Effects of Oil Types and Fat Concentrations on Production Performance, Egg Quality, and Antioxidant Capacity of Laying Hens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials and Feeding Management
2.2. Experimental Groups and Sampling Time
2.3. Production Performance and Egg Quality Determination
2.4. Determination of Nutritional Indicators of Eggs
2.5. Determination of Quality Indicators in Cooked Egg Yolk
2.6. Sample Preparation for Scanning Electron Microscopy (SEM) Observations
2.7. Determination of Raw Egg Yolk Oxidation Index
2.8. Statistical Analysis
3. Results
3.1. Performance of Laying Hens
3.2. Egg Quality
3.3. Measurement of Nutritional Indicators of Eggs
3.4. Texture Profile Analysis of Cooked Egg Yolk
3.5. Microstructure of Cooked Yolk
3.6. Oxidative Stability of Egg Yolk
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baião, N.C.; Lara, L.J.C. Oil and fat in broiler nutrition. Braz. J. Poult. Sci. 2005, 7, 129–141. [Google Scholar] [CrossRef] [Green Version]
- Chwen, L.T.; Foo, H.L.; Thanh, N.T.; Choe, D.W. Growth performance, plasma fatty acids, villous height and crypt depth of preweaning piglets fed with medium chain triacylglycerol. Asian-Australas J. Anim. Sci. 2013, 26, 700–704. [Google Scholar] [CrossRef] [PubMed]
- Stevanović, Z.D.; Bošnjak-Neumüller, J.; Pajić-Lijaković, I.; Raj, J.; Vasiljević, M. Essential oils as feed additives-future perspectives. Molecules 2018, 23, 1717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmquist, D.L. Omega-3 fatty acids in metabolism, health, and nutrition and for modified animal product foods. Prof. Anim. Sci. 2009, 25, 207–249. [Google Scholar] [CrossRef]
- Lo Fiego, D.P.; Minelli, G.; Volpelli, L.A.; Ulrici, A.; Macchioni, P. Calculating the iodine value for Italian heavy pig subcutaneous adipose tissue from fatty acid methyl ester profiles. Meat Sci. 2016, 122, 132–138. [Google Scholar] [CrossRef]
- Kerr, B.J.; Kellner, T.A.; Shurson, G.C. Characteristics of lipids and their feeding value in swine diets. J. Anim. Sci. Biotechnol. 2016, 6, 30. [Google Scholar] [CrossRef] [Green Version]
- Kilian, L.; Murphy, D.P. The role of inventories and speculative trading in the global market for crude oil. J. Appl. Econom. 2014, 29, 454–478. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, J.; Li, F.; Zheng, J.; Xu, G. Effect of oils in feed on the production performance and egg quality of laying hens. Animals 2021, 11, 3482. [Google Scholar] [CrossRef]
- Wei, H.; Pan, L.; Li, C.; Zhao, P.; Li, J.; Zhang, R.; Bao, J. Dietary soybean oil supplementation affects keel bone characters and daily feed intake but not egg production and quality in laying hens housed in furnished cages. Front. Vet. Sci. 2021, 8, 657585. [Google Scholar] [CrossRef]
- Lu, Q.; Chen, P.; Chai, Y.; Li, Q.; Mao, H. Effects of dietary rubber seed oil on production performance, egg quality and yolk fatty acid composition of Hy-line Brown layers. Anim. Biosci. 2021, 34, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Kara, Z.; Bülbül, T. The effects of supplementing different vegetable oils in the diet of quails on growth, carcass traits and serum biochemical parameters. Kocatepe Vet. J. 2021, 14, 57–64. [Google Scholar] [CrossRef]
- Dong, X.F.; Liu, S.; Tong, J.M. Comparative effect of dietary soybean oil, fish oil, and coconut oil on performance, egg quality and some blood parameters in laying hens. Poult. Sci. 2018, 97, 2460–2472. [Google Scholar] [CrossRef] [PubMed]
