Hydrological Characteristics and Trophic Status as Dominant Drivers of Rotifer Community Composition in Artificially Created Riverine Wetlands
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Monitoring Strategy
2.3. Data Analysis
3. Results
3.1. Environmental Variables
3.2. Rotifer Distribution
4. Discussion
4.1. Hydrological Factors and Environmental Variables
4.2. Influence of Environmental Variables on Rotifer Community Composition
4.3. Wetland Management Strategy for Securing Biodiversity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sutton-Grier, A.E.; Megonigal, J.P. Plant species traits regulate methane production in freshwater wetland soils. Soil Biol. Biochem. 2011, 43, 413–420. [Google Scholar] [CrossRef]
- Zhu, G.B.; Wang, S.Y.; Feng, X.J.; Fan, G.N.; Jetten, M.S.M.; Yin, C.Q. Anammox bacterial abundance, biodiversity and activity in a constructed wetland. Environ. Sci. Technol. 2011, 45, 9951–9958. [Google Scholar] [CrossRef] [PubMed]
- Tiner, R.W. Wetlands of Rhode Island; US Department of the Interior, Fish and Wildlife Service: Bailey’s Crossroads, VA, USA, 1989; p. 71.
- Mitsch, W.J.; Gosselink, J.G. Wetlands, 2nd ed.; Van Nostrand Reinhold: New York, NY, USA, 1993. [Google Scholar]
- Choi, J.Y.; La, G.H.; Kim, S.K.; Jeong, K.S.; Joo, G.J. Zooplankton community distribution in aquatic plants zone: Influence of epiphytic rotifers and cladocerans in accordance with aquatic plants cover and types. Korean J. Ecol. Environ. 2013, 46, 86–93, (In Korean with English abstract). [Google Scholar] [CrossRef]
- Muzzaffar, S.B.; Ahmed, F.A. The effects of the flood cycle on the diversity and composition of the phytoplankton community of seasonally flooded Ramsar wetland in Bangladesh. Wetl. Ecol. Manag. 2007, 15, 81–93. [Google Scholar] [CrossRef]
- Novitzki, R.P.; Smith, R.D.; Fretwell, J.D. Wetland functions, values, and assessment in National water summary on wetland resources-selected articles. In US Geological Survey Water-Supply Paper; USGS: Reston, VA, USA, 1996; Volume 2425. [Google Scholar]
- Tilton, D.L.; Karen, S.; Brian, B.; William, T. A wetland protection plan for the lower one subwatershed of the Rouge River. Aquat. Bot. 2001, 28, 227–242. [Google Scholar]
- Im, R.Y.; Kim, J.Y.; Joo, G.J.; Do, Y. Process of wetland loss in the lower Nakdong River, South Korea. Appl. Ecol. Environ. Res. 2017, 15, 69–78. [Google Scholar] [CrossRef]
- Jin, W.; McCarthy, M. Bolsa Chica Wetlands Restoration Inlet Design. Coast. Eng. 2010. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, K.; Tockner, K.; Amano, K. River and wetland restoration: Lessons from Japan. BioScience 2006, 56, 419–429. [Google Scholar] [CrossRef]
- Kim, T.S. Geomorphological resources and management plan of Gyeongpo Provincial Park. Korean J. Nat. Conserv. 2018, 17, 33–43, (In Korean with English abstract). [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.; Mawa, Z.; Ul-Hassan, H.; Rahman, M.; Tanjin, S.; Ahmed Abro, N.; Gabol, K.; Bashar, M.; Jasmine, S.; Ohtomi, J.; et al. Impact of eco-hydrological factors on growth of the Asian stinging catfish Heteropneustus fosslis (Bloch, 1794) in a Wetland Ecosystem. Egypt. J. Aquat. Biol. Fish. 2020, 24, 77–94. [Google Scholar] [CrossRef]
- Choi, J.Y.; Kim, S.K.; Kim, J.C.; Yun, J.H. Effect of microhabitat structure on the distribution of an endangered fish, Coreoperca kawamebari (Temminck & Schlegel, 1843) in the Geum River, South Korea. Water 2020, 12, 1690. [Google Scholar]
