangsu coastal zone, China. Ecol. Indic. 2018, 93, 111–122. [Google Scholar] [CrossRef]
- Dallimer, M.; Marini, L.; Skinner, A.M.; Hanley, N.; Armsworth, P.R.; Gaston, K.J. Agricultural land-use in the surrounding landscape affects moorland bird diversity. Agric. Ecosyst. Environ. 2010, 139, 578–583. [Google Scholar] [CrossRef]
- Craig, R.J.; Beal, K.G. The influence of habitat variables on marsh bird communities of the Connecticut River estuary. Wilson Bull. 1992, 104, 295–311. [Google Scholar]
- VanDusen, B.M.; Fegley, S.R.; Peterson, C.H. Prey distribution, physical habitat features, and guild traits interact to produce contrasting shorebird assemblages among foraging patches. PLoS ONE 2012, 7, e52694. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, D.; Sun, Y.; Cheng, J.; Liu, D.; Lu, C. Winter bird community structure and gradient change in different habitats at Xinyanggang Estuary, Yancheng Nature Reserve. Acta Ecol. Sin. 2015, 16, 5437–5448. [Google Scholar]
- Zhang, C.; Yuan, Y.; Zeng, G.; Liang, J.; Guo, S.; Huang, L.; Hua, S.; Wu, H.; Zhu, Y.; An, H. Influence of hydrological regime and climatic factor on waterbird abundance in Dongting Lake Wetland, China: Implications for biological conservation. Ecol. Eng. 2016, 90, 473–481. [Google Scholar] [CrossRef]
- King, R.S.; Baker, M.E.; Kazyak, P.F.; Weller, D.E. How novel is too novel? Stream community thresholds at exceptionally low levels of catchment urbanization. Ecol. Appl. 2011, 21, 1659–1678. [Google Scholar] [CrossRef] [PubMed]
- Boggie, M.A.; Collins, D.P.; Donnelly, J.P.; Carleton, S.A. Land Use, anthropogenic disturbance, and riverine features drive patterns of habitat selection by a wintering waterbird in a semi-arid environment. PLoS ONE 2018, 13, e0206222. [Google Scholar] [CrossRef]
- Xie, S.; Wang, X.; Ren, Y.; Su, Z.; Su, Y.; Wang, S.; Zhou, W.; Lu, F.; Qian, Y.; Gong, C. Factors responsible for forest and water bird distributions in rivers and lakes along an urban gradient in Beijing. Sci. Total Environ. 2020, 735, 139308. [Google Scholar] [CrossRef]
- Booth, D.B.; Karr, J.R.; Schauman, S.; Konrad, C.P.; Morley, S.A.; Larson, M.G.; Burges, S.J. Reviving urban streams: Land use, hydrology, biology, and human behavior. J. Am. Water Resour. Assoc. 2004, 40, 1351–1364. [Google Scholar] [CrossRef]
- Munro, N.T.; Fischer, J.; Barrett, G.; Wood, J.; Leavesley, A.; Lindenmayer, D.B. Bird’s response to revegetation of different structure and floristics—Are “restoration plantings” restoring bird communities? Restor. Ecol. 2011, 19, 223–235. [Google Scholar] [CrossRef]