- Daghir, N.J. Nutrient Requirements of Poultry at High Temperatures; CABI: Wallingford, UK, 2008. [Google Scholar]
- Pérez-Bonilla, A.; Frikha, M.; Mirzaie, S.; García, J.; Mateos, G.G. Effects of the main cereal and type of fat of the diet on productive performance and egg quality of Brown-egg laying hens from 22 to 54 weeks of age. Poult. Sci. 2011, 90, 2801–2810. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A.; Guleria, S.; Sharma, R.; Gupta, R. The lipases and their applications with emphasis on food industry. In Microbial Biotechnology in Food and Health; Ray, R.C., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 143–164. [Google Scholar]
- Yang, P.; Zheng, Y.; You, M.; Song, H.; Zou, T. Characterization of key aroma-active compounds in four commercial egg flavor Sachimas with differing egg content. J. Food Biochem. 2019, 43, e13040. [Google Scholar] [CrossRef]
- Jamshidi, A.; Amato, M.; Ahmadi, A.; Bochicchio, R.; Rossi, R. Chia (Salvia hispanica L.) as a novel forage and feed source: A review. Ital. J. Agron. 2019, 14, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Sun, C.; Yan, Y.; Li, G.; Shi, F.; Wu, G.; Liu, A.; Yang, N. Genetic variations for egg quality of chickens at late laying period revealed by genome-wide association study. Sci. Rep. 2018, 8, 10832. [Google Scholar] [CrossRef] [Green Version]
- Lopez, J.M.M.; Saez, A.C. Fats and Associated Compounds; Royal Society of Chemistry: London, UK, 2021. [Google Scholar]
- Mu, Y.; Zhu, L.Y.; Yang, A.; Gao, X.; Zhang, N.; Sun, L.; Qi, D. The effects of dietary cottonseed meal and oil supplementation on laying performance and egg quality of laying hens. Food Sci. Nutr. 2019, 7, 2436–2447. [Google Scholar] [CrossRef] [Green Version]
- Bacou, E.; Walk, C.; Rider, S.; Litta, G.; Perez-Calvo, E. Dietary oxidative distress: A review of nutritional challenges as models for poultry, swine and fish. Antioxidants 2021, 10, 525. [Google Scholar] [CrossRef]
- Qaisrani, S.N.; Rizwan, M.; Yaseen, G.; Bibi, F.; Sarfraz, M.A.; Khan, N.A.; Naveed, S.; Pasha, T.N. Effects of dietary oxidized oil on growth performance, meat quality and biochemical indices in poultry—A review. Ann. Anim. Sci. 2021, 21, 29–46. [Google Scholar] [CrossRef]
- Jiang, S.; Cheng, H.W.; Cui, L.Y.; Zhou, Z.L.; Hou, J.F. Changes of blood parameters associated with bone remodeling following experimentally induced fatty liver disorder in laying hens. Poult. Sci. 2013, 92, 1443–1453. [Google Scholar] [CrossRef]
- Kan, C.A.; Meijer, G.A.L. The risk of contamination of food with toxic substances present in animal feed. Anim. Feed Sci. Technol. 2007, 133, 84–108. [Google Scholar] [CrossRef]
- Shini, A.; Shini, S.; Bryden, W.L. Fatty liver haemorrhagic syndrome occurrence in laying hens: Impact of production system. Avian Pathol. 2018, 48, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.K.; Kim, J.S.; Ahn, H.J.; Hwang, J.H.; Kim, J.M.; Lee, H.T.; An, B.K.; Kang, C.W. Changes in hepatic lipid parameters and hepatic messenger ribonucleic acid expression following estradiol administration in laying hens (Gallus domesticus). Poult. Sci. 2010, 89, 2660–2667. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, J.; Yang, J.; Gong, S.; Zheng, J.; Xu, G. Effects of lard and vegetable oils supplementation quality and concentration on laying performance, egg quality and liver antioxidant genes expression in Hy-line Brown. Animals 2021, 11, 769. [Google Scholar] [CrossRef]