- Walz, N. Rotifer life history strategies and evolution in freshwater plankton communities. In Evolutionary Ecology of Freshwater Animals; Streit, B., Städler, T., Lively, C.M., Eds.; Birkhäuser: Basel, Switzerland, 1997; pp. 119–149. [Google Scholar]
- Kim, S.K.; Kim, J.C.; Joo, G.J.; Choi, J.Y. Response of the rotifer community to human-induced changes in the trophic state of a reservoir. Oceanol. Hydrobiol. Stud. 2020, 49, 329–344. [Google Scholar] [CrossRef]
- Im, R.Y.; Kim, J.Y.; Choi, J.Y.; Do, Y.; Joo, G.J. Changes of river morphology in the mid-lower part of Nakdong River basin after the 4 large river project, South Korea. Korean J. Ecol. Environ. 2015, 48, 188–194, (In Korean with English abstract). [Google Scholar] [CrossRef]
- Kim, J.W.; Lee, B.E.; Kim, J.G.; Oh, S.H.; Jung, J.W.; Lee, M.J.; Kim, H.S. Functional assessment of Gangcheon replacement wetland using modified HGM. J. Wet. Res. 2017, 19, 318–326, (In Korean with English abstract). [Google Scholar]
- Kim, S.K.; Choi, J.Y. Wetland Habitat Assessment Utilizing TDI (Trophic Diatom Index). Korean J. Environ. Ecol. 2019, 33, 525–538, (In Korean with English abstract). [Google Scholar] [CrossRef]
- Jeong, K.S.; Kim, D.K.; Joo, G.J. Delayed influence of dam storage and discharge on the determination of seasonal proliferations of Microcystis aeruginosa and Stephanodiscus hantzschii in a regulated river system of the lower Nakdong River (South Korea). Water Res. 2007, 41, 1269–1279. [Google Scholar] [CrossRef]
- Choi, J.Y.; Jeong, K.S.; Kim, H.W.; Chang, K.H.; Joo, G.J. Inter-annual variability of a zooplankton community: The importance of summer concentrated rainfall in a regulated river ecosystem. J. Ecol. Environ. 2011, 34, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.Y.; Kim, J.K.; Owen, J.S.; Choi, Y.; Shin, K.; Jung, S.; Kim, B. Variation in carbon and nitrogen stable isotopes in POM and zooplankton in a deep reservoir and relationship to hydrological characteristics. J. Freshw. Ecol. 2013, 28, 47–62. [Google Scholar] [CrossRef]
- Choi, J.Y.; Kim, S.K. Responses of rotifer community to microhabitat changes caused by summer-concentrated rainfall in a shallow reservoir, South Korea. Diversity 2020, 12, 113. [Google Scholar] [CrossRef] [Green Version]
- Korea Ministry of Environment. Survey and Evaluation of Ecological Space in Nakdong River; Korea Ministry of Environment: Sejong, South Korea, 2017. (In Korean)
- Wetzel, R.G.; Likens, G.E. Composition and biomass of phytoplankton. In Limnological Analyses; Springer: New York, NY, USA, 2000; pp. 147–174. [Google Scholar]
- Haney, J.F.; Hall, D.J. Sugar-coated Daphnia: A preservation technique for Cladocera 1. Limnol. Oceanogr. 1973, 18, 331–333. [Google Scholar] [CrossRef]
- Mizuno, T.; Takahashi, E. An Illustration Guide to Freshwater Zooplankton in Japan; Tokai University: Tokyo, Japan, 1999. [Google Scholar]
- Thorp, J.H.; Covich, A.P. Ecology and Classification of North American Freshwater Invertebrates; Academic Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Clarke, K.R. Non-parametric multivariate analysis of changes in community structure. Aust. J. Ecol. 1993, 18, 117–143. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H. Package ‘Vegan’. Community Ecology Package, Version 2. Available online: http://cran.r-project.org/web/packages/vegan/index.html (accessed on 14 March 2020).