- Luo, Y.; Zhao, Y.; Yang, K.; Chen, K.; Pan, M.; Zhou, X. Dianchi Lake watershed impervious surface area dynamics and their impact on lake water quality from 1988 to 2017. Environ. Sci. Pollut. Res. 2018, 25, 29643–29653. [Google Scholar] [CrossRef]
- McCluney, K.E.; Poff, N.L.; Palmer, M.A.; Thorp, J.H.; Poole, G.C.; Williams, B.S.; Baron, J.S. Riverine macrosystems ecology: Sensitivity, resistance, and resilience of whole river basins with human alterations. Front. Ecol. Environ. 2014, 12, 48–58. [Google Scholar] [CrossRef]
- Chudzińska, M.E.; Van Beest, F.M.; Madsen, J.; Nabe-Nielsen, J. Using habitat selection theories to predict the spatiotemporal distribution of migratory birds during stopover—A case study of pink-footed geese Anser brachyrhynchus. Oikos 2015, 124, 851–860. [Google Scholar] [CrossRef] [Green Version]
- Palacio, F.X.; Ibañez, L.M.; Maragliano, R.E.; Montalti, D. Urbanization as a driver of taxonomic, functional, and phylogenetic diversity losses in bird communities. Can. J. Zool. 2018, 96, 1114–1121. [Google Scholar] [CrossRef]
- Banks, E.; Simmons, C.; Love, A.; Shand, P. Assessing spatial and temporal connectivity between surface water and groundwater in a regional catchment: Implications for regional scale water quantity and quality. J. Hydrol. 2011, 404, 30–49. [Google Scholar] [CrossRef]
- Kasprzykowski, Z.; Goławski, A.; Mitrus, M.; Stański, T. A comparison of the structure of 2 waterbird assemblages during postbreeding movements in the arid zone of Uzbekistan. Turk. J. Zool. 2014, 38, 590–597. [Google Scholar] [CrossRef]
- Goławski, A.; Kasprzykowski, Z.; Mitrus, C.; Stański, T. Observations of waterbirds on migration along two rivers in northern China during August 2010. Forktail 2014, 30, 140–143. [Google Scholar]
Diversity | River | Summer | Autumn | Winter | Spring |
---|---|---|---|---|---|
Species richness index | Zhao River | 34.33 ± 3.30 | 50.50 ± 3.50 | 51.80 ± 11.23 | 34.50 ± 0.50 |
Zhegao River | 39.33 ± 2.49 | 45.50 ± 0.50 | 46.20 ± 10.07 | 36.50 ± 2.50 | |
Hangbu River | 34.00 ± 2.16 | 51.00 ± 3.00 | 39.80 ± 5.64 | 35.00 ± 3.00 | |
Baishitian River | 36.00 ± 0.00 | 44.00 ± 2.00 | 45.40 ± 4.92 | 37.00 ± 5.00 | |
Nanfei River | 33.67 ± 3.09 | 46.00 ± 6.00 | 34.80 ± 3.76 | 33.50 ± 0.50 | |
Shiwuli River | 32.67 ± 3.68 | 48.50 ± 1.50 | 42.40 ± 5.85 | 34.50 ± 0.50 | |
Pai River | 35.00 ± 2.94 | 40.50 ± 0.50 | 41.00 ± 8.44 | 35.50 ± 1.50 | |
Shannon–Wiener index | Zhao River | 3.00 ± 0.13 | 3.47 ± 0.06 | 2.71 ± 0.53 | 3.17 ± 0.01 |
Zhegao River | 3.01 ± 0.06 | 3.36 ± 0.01 | 2.80 ± 0.47 | 3.20 ± 0.07 | |
Hangbu River | 2.72 ± 0.09 | 3.47 ± 0.01 | 2.53 ± 0.73 | 3.12 ± 0.02 | |
Baishitian River | 3.01 ± 0.01 | 3.39 ± 0.04 | 2.79 ± 0.20 | 3.18 ± 0.05 | |
Nanfei River | 2.81 ± 0.02 | 3.38 ± 0.09 | 2.41 ± 0.43 | 3.16 ± 0.02 | |