- Pikaar, I.; Matassa, S.; Bodirsky, B.L.; Weindl, I.; Humpenöder, F.; Rabaey, K.; Boon, N.; Bruschi, M.; Yuan, Z.; van Zanten, H.; et al. Decoupling livestock from land use through industrial feed production pathways. Environ. Sci. Technol. 2018, 52, 7351–7359. [Google Scholar] [CrossRef] [PubMed]
- Reda, F.M.; El-Kholy, M.S.; Abd El-Hack, M.E.; Taha, A.E.; Othman, S.I.; Allam, A.A.; Alagawany, M. Does the use of different oil sources in quail diets impact their productive and reproductive performance, egg quality, and blood constituents? Poult. Sci. 2020, 99, 3511–3518. [Google Scholar] [CrossRef]
- Dale, N. National research council nutrient requirements of poultry—Ninth revised edition (1994). J. Appl. Poult. Res. 1994, 3, 101. [Google Scholar] [CrossRef]
- Anderson, K.; Tharrington, J.B.; Curtis, P.A.; Jones, F.T. Shell characteristics of eggs from historic strains of single comb White leghorn chickens and the relationship of egg shape to shell strength. Int. J. Poult. Sci. 2004, 3, 17–19. [Google Scholar] [CrossRef]
- Kaliasheva, K.; Oblakova, M.; Hristakieva, P.; Mincheva, N.; Lalev, M. Comparative study on morphological qualities of eggs from new autosexing layer hybrids for free range poultry farming system. Bulg. J. Agric. Sci. 2017, 23, 609–616. [Google Scholar]
- Erdman, N.; Bell, D.C.; Reichelt, R. Scanning electron microscopy. In Springer Handbook of Microscopy; Hawkes, P.W., Spence, J.C.H., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 229–318. [Google Scholar]
- Liu, J.; Zhang, L.; Zhang, W. Filling technology and disease prevention technology research on highway rock salt embankment. Adv. Mater. Res. 2012, 512–515, 3033–3041. [Google Scholar] [CrossRef]
- Leeson, S.; Summers, J.D. Commercial Poultry Nutrition; Nottingham University Press: Thrumpton, Nottingham, 2008. [Google Scholar]
- Oliveira, D.D.; Baião, N.C.; Cançado, S.V.; Grimaldi, R.; Souza, M.R.; Lara, L.J.; Lana, A.M. Effects of lipid sources in the diet of laying hens on the fatty acid profiles of egg yolks. Poult. Sci. 2010, 89, 2484–2490. [Google Scholar] [CrossRef]
- Jacob, J.P.; Wilson, H.R.; Miles, R.D.; Butcher, G.D.; Mather, F.B. Factors Affecting Egg Production in Backyard Chicken; University of Florida: Gainesville, FL, USA, 2014. [Google Scholar]
- Batkowska, J.; Drabik, K.; Brodacki, A.; Czech, A.; Adamczuk, A. Fatty acids profile, cholesterol level and quality of table eggs from hens fed with the addition of linseed and soybean oil. Food Chem. 2021, 334, 127612. [Google Scholar] [CrossRef] [PubMed]
- Nagalakshmi, D.; Rao, S.V.R.; Panda, A.K.; Sastry, V.R.B. Cottonseed meal in poultry diets: A review. J. Poult. Sci. 2007, 44, 119–134. [Google Scholar] [CrossRef] [Green Version]
- Alagawany, M.; Elnesr, S.S.; Farag, M.R.; Abd El-Hack, M.E.; Khafaga, A.F.; Taha, A.E.; Tiwari, R.; Yatoo, M.I.; Bhatt, P.; Khurana, S.K.; et al. Omega-3 and omega-6 fatty acids in poultry nutrition: Effect on production performance and health. Animals 2019, 9, 573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neijat, M.; Gakhar, N.; Neufeld, J.; House, J.D. Performance, egg quality, and blood plasma chemistry of laying hens fed hempseed and hempseed oil. Poult. Sci. 2014, 93, 2827–2840. [Google Scholar] [CrossRef] [PubMed]