- Phillips, G.; Pietiläinen, O.P.; Carvalho, L.; Solimini, A.; Solheim, A.L.; Cardoso, A.C. Chlorophyll–nutrient relationships of different lake types using a large European dataset. Aquat. Ecol. 2008, 42, 213–226. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Fan, C.; Teubner, K.; Dokulil, M. Changes of nutrients and phytoplankton chlorophyll-a in a large shallow lake, Taihu, China: An 8-year investigation. Hydrobiologia 2003, 506, 273–279. [Google Scholar] [CrossRef]
- Hopkinson, C.S. A comparison of ecosystem dynamics in freshwater wetlands. Estuaries 1992, 15, 549–562. [Google Scholar] [CrossRef]
- Sharma, A.; Ranga, M.M.; Sharma, P.C. Water quality status of historical Gundolav lake at Kishangarh as a primary data for sustainable management. SAJTH 2010, 3, 149–158. [Google Scholar]
- Lougheed, V.L.; Chow-Fraser, P. Development and use of a zooplankton index of wetland quality in the Laurentian Great Lakes basin. Ecol. Appl. 2002, 12, 474–486. [Google Scholar] [CrossRef]
- Ooms-Wilms, A.L.; Postema, G.; Gulati, R.D. Population dynamics of planktonic rotifers in Lake Loosdrecht, the Netherlands, in relation to their potential food and predators. Freshw. Biol. 1999, 42, 77–97. [Google Scholar] [CrossRef]
- Vanni, M.J. Effects of food availability and fish predation on a zooplankton community. Ecol. Monogr. 1987, 57, 61–88. [Google Scholar] [CrossRef]
- Singh, S.; Sharma, R.C. Zooplankton diversity and potential indicator species for assessment water quality of high-altitude wetland, Dodi Tal of Garhwal Himalaya, India. Academ. Arena 2020, 12, 1–16. [Google Scholar]
- Sladecek, V. Rotifers as indicator of water quality. Hydrobiologia 1983, 100, 169–201. [Google Scholar] [CrossRef]
- Choi, J.Y.; Jeong, K.S.; Kim, S.K.; La, G.H.; Chang, K.H.; Joo, G.J. Role of macrophytes as microhabitats for zooplankton community in lentic freshwater ecosystems of South Korea. Ecol. Inform. 2014, 24, 177–185. [Google Scholar] [CrossRef]
- Cattaneo, A.; Galanti, G.G.; Gentinetta, S.; Romo, S. Epiphytic algae and macroinvertebrates on submerged and floating-leaved macrophytes in an Italian lake. Freshw. Biol. 1998, 39, 725–740. [Google Scholar] [CrossRef]
- Jeppesen, E.; Lauridsen, T.L.; Kairesalo, T.; Perrow, M.R. Impact of submerged macrophytes on fish-zooplankton interactions in lakes. In The Structuring Role of Submerged Macrophytes in Lakes; Jeppesen, E., Sondergaard, M., Christoffersen, K., Eds.; Springer: New York, NY, USA, 1998; pp. 91–114. [Google Scholar]