Shiwuli River | 3.04 ± 0.05 | 3.45 ± 0.02 | 3.10 ± 0.26 | 3.21 ± 0.01 | |
Pai River | 3.02 ± 0.07 | 3.32 ± 0.02 | 2.36 ± 0.67 | 3.15 ± 0.04 | |
Pielou index | Zhao River | 0.46 ± 0.03 | 0.56 ± 0.01 | 0.39 ± 0.08 | 0.50 ± 0.00 |
Zhegao River | 0.46 ± 0.01 | 0.55 ± 0.00 | 0.41 ± 0.09 | 0.52 ± 0.01 | |
Hangbu River | 0.40 ± 0.02 | 0.57 ± 0.01 | 0.38 ± 0.13 | 0.50 ± 0.00 | |
Baishitian River | 0.46 ± 0.00 | 0.57 ± 0.01 | 0.42 ± 0.03 | 0.50 ± 0.01 | |
Nanfei River | 0.42 ± 0.00 | 0.57 ± 0.02 | 0.37 ± 0.08 | 0.50 ± 0.00 | |
Shiwuli River | 0.46 ± 0.01 | 0.59 ± 0.00 | 0.50 ± 0.05 | 0.51 ± 0.00 | |
Pai River | 0.46 ± 0.01 | 0.55 ± 0.00 | 0.33 ± 0.11 | 0.49 ± 0.01 |
Diversity | River Section Group | Summer | Autumn | Winter | Spring |
---|---|---|---|---|---|
Species richness index | I | 45.00 ± 4.32 | 58.00 ± 2.00 | 53.20 ± 8.93 | 39.50 ± 6.50 |
II | 33.33 ± 0.94 | 57.50 ± 5.50 | 40.20 ± 8.91 | 31.50 ± 2.50 | |
III | 36.33 ± 2.62 | 50.50 ± 1.50 | 44.20 ± 11.48 | 39.00 ± 1.00 | |
IV | 47.33 ± 3.86 | 51.00 ± 1.00 | 62.20 ± 5.11 | 46.50 ± 2.50 | |
Shannon–Wiener index | I | 3.02 ± 0.07 | 3.52 ± 0.03 | 3.11 ± 0.36 | 3.25 ± 0.08 |
II | 2.87 ± 0.06 | 3.48 ± 0.07 | 3.03 ± 0.23 | 3.11 ± 0.01 | |
III | 3.01 ± 0.07 | 3.41 ± 0.00 | 2.56 ± 0.47 | 3.15 ± 0.01 | |
IV | 2.97 ± 0.04 | 3.45 ± 0.01 | 2.62 ± 0.69 | 3.27 ± 0.03 | |
Pielou index | I | 0.42 ± 0.01 | 0.54 ± 0.01 | 0.44 ± 0.06 | 0.49 ± 0.01 |
II | 0.41 ± 0.01 | 0.55 ± 0.01 | 0.45 ± 0.04 | 0.46 ± 0.00 | |
III | 0.42 ± 0.02 | 0.51 ± 0.00 | 0.34 ± 0.07 | 0.45 ± 0.00 | |
IV | 0.40 ± 0.00 | 0.51 ± 0.00 | 0.34 ± 0.10 | 0.46 ± 0.00 |
Cumulative Contribution | a (Summer) | b (Autumn) | c (Winter) | d (Spring) |
---|---|---|---|---|
Axis1 (%) | 77.30 | 64.77 | 51.86 | 65.29 |
Axis2 (%) | 9.49 | 20.60 | 23.38 | 10.59 |
Cumulative contribution rate (%) | 86.79 | 85.37 | 75.24 | 75.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Q.; Zhou, L.; Xia, S.; Zhou, J. Impact of Urbanisation Intensity on Bird Diversity in River Wetlands around Chaohu Lake, China. Animals 2022, 12, 473. https://doi.org/10.3390/ani12040473
Xu Q, Zhou L, Xia S, Zhou J. Impact of Urbanisation Intensity on Bird Diversity in River Wetlands around Chaohu Lake, China. Animals. 2022; 12(4):473. https://doi.org/10.3390/ani12040473
Chicago/Turabian StyleXu, Qingru, Lizhi Zhou, Shanshan Xia, and Jian Zhou. 2022. "Impact of Urbanisation Intensity on Bird Diversity in River Wetlands around Chaohu Lake, China" Animals 12, no. 4: 473. https://doi.org/10.3390/ani12040473
APA StyleXu, Q., Zhou, L., Xia, S., & Zhou, J. (2022). Impact of Urbanisation Intensity on Bird Diversity in River Wetlands around Chaohu Lake, China. Animals, 12(4), 473. https://doi.org/10.3390/ani12040473