- Küçükersan, K.; Yeşilbağ, D.; Küçükersan, S. Influence of different dietary oil sources on performance and cholesterol content of egg yolk in laying hens. J. Biol. Environ. Sci. 2010, 4, 117–122. [Google Scholar]
- Bozkurt, M.; Cabuk, M.; Alçiçek, A. Effect of dietary fat type on broiler breeder performance and hatching egg characteristics. J. Appl. Poult. Res. 2008, 17, 47–53. [Google Scholar] [CrossRef]
- Trott, K.A.; Giannitti, F.; Rimoldi, G.; Hill, A.; Woods, L.; Barr, B.; Anderson, M.; Mete, A. Fatty liver hemorrhagic syndrome in the backyard chicken: A retrospective histopathologic case series. Vet. Pathol. 2014, 51, 787–795. [Google Scholar] [CrossRef]
- Schumann, B.E.; Squires, E.J.; Leeson, S.; Hunter, B. Effect of hens fed dietary flaxseed with and without a fatty liver supplement on hepatic, plasma and production characteristics relevant to fatty liver haemorrhagic syndrome in laying hens. Br. Poult. Sci. 2003, 44, 234–244. [Google Scholar] [CrossRef]
- Sünder, A.; Wilkens, M.; Böhm, V.; Liebert, F. Egg yolk colour in organic production as affected by feeding—Consequences for farmers and consumers. Food Chem. 2021, 131854. [Google Scholar] [CrossRef]
- Hammershøj, M.; Johansen, N. Review: The effect of grass and herbs in organic egg production on egg fatty acid composition, egg yolk colour and sensory properties. Livest. Sci. 2016, 194, 37–43. [Google Scholar] [CrossRef]
- Cachaldora, P.; García-Rebollar, P.; Alvarez, C.; Blas, J.C.D.; Méndez, J. Effect of type and level of basal fat and level of fish oil supplementation on yolk fat composition and n-3 fatty acids deposition efficiency in laying hens. Anim. Feed Sci. Technol. 2008, 141, 104–114. [Google Scholar] [CrossRef]
- Söderberg, J. Functional Properties of Legume Proteins Compared to Egg Proteins and Their Potential as Egg Replacers in Vegan Food; SLU: St. Louis, MO, USA, 2013. [Google Scholar]
- Gül, M.; Yörük, M.A.; Aksu, T.; Kaya, A.; Kaynar, Ö. The effect of different levels of canola oil on performance, egg shell quality and fatty acid composition of laying hens. Int. J. Poult. Sci. 2012, 11, 769–776. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Kim, Y.M.; Kim, I.H. Egg production, egg quality, blood profiles, cecal microflora, and excreta noxious gas emission in laying hens fed with fenugreek (Trigonella foenum-graecum L.) seed extract. J. Poult. Sci. 2018, 55, 47–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opachaloemphan, C.; Mancini, G.; Konstantinides, N.; Parikh, A.; Mlejnek, J.; Yan, H.; Reinberg, D.; Desplan, C. Early behavioral and molecular events leading to caste switching in the ant Harpegnathos. Genes Dev. 2021, 35, 410–424. [Google Scholar] [CrossRef]
- Raes, K.; Huyghebaert, G.; De Smet, S.; Nollet, L.; Arnouts, S.; Demeyer, D. The deposition of conjugated linoleic acids in eggs of laying hens fed diets varying in fat level and fatty acid profile. J. Nutr. 2002, 132, 182–189. [Google Scholar] [CrossRef] [Green Version]
- Nimalaratne, C.; Wu, J. Hen egg as an antioxidant food commodity: A review. Nutrients 2015, 7, 8274–8293. [Google Scholar] [CrossRef] [Green Version]
- Kapoor, B.; Kapoor, D.; Gautam, S.; Singh, R.; Bhardwaj, S. Dietary polyunsaturated fatty acids (PUFAs): Uses and potential health benefits. Curr. Nutr. Rep. 2021, 10, 232–242. [Google Scholar] [CrossRef]