- Choi, J.Y.; Jeong, K.S.; La, G.H.; Kim, S.K.; Joo, G.J. Sustainment of epiphytic microinvertebrate assemblage in relation with different aquatic plant microhabitats in freshwater wetlands (South Korea). J. Limnol. 2014, 73, 1. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.Y.; Kim, S.K.; Jeong, K.S.; Joo, G.J. Distribution pattern of epiphytic microcrustaceans in relation to different macrophyte microhabitats in a shallow wetland (Upo wetlands, South Korea). Oceanol. Hydrobiol. Stud. 2015, 44, 151–163. [Google Scholar] [CrossRef]
- Choi, J.Y.; Jeong, K.S.; Joo, G.J. Rainfall as dominant driver of rotifer dynamics in shallow wetlands: Evidence from a long-term data record (Upo wetlands, South Korea). Int. Rev. Hydrobiol. 2015, 100, 21–33. [Google Scholar] [CrossRef]
- Singh, K.; Katiyar, M. Microbial components and physio-chemical parameters of river Ganga, Prayagraj and Varanasi, Uttar Pradesh. Int. J. 2020, 2, 69–78. [Google Scholar]
- Anbalagan, R.; Sivakami, R. Freshwater zooplankton biodiversity and physico-chemical parameters of Mayanur Dam, Tamil Nadu, India. Int. J. Res. Anal. Rev. 2019, 6, 85–93. [Google Scholar]
No. | Name | Latitude | Longitude | Type | Area (m2) | In/Outflow Function | Shore Stability | Water Source |
---|---|---|---|---|---|---|---|---|
1 | Sugajigu | 36°33′36.00″ | 128°40′21.60″ | Branch | 34,484.9 | Moderate | Poor | Drainageway |
2 | Pungyang | 36°30′51.90″ | 128°16′08.80″ | Channel | 3821.7 | Good | Moderate | Stream |
3 | Gangchangnaru | 36°25′11.20″ | 128°14′17.00″ | Channel | 27,905.4 | Good | Good | Stream |
4 | Nakjeong | 36°19′49.00″ | 128°17′15.70″ | Pond | 1334.9 | Good | Good | Rain/Ground |
5 | Singok | 36°17′59.20″ | 128°19′30.70″ | Channel | 9198.0 | Good | Good | Stream |
6 | Wolgok | 36°13′52.10″ | 128°21′10.50″ | Branch | 16,828.6 | Good | Good | Stream |
7 | Ponam | 36°04′18.50″ | 128°23′24.50″ | Pond | 25,249.9 | Poor | Poor | Drainageway |
8 | Napjaru | 35°50′53.00″ | 128°25′02.70″ | Riparian | 382,007.2 | Good | Moderate | Stream |
9 | Mulsaesori | 35°50′34.20″ | 128°26′51.60″ | Channel | 4987.8 | Good | Good | Stream |
10 | Dorang | 35°50′17.70″ | 128°27′12.60″ | Pond | 2668.8 | Poor | Poor | Drainageway |
11 | Dasan | 35°48′39.00″ | 128°27′10.20″ | Channel | 379,015.3 | Poor | Poor | Drainageway |
12 | Baesuro galdae | 35°48′47.00″ | 128°25′36.00″ | Pond | 30,985.1 | Poor | Poor | Drainageway |
13 | Seongsan | 35°45′56.60″ | 128°23′08.30″ | Channel | 10,612.5 | Poor | Poor | Rain/Ground |
14 | Oksanbaesuro | 35°41′59.00″ | 128°23′56.30″ | Riparian | 76,227.7 | Good | Moderate | Drainageway |
15 | Jamsansaetgang | 35°42′19.70″ | 128°22′28.80″ | Channel | 75,350.8 | Moderate | Poor | Stream |
16 | Seojaejigu | 35°52′34.02″ | 128°29′10.07″ | Channel | 313,526.8 | Poor | Poor | Drainageway |
17 | Habin | 35°51′17.50″ | 128°23′47.40″ | Pond | 78,252.1 | Good | Moderate | Stream |
18 | Sudal sup | 35°51′11.70″ | 128°24′24.50″ | Branch | 38,303.1 | Moderate | Poor | Drainageway |
19 | Habinseubjiwon | 35°51′20.50″ | 128°24′38.10″ | Channel | 70,860.4 | Moderate | Good | Stream |
20 | Dalseongguhado | 35°50′09.20″ | 128°28′29.90″ | Channel | 53,758.1 | Moderate | Moderate | Drainageway |
21 | Galdaejeonghwa | 35°48′21.70″ | 128°27′28.10″ | Pond | 67,892.7 | Good | Moderate | Rain/Ground |
22 | Chacheon | 35°41′26.20″ | 128°25′03.10″ | Channel | 123,196.3 | Poor | Moderate | Drainageway |
23 | Hyunpungsudal | 35°41′09.90″ | 128°21′24.30″ | Channel | 153,402.1 | Moderate | Moderate | Stream |
24 | Guji | 35°36′52.40″ | 128°23′20.20″ | Channel | 23,469.6 | Good | Good | Stream |
25 | Byeoksowon | 35°24′12.20″ | 128°30′8.30″ | Pond | 6206.2 | Poor | Poor | Stream |
26 | Unjeongcheon | 35°23′39.70″ | 128°35′21.50″ | Riparian | 220,687.5 | Moderate | Moderate | Stream |
27 | Hajungdo | 35°22′44.70″ | 128°37′32.80″ | Channel | 12,628.5 | Moderate | Moderate | Stream |
28 | Cheonghwawon | 35°23′06.70″ | 128°31′12.80″ | Channel | 8933.2 | Moderate | Good | Stream |
29 | Cheongyudo | 35°22′54.30″ | 128°32′21.00″ | Channel | 38,018.0 | Moderate | Moderate | Stream |
30 | Dorae | 35°22′05.70″ | 128°38′06.70″ | Channel | 26,055.2 | Good | Moderate | Stream |
31 | Saenarae | 35°22′36.30″ | 128°39′18.10″ | Channel | 27,612.3 | Moderate | Moderate | Stream |
32 | Miryang1 | 35°23′18.70″ | 128°50′07.90″ | Channel | 73,857.9 | Good | Moderate | Stream |
33 | Miryang1-1 | 35°23′54.40″ | 128°51′21.30″ | Channel | 6975.2 | Good | Good | Rain/Ground |
34 | Hanlim1 | 35°20′22.30″ | 128°46′20.00″ | Channel | 20,170.0 | Good | Moderate | Stream |
35 | Hanlim2 | 35°20′45.00″ | 128°47′29.10″ | Channel | 135,938.4 | Good | Good | Stream |
36 | Ttanseom | 35°22′29.20″ | 128°49′00.00″ | Channel | 4208.9 | Poor | Poor | Stream |
37 | Doyo | 35°22′28.30″ | 128°52′18.70″ | Branch | 2806.1 | Moderate | Moderate | Stream |