- Gonzalez-Esquerra, R.; Leeson, S. Studies on the metabolizable energy content of ground full-fat flaxseed fed in mash, pellet, and crumbled diets assayed with birds of different ages. Poult. Sci. 2000, 79, 1603–1607. [Google Scholar] [CrossRef]
- Harris, W.S.; Poston, W.C.; Haddock, C.K. Tissue n-3 and n-6 fatty acids and risk for coronary heart disease events. Atherosclerosis 2007, 193, 1–10. [Google Scholar] [CrossRef]
- Kralik, G.; Škrtić, Z.; Suchý, P.; Straková, E.; Gajčević, Z. Feeding fish oil and linseed oil to laying hens to increase the n-3 PUFA in egg yolk. Acta Vet. Brno 2008, 77, 561–568. [Google Scholar] [CrossRef]
- Raza, T.; Chand, N.; Khan, R.U.; Shahid, M.S.; Abudabos, A.M. Improving the fatty acid profile in egg yolk through the use of hempseed (Cannabis sativa), ginger (Zingiber officinale), and turmeric (Curcuma longa) in the diet of Hy-line White leghorns. Arch. Anim. Breed. 2016, 59, 183–190. [Google Scholar] [CrossRef]
- Murano, Y.; Funabashi, T.; Sekine, S.; Aoyama, T.; Takeuchi, H. Effect of dietary lard containing higher alpha-linolenic acid on plasma triacylglycerol in rats. J. Oleo Sci. 2007, 56, 361–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nys, Y.; Guyot, N. Improving the Safety and Quality of Eggs and Egg Products; Elseveir: Ansterdam, NL, USA, 2011. [Google Scholar]
- Hou, Y.; Yin, Y.; Wu, G. Dietary essentiality of “nutritionally non-essential amino acids” for animals and humans. Exp. Biol. Med. (Maywood) 2015, 240, 997–1007. [Google Scholar] [CrossRef] [Green Version]
- Talha, N.A.H.; Jeon, Y.; Yu, I.J. Cryopreservation of dog spermatozoa using essential and non-essential amino acids solutions in an egg yolk-free polyvinyl alcohol extender. Cryo Lett. 2021, 42, 44–52. [Google Scholar]
- Mitchell, J. Food texture and viscosity: Concept and measurement. Int. J. Food Sci. Technol. 2003, 38, 839–840. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, Y.B.; Kim, D.H.; Lee, D.W.; Lee, H.G.; Jha, R.; Lee, K.W. Dietary soluble flaxseed oils as a source of omega-3 polyunsaturated fatty acids for laying hens. Poult. Sci. 2021, 100, 101276. [Google Scholar] [CrossRef]
- Li-Chan, E.C.Y.; Kim, H.O. Structure and chemical compositions of eggs. In Egg Bioscience and Biotechnology; Mine, Y., Ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008; pp. 1–95. [Google Scholar]
- Ding, S.; Peng, B.; Li, Y.; Yang, J. Evaluation of specific volume, texture, thermal features, water mobility, and inhibitory effect of staling in wheat bread affected by maltitol. Food Chem. 2019, 283, 123–130. [Google Scholar] [CrossRef]
- Woodward, S.A.; Cotterill, O.J. Texture and microstructure of cooked whole egg yolks and heat-formed gels of stirred egg yolk. J. Food Sci. 1987, 52, 63–67. [Google Scholar] [CrossRef]
- Mishra, S.; Mishra, B.B. Study of lipid peroxidation, nitric oxide end product, and trace element status in type 2 diabetes mellitus with and without complications. Int. J. Appl. Basic Med. Res. 2017, 7, 88–93. [Google Scholar] [CrossRef] [Green Version]
- Vlaicu, P.A.; Panaite, T.D.; Turcu, R.P. Enriching laying hens eggs by feeding diets with different fatty acid composition and antioxidants. Sci. Rep. 2021, 11, 20707. [Google Scholar] [CrossRef] [PubMed]