38 | Gimhaejigu I-1 | 35°16′43.50″ | 129°00′19.50″ | Channel | 6113.6 | Moderate | Moderate | Stream |
39 | Gimhaejigu I-2 | 35°15′48.50″ | 129°00′19.60″ | Channel | 33,039.2 | Moderate | Moderate | Stream |
40 | Gimhaejigu II-1 | 35°16′17.30″ | 129°00′21.60″ | Pond | 819,682.5 | Good | Good | Rain/Ground |
41 | Gimhaejigu II-2 | 35°15′48.50″ | 129°00′19.60″ | Channel | 10,313.0 | Moderate | Moderate | Stream |
42 | Yangsanjigu | 35°17′45.70″ | 129°00′59.30″ | Channel | 66,491.4 | Moderate | Moderate | Stream |
43 | Hoesan III | 35°17′16.10″ | 129°00′27.90″ | Branch | 181,424.5 | Moderate | Good | Stream |
44 | Hwamyeong2jigu | 35°12′48.20″ | 128°59′57.60″ | Channel | 4896.7 | Moderate | Poor | Stream |
45 | Sinduk 1-1 | 35°11′55.90″ | 128°58′29.60″ | Channel | 24,840.7 | Poor | Moderate | Drainageway |
46 | Sinduk 1-2 | 35°11′35.50″ | 128°57′55.60″ | Branch | 27,810.8 | Moderate | Moderate | Stream |
47 | Sinduk 1-3 | 35°11′23.30″ | 128°57′46.60″ | Riparian | 76,143.0 | Moderate | Poor | Drainageway |
48 | Samlak | 35°09′29.30″ | 128°58′04.40″ | Pond | 15,578.8 | Moderate | Good | Stream |
No. | WT (°C) | pH | DO (%) | EC (µs/cm) | Tur. (NTU) | TN (mg/L) | TP (mg/L) | Chl-a (µg/L) | Depth (m) | Velocity (m/s) | MC (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 21.2 | 7.2 | 71.5 | 627 | 8.8 | 2.684 | 0.129 | 1.1 | 1.3 | 0.0 | 26 |
2 | 29.6 | 7.9 | 121.0 | 350 | 1.5 | 1.430 | 0.019 | 11.0 | 0.5 | 1.1 | 0 |
3 | 18.7 | 8.6 | 178.0 | 268 | 2.5 | 1.015 | 0.024 | 3.4 | 0.4 | 2.3 | 0 |
4 | 25.7 | 7.5 | 90.0 | 478 | 5.9 | 1.750 | 0.031 | 3.3 | 0.9 | 0.4 | 26 |
5 | 26.9 | 8.3 | 160.0 | 260 | 2.0 | 1.350 | 0.04 | 0.2 | 0.2 | 1.2 | 15 |
6 | 24.1 | 7.6 | 189.0 | 256 | 3.0 | 1.260 | 0.025 | 0.1 | 0.4 | 1.5 | 8 |
7 | 23.8 | 8.5 | 62.0 | 472 | 21.0 | 5.820 | 0.415 | 99.4 | 3.2 | 0.0 | 0 |
8 | 26.5 | 7.7 | 156.0 | 238 | 1.1 | 1.370 | 0.032 | 0.2 | 0.8 | 1.2 | 16 |
9 | 29.3 | 9.1 | 235.0 | 237 | 1.2 | 0.920 | 0.016 | 0.0 | 0.8 | 2.1 | 0 |
10 | 20.6 | 8.3 | 44.4 | 359 | 36.0 | 5.153 | 0.218 | 93.2 | 3.4 | 0.0 | 0 |
11 | 27.4 | 9.7 | 83.4 | 393 | 9.9 | 2.790 | 0.089 | 2.9 | 2.7 | 0.0 | 0 |
12 | 28.9 | 9.9 | 67.2 | 462 | 19.0 | 6.460 | 0.380 | 244.3 | 3.0 | 0.0 | 0 |
13 | 27.2 | 9.7 | 76.2 | 448 | 13.1 | 2.860 | 0.130 | 11.4 | 1.6 | 0.0 | 0 |
14 | 29.8 | 9.2 | 89.6 | 468 | 6.7 | 2.530 | 0.112 | 0.3 | 1.5 | 0.8 | 28 |
15 | 28.4 | 9.4 | 67.2 | 460 | 8.0 | 2.660 | 0.103 | 0.7 | 1.8 | 0.2 | 37 |
16 | 19.2 | 8.0 | 42.9 | 704 | 24.0 | 8.069 | 0.654 | 105.0 | 4.2 | 0.0 | 0 |
17 | 17.0 | 7.8 | 100.1 | 307 | 8.7 | 1.722 | 0.036 | 0.7 | 0.9 | 0.7 | 31 |
18 | 17.1 | 7.5 | 49.9 | 656 | 44.0 | 4.098 | 0.239 | 67.1 | 3.4 | 0.3 | 0 |
19 | 18.7 | 8.3 | 122.4 | 369 | 3.3 | 1.555 | 0.031 | 0.1 | 0.8 | 0.8 | 8 |
20 | 25.4 | 9.8 | 88.6 | 707 | 16.0 | 4.048 | 0.141 | 74.8 | 2.1 | 0.0 | 0 |
21 | 22.2 | 8.4 | 65.8 | 445 | 13.1 | 3.126 | 0.156 | 39.5 | 3.1 | 0.0 | 0 |
22 | 23.8 | 8.4 | 72.8 | 532 | 31.0 | 4.754 | 0.104 | 56.2 | 2.8 | 0.21 | 0 |
23 | 22.5 | 9.5 | 81.2 | 475 | 6.9 | 2.557 | 0.071 | 1.4 | 0.8 | 0.7 | 27 |
24 | 20.9 | 8.0 | 220.1 | 345 | 4.2 | 1.132 | 0.036 | 0.4 | 0.6 | 1.7 | 0 |
25 | 21.4 | 8.2 | 71.0 | 439 | 21.0 | 3.707 | 0.111 | 24.4 | 2.9 | 0.0 | 0 |
26 | 25.4 | 7.8 | 110.1 | 243 | 3.8 | 1.82 | 0.071 | 0.2 | 1.2 | 0.6 | 76 |
27 | 25.1 | 10.0 | 119.8 | 470 | 4.2 | 2.029 | 0.074 | 0.9 | 1.3 | 0.8 | 68 |
28 | 22.2 | 9.2 | 77.5 | 455 | 4.9 | 1.971 | 0.065 | 0.7 | 0.8 | 2.0 | 81 |
29 | 22.8 | 9.0 | 75.9 | 376 | 9.0 | 2.777 | 0.18 | 2.2 | 2.9 | 0.1 | 0 |
30 | 21.0 | 8.9 | 111.5 | 433 | 3.5 | 1.589 | 0.061 | 0.1 | 0.6 | 1.1 | 9 |
31 | 21.2 | 9.5 | 102.8 | 491 | 4.0 | 2.062 | 0.076 | 0.2 | 1.5 | 0.6 | 62 |
32 | 22.2 | 9.5 | 81.2 | 362 | 5.1 | 2.403 | 0.081 | 0.5 | 0.9 | 0.6 | 48 |
33 | 23.5 | 8.4 | 124.0 | 274 | 1.9 | 1.373 | 0.042 | 0.7 | 0.6 | 1.1 | 0 |
34 | 20.0 | 8.5 | 108.7 | 312 | 4.3 | 1.738 | 0.024 | 0.3 | 0.5 | 0.5 | 21 |
35 | 20.2 | 8.2 | 103.3 | 330 | 4.8 | 1.921 | 0.082 | 0.6 | 1.7 | 0.6 | 98 |
36 | 19.3 | 8.6 | 65.0 | 492 | 14.3 | 2.876 | 0.117 | 14.8 | 0.8 | 0.0 | 0 |
37 | 24.8 | 9.8 | 84.7 | 409 | 11.4 | 2.37 | 0.082 | 0.8 | 1.2 | 0.5 | 65 |
38 | 19.8 | 8.5 | 149.6 | 225 | 3.1 | 1.481 | 0.026 | 0.2 | 0.7 | 1.2 | 12 |
39 | 19.4 | 8.1 | 101.7 | 425 | 9.0 | 2.203 | 0.091 | 1.4 | 1.1 | 0.4 | 15 |
40 | 19.5 | 8.4 | 146.0 | 366 | 2.8 | 1.481 | 0.025 | 1.0 | 0.4 | 0.9 | 10 |
41 | 18.3 | 7.9 | 98.0 | 439 | 4.0 | 1.663 | 0.038 | 0.9 | 0.7 | 0.7 | 14 |
42 | 21.2 | 7.7 | 105.2 | 282 | 8.5 | 1.838 | 0.046 | 0.2 | 0.4 | 0.8 | 84 |
43 | 20.4 | 8.1 | 70.4 | 458 | 10.3 | 2.278 | 0.118 | 0.5 | 1.8 | 0.3 | 37 |
44 | 19.6 | 8.1 | 85.5 | 471 | 11.3 | 2.245 | 0.095 | 0.9 | 0.7 | 0.6 | 68 |
45 | 20.4 | 8.2 | 80.4 | 414 | 9.4 | 2.802 | 0.123 | 9.1 | 2.8 | 0.0 | 0 |
46 | 22.9 | 8.0 | 98.3 | 370 | 5.1 | 2.029 | 0.096 | 0.4 | 1.2 | 0.4 | 75 |
47 | 22.4 | 8.0 | 96.0 | 406 | 6.5 | 2.619 | 0.152 | 0.8 | 1.1 | 0.5 | 56 |