- Torki, M.; Sedgh-Gooya, S.; Mohammadi, H. Effects of adding essential oils of rosemary, dill and chicory extract to diets on performance, egg quality and some blood parameters of laying hens subjected to heat stress. J. Appl. Anim. Res. 2018, 46, 1118–1126. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Ma, S.; Li, L.; Zhang, M.; Tian, S.; Wang, D.; Liu, K.; Liu, H.; Zhu, W.; Wang, X. Comprehensive utilization of corn starch processing by-products: A review. Grain Oil Sci. Technol. 2021, 4, 89–107. [Google Scholar] [CrossRef]
- Ceylan, N.; Ciftci, I.; Mizrak, C.; Kahraman, Z.; Efil, H. Influence of different dietary oil sources on performance and fatty acid profile of egg yolk in laying hens. J. Anim. Feed Sci. 2011, 20, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Lemahieu, C.; Bruneel, C.; Ryckebosch, E.; Muylaert, K.; Buyse, J.; Foubert, I. Impact of different omega-3 polyunsaturated fatty acid (n-3 PUFA) sources (flaxseed, Isochrysis galbana, fish oil and DHA Gold) on n-3 LC-PUFA enrichment (efficiency) in the egg yolk. J. Funct. Foods 2015, 19, 821–827. [Google Scholar] [CrossRef]
Items | % |
---|---|
Ingredient | |
Corn | 61 |
Soybean meal | 24 |
Wheat bran | 2.5 |
Stone powder | 8.5 |
Premix 1 | 4 |
Nutrient composition | |
AME (MJ/Kg) | 12.47 |
Crude protein (g/100 g) | 16 |
Methionine (g/100 g) | 0.2 |
Lysine (g/100 g) | 0.75 |
Calcium (mg/kg) | 3.16 × 104 |
Phosphorus (mg/kg) | 3.21 × 103 |
NaCl (g/100 g) | 0.3 |
Moisture | ≤10 |
Ingredients (g/kg of Diet) | Groups 1 | |||||
---|---|---|---|---|---|---|
Soybean Oil (1.5%) | Soybean Oil (3%) | Lard (1.5%) | Lard (3%) | Mixed Oils (1.5%) | Mixed Oils (3%) | |
NaCl (g/100 g) | 0.3 | 0.27 | 0.37 | 0.3 | 0.27 | 0.29 |
AME (MJ/kg) | 13.57 | 13.78 | 13.40 | 13.69 | 13.46 | 13.47 |
Crude protein (g/100 g) | 17.2 | 17.1 | 16.8 | 17.1 | 17.2 | 17.3 |
Methionine (g/100 g) | 0.15 | 0.18 | 0.12 | 0.23 | 0.2 | 0.2 |
Lysine (g/100 g) | 0.56 | 0.47 | 0.49 | 0.69 | 0.74 | 0.78 |
Calcium (mg/kg) | 4.81 × 104 | 3.34 × 104 | 3.56 × 104 | 3.83 × 104 | 3.00 × 104 | 3.09 × 104 |
Phosphorus (mg/kg) | 4.39 × 103 | 4.84 × 103 | 4.06 × 103 | 4.70 × 103 | 4.41 × 103 | 5.16 × 103 |
Traits 2 | Control Group | Concentration 3 | p-Value from ANOVA Mixed Design | |||||||
---|---|---|---|---|---|---|---|---|---|---|
1.5% | 3% | |||||||||
Soybean Oil | Lard | Mixed Oils | Soybean Oil | Lard | Mixed Oils | Type | Concentration | Type × Concentration | ||
LR, % | 87.78 ± 2.90 a | 89.26 ± 0.89 a | 83.54 ± 2.46 b | 83.66 ± 2.55 b | 84.02 ± 0.62 b | 81.32 ± 1.99 c | 77.93 ± 2.90 d | 0.158 | 0.038 | 0.023 |
FCR | 1.86 ± 0.14 | 1.89 ± 0.08 | 1.89 ± 0.11 | 1.88 ± 0.12 | 1.86 ± 0.12 | 1.86 ± 0.09 | 1.84 ± 0.13 | 0.868 | 0.254 | 0.124 |
AEW, g | 61.63 ± 1.98 | 60.56 ± 1.48 | 60.73 ± 1.42 | 61.40 ± 1.85 | 61.41 ± 1.86 | 61.35 ± 1.84 | 61.44 ± 1.87 | 0.089 | 0.245 | 0.287 |
ADFI, g | 115.00 ± 3.77 | 114.32 ± 2.67 | 114.36 ± 2.58 | 115.22 ± 1.08 | 113.88 ± 1.69 | 114.06 ± 3.86 | 113.02 ± 1.99 | 0.189 | 0.602 | 0.300 |
Traits 2 | Control Group | Concentration 3 | p-Value from ANOVA Mixed Design | |||||||
---|---|---|---|---|---|---|---|---|---|---|
1.5% | 3% | |||||||||
Soybean Oil | Lard | Mixed Oils | Soybean Oil | Lard | Mixed Oils | Type | Concentration | Type × Concentration | ||
EW, g | 61.15 ± 2.93 | 60.93 ± 2.85 | 61.20 ± 2.84 | 61.19 ± 2.71 | 61.05 ± 2.48 | 60.63 ± 3.47 | 62.28 ± 2.60 | 0.320 | 0.432 | 0.087 |
ESI | 1.29 ± 0.03 | 1.30 ± 0.04 | 1.29 ± 0.04 | 1.28 ± 0.04 | 1.29 ± 0.03 | 1.27 ± 0.03 | 1.29 ± 0.04 | 0.125 | 0.080 | 0.102 |
ESS, N/cm 2 | 4.72 ± 0.73 | 4.57 ± 0.71 | 4.56 ± 0.87 | 4.40 ± 0.71 | 4.74 ± 0.71 | 4.34 ± 0.73 | 4.86 ± 0.64 | 0.218 | 0.381 | 0.089 |
AH, mm | 7.27 ± 0.84 abc | 6.90 ± 0.63 c | 7.59 ± 0.90 a | 7.37 ± 0.64 ab | 7.20 ± 0.67 abc | 7.37 ± 0.85 ab | 7.12 ± 0.78 bc | 0.075 | 0.128 | 0.024 |
HU | 83.70 ± 5.90 a | 78.87 ± 7.26 c | 84.35 ± 6.65 a | 83.14 ± 7.14 ab | 80.04 ± 7.94 bc | 81.96 ± 8.34 abc | 79.59 ± 7.36 bc | 0.076 | 0.013 | 0.032 |
YC | 5.18 ± 0.78 d | 6.05 ± 0.79 a | 5.67 ± 0.93 abc | 5.45 ± 0.88 cd | 5.69 ± 0.88 abc | 5.93 ± 0.75 ab | 5.55 ± 0.64 bcd | 0.034 | 0.178 | 0.045 |
YP, % | 25.88 ± 1.89 | 26.14 ± 1.75 | 26.18 ± 1.88 | 26.10 ± 2.00 | 26.24 ± 1.71 | 26.76 ± 1.82 | 26.30 ± 1.76 | 0.132 | 0.580 | 0.658 |
EST, μm | 344.19 ± 19.67 | 347.38 ± 19.83 | 339.41 ± 28.24 | 342.19 ± 21.35 | 350.57 ± 23.13 | 340.07 ± 28.65 | 355.72 ± 20.88 | 0.236 | 0.400 | 0.502 |
ESW, g | 6.75 ± 0.39 | 6.74 ± 0.47 | 6.79 ± 0.53 | 6.51 ± 0.38 | 6.75 ± 0.39 | 6.70 ± 0.39 | 6.84 ± 0.51 | 0.126 | 0.286 | 0.346 |
Traits 2 | Control Group | Concentration 3 | p-Value from ANOVA Mixed Design | |||||||
---|---|---|---|---|---|---|---|---|---|---|
1.5% | 3% | |||||||||
Soybean Oil | Lard | Mixed Oils | Soybean Oil | Lard | Mixed Oils | Type | Concentration | Type × Concentration | ||
C14:0, mg/g | 0.81 ± 0.007 c | 0.70 ± 0.019 e | 0.84 ± 0.004 b | 0.76 ± 0.003 d | 0.71 ± 0.002 e | 0.87 ± 0.019 a | 0.78 ± 0.022 d | 0.000 | 0.016 | 0.639 |
C14:1, mg/g | 0.24 ± 0.032 a | 0.12 ± 0.010 c | 0.20 ± 0.026 ab | 0.20 ± 0.031 ab | 0.12 ± 0.009 c | 0.20 ± 0.043 ab | 0.19 ± 0.015 b | 0.000 | 0.862 | 0.883 |
C15:0, mg/g | 0.11 ± 0.007 cd | 0.09 ± 0.008 e | 0.13 ± 0.001 a | 0.12 ± 0.005 ab | 0.11 ± 0.002 bc | 0.10 ± 0.003 de | 0.11 ± 0.006 cd | 0.005 | 0.010 | 0.000 |
C16:0, mg/g | 72.91 ± 0.860 a | 67.16 ± 0.831 d | 71.26 ± 0.401 bc | 70.64 ± 1.023 c | 66.87 ± 0.582 d | 70.45 ± 0.452 c | 72.11 ± 0.863 ab | 0.000 | 0.733 | 0.048 |
C16:1, mg/g | 10.87 ± 0.108 a | 7.27 ± 0.101 e | 8.86 ± 0.049 c | 8.29 ± 0.164 d | 6.67 ± 0.101 f | 8.10 ± 0.087 d | 9.28 ± 0.175 b | 0.000 | 0.046 | 0.000 |
C17:0, mg/g | 0.31 ± 0.018 c | 0.35 ± 0.005 b | 0.40 ± 0.011 a | 0.38 ± 0.015 ab | 0.39 ± 0.016 a | 0.38 ± 0.014 a | 0.33 ± 0.006 c | 0.001 | 0.149 | 0.001 |
C18:0, mg/g | 25.89 ± 0.325 e | 27.72 ± 0.306 a | 26.53 ± 0.122 d | 26.89 ± 0.373 cd | 27.18 ± 0.212 abc | 27.49 ± 0.255 ab | 27.15 ± 0.381 bc | 0.034 | 0.125 | 0.002 |
C18:1n9 c, mg/g | 111.19 ± 1.391 c | 102.71 ± 1.263 e | 114.44 ± 0.588 b | 109.69 ± 1.573 cd | 98.73 ± 0.879 f | 118.80 ± 0.860 a | 108.37 ± 1.272 d | 0.000 | 0.575 | 0.000 |
C18:2n6 c, mg/g | 28.78 ± 0.363 f | 36.68 ± 0.477 b | 31.16 ± 0.100 e | 34.86 ± 0.456 c | 43.55 ± 0.425 a | 28.07 ± 0.252 g | 33.29 ± 0.408 d | 0.000 | 0.001 | 0.000 |
C18:3n6, mg/g | 0.20 ± 0.005 bc | 0.22 ± 0.013 b | 0.20 ± 0.002 bc | 0.20 ± 0.013 cd | 0.29 ± 0.023 a | 0.17 ± 0.005 e | 0.18 ± 0.010 de | 0.000 | 0.221 | 0.000 |
C18:3n3, mg/g | 0.65 ± 0.014 f | 1.06 ± 0.027 b | 0.68 ± 0.008 e | 1.02 ± 0.011 c | 1.54 ± 0.012 a | 0.57 ± 0.011 g | 0.91 ± 0.009 d | 0.000 | 0.000 | 0.000 |
C20:1, mg/g | 0.68 ± 0.015 cd | 0.66 ± 0.012 de | 0.78 ± 0.010 b | 0.69 ± 0.012 c | 0.63 ± 0.007 f | 0.81 ± 0.011 a | 0.65 ± 0.005 e | 0.000 | 0.018 | 0.000 |
C20:2, mg/g | 0.35 ± 0.006 f | 0.46 ± 0.017 b | 0.41 ± 0.003 d | 0.43 ± 0.008 c | 0.53 ± 0.012 a | 0.38 ± 0.007 e | 0.38 ± 0.017 e | 0.000 | 0.840 | 0.000 |