48 | 21.5 | 7.8 | 127.7 | 560 | 4.5 | 2.104 | 0.069 | 0.2 | 1.2 | 0.7 | 28 |
CV | 15.1 | 8.7 | 36.9 | 40.8 | 100.1 | 28.3 | 95.7 | 56.9 | 106.3 | 238.0 | 15.1 |
Variables | In/outflow Function | Shore Stability | Water Sources | Wetland Types | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
df. | F | p | df. | F | p | df. | F | p | df. | F | p | |
WT | 2 | 1.417 | 0.263 | 2 | 0.539 | 0.590 | 2 | 2.313 | 0.122 | 3 | 1.327 | 0.290 |
pH | 2 | 0.862 | 0.435 | 2 | 0.437 | 00.651 | 2 | 2.130 | 0.142 | 3 | 1.144 | 0.352 |
DO | 2 | 5.499 | 0.011 * | 2 | 2.446 | 0.109 | 2 | 2.200 | 0.134 | 3 | 1.408 | 0.266 |
EC | 2 | 2.507 | 0.104 | 2 | 0.593 | 0.561 | 2 | 3.973 | 0.033 * | 3 | 2.718 | 0.068 |
Tur. | 2 | 3.925 | 0.034 * | 2 | 1.741 | 0.198 | 2 | 3.758 | 0.031 | 3 | 3.405 | 0.041 * |
TN | 2 | 4.389 | 0.016 * | 2 | 4.105 | 0.018 * | 2 | 6.438 | 0.006 * | 3 | 0.816 | 0.498 |
TP | 2 | 5.244 | 0.012 * | 2 | 3.905 | 0.033 * | 2 | 4.266 | 0.027 * | 3 | 0.093 | 0.963 |
Chl-a | 2 | 3.317 | 0.451 | 2 | 3.984 | 0.020 * | 2 | 4.175 | 0.029 * | 3 | 0.915 | 0.449 |
Dep. | 2 | 2.211 | 0.132 | 2 | 1.420 | 0.262 | 2 | 2.641 | 0.093 | 3 | 0.546 | 0.656 |
Vel. | 2 | 1.681 | 0.208 | 2 | 0.232 | 0.795 | 2 | 0.013 | 0.987 | 3 | 0.362 | 0.781 |
MC | 2 | 1.962 | 0.163 | 2 | 0.352 | 0.707 | 2 | 1.427 | 0.261 | 3 | 1.030 | 0.398 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-K.; Yun, J.-H.; Joo, G.-J.; Choi, J.-Y. Hydrological Characteristics and Trophic Status as Dominant Drivers of Rotifer Community Composition in Artificially Created Riverine Wetlands. Animals 2022, 12, 461. https://doi.org/10.3390/ani12040461
Kim S-K, Yun J-H, Joo G-J, Choi J-Y. Hydrological Characteristics and Trophic Status as Dominant Drivers of Rotifer Community Composition in Artificially Created Riverine Wetlands. Animals. 2022; 12(4):461. https://doi.org/10.3390/ani12040461
Chicago/Turabian StyleKim, Seong-Ki, Jong-Hak Yun, Gea-Jae Joo, and Jong-Yun Choi. 2022. "Hydrological Characteristics and Trophic Status as Dominant Drivers of Rotifer Community Composition in Artificially Created Riverine Wetlands" Animals 12, no. 4: 461. https://doi.org/10.3390/ani12040461
APA StyleKim, S.-K., Yun, J.-H., Joo, G.-J., & Choi, J.-Y. (2022). Hydrological Characteristics and Trophic Status as Dominant Drivers of Rotifer Community Composition in Artificially Created Riverine Wetlands. Animals, 12(4), 461. https://doi.org/10.3390/ani12040461