C22:0, mg/g | 0.22 ± 0.011 ab | 0.19 ± 0.020 c | 0.24 ± 0.008 a | 0.22 ± 0.003 ab | 0.21 ± 0.011 bc | 0.22 ± 0.007 ab | 0.19 ± 0.021 c | 0.002 | 0.102 | 0.005 |
C20:3n6, mg/g | 0.44 ± 0.019 b | 0.50 ± 0.031 a | 0.43 ± 0.012 b | 0.44 ± 0.005 b | 0.49 ± 0.002 a | 0.42 ± 0.017 b | 0.39 ± 0.019 c | 0.000 | 0.016 | 0.145 |
C20:4n6, mg/g | 5.18 ± 0.140 | 5.14 ± 0.08 | 5.30 ± 0.096 | 5.29 ± 0.082 | 5.20 ± 0.109 | 5.24 ± 0.054 | 5.21 ± 0.064 | 0.167 | 0.539 | 0.420 |
C24:1, mg/g | 0.12 ± 0.014 ab | 0.09 ± 0.014 c | 0.14 ± 0.009 a | 0.10 ± 0.022 bc | 0.09 ± 0.010 c | 0.15 ± 0.005 a | 0.07 ± 0.023 c | 0.000 | 0.399 | 0.154 |
SFA, mg/g | 100.26 ± 1.212 a | 96.22 ± 1.175 b | 99.38 ± 0.526 a | 99.01 ± 1.397 a | 95.47 ± 0.805 b | 99.51 ± 0.716 a | 100.66 ± 1.275 a | 0.128 | 0.100 | 0.086 |
UFA, mg/g | 158.71 ± 2.048 bc | 154.91 ± 1.937 d | 162.60 ± 0.818 a | 161.21 ± 2.268 ab | 157.85 ± 1.353 cd | 161.21 ± 1.280 a | 158.93 ± 1.935 bc | 0.002 | 0.021 | 0.015 |
TFA, mg/g | 258.97 ± 3.259 a | 251.13 ± 3.112 b | 261.99 ± 1.344 a | 260.22 ± 3.665 a | 253.32 ± 2.142 b | 260.59 ± 1.995 a | 259.59 ± 3.207 a | 0.088 | 0.104 | 0.067 |
Traits 2 | Control Group | Concentration 3 | p-Value from ANOVA Mixed Design | |||||||
---|---|---|---|---|---|---|---|---|---|---|
1.5% | 3% | |||||||||
Soybean Oil | Lard | Mixed Oils | Soybean Oil | Lard | Mixed Oils | Type | Concentration | Type × Concentration | ||
Asp, mg/g | 12.53 ± 0.115 b | 12.53 ± 0.115 b | 12.17 ± 0.115 d | 12.87 ± 0.115 a | 12.27 ± 0.115 cd | 12.47 ± 0.115 bc | 12.37 ± 0.153 bcd | 0.002 | 0.017 | 0.000 |
Thr, mg/g | 6.70 ± 0.100 b | 6.87 ± 0.058 ab | 6.67 ± 0.208 b | 7.03 ± 0.153 a | 6.67 ± 0.058 b | 6.87 ± 0.058 ab | 6.73 ± 0.153 b | 0.213 | 0.113 | 0.009 |
Ser, mg/g | 10.47 ± 0.115 ab | 10.47 ± 0.058 ab | 10.13 ± 0.153 c | 10.67 ± 0.115 a | 10.20 ± 0.100 c | 10.33 ± 0.058 bc | 10.17 ± 0.153 c | 0.044 | 0.003 | 0.000 |
Glu, mg/g | 15.63 ± 0.058 ab | 15.40 ± 0.265 bc | 15.20 ± 0.200 c | 15.73 ± 0.159 a | 15.33 ± 0.058 bc | 15.53 ± 0.252 abc | 15.30 ± 0.100 bc | 0.262 | 0.511 | 0.007 |
Gly, mg/g | 3.93 ± 0.058 bcd | 4.10 ± 0.001 a | 3.90 ± 0.100 cd | 4.07 ± 0.058 ab | 3.83 ± 0.115 d | 4.03 ± 0.058 abc | 3.97 ± 0.058 abcd | 0.409 | 0.039 | 0.001 |
Ala, mg/g | 6.70 ± 0.001 ab | 6.67 ± 0.115 ab | 6.43 ± 0.115 c | 6.80 ± 0.001 a | 6.43 ± 0.058 c | 6.70 ± 0.173 ab | 6.60 ± 0.100 bc | 0.041 | 0.258 | 0.001 |
Cys, mg/g | 1.23 ± 0.058 bcd | 1.20 ± 0.100 cd | 1.10 ± 0.001 d | 1.40 ± 0.173 ab | 1.30 ± 0.100 abc | 1.33 ± 0.115 abc | 1.47 ± 0.058 a | 0.004 | 0.013 | 0.340 |
Val, mg/g | 7.90 ± 0.173 a | 8.03 ± 0.208 a | 7.57 ± 0.058 b | 8.07 ± 0.115 a | 7.80 ± 0.100 ab | 7.90 ± 0.265 a | 7.87 ± 0.153 ab | 0.068 | 0.677 | 0.017 |
Met, mg/g | 1.87 ± 0.058 a | 1.50 ± 0.001 c | 0.62 ± 0.015 f | 1.20 ± 0.100 e | 1.10 ± 0.100 e | 1.33 ± 0.058 d | 1.63 ± 0.058 b | 0.000 | 0.000 | 0.000 |
IIe, mg/g | 6.60 ± 0.100 a | 6.53 ± 0.058 a | 6.20 ± 0.100 b | 6.50 ± 0.173 a | 6.47 ± 0.208 a | 6.50 ± 0.100 a | 6.23 ± 0.058 b | 0.111 | 0.854 | 0.005 |
Leu, mg/g | 11.27 ± 0.153 abc | 11.47 ± 0.115 ab | 10.97 ± 0.252 c | 11.60 ± 0.200 a | 11.20 ± 0.300 bc | 11.33 ± 0.153 abc | 11.07 ± 0.153 c | 0.218 | 0.146 | 0.005 |
Tyr, mg/g | 4.63 ± 0.153 abc | 4.70 ± 0.001 ab | 4.50 ± 0.200 bcd | 4.67 ± 0.115 abc | 4.37 ± 0.058 d | 4.73 ± 0.058 a | 4.47 ± 0.058 cd | 0.447 | 0.077 | 0.002 |
Phe, mg/g | 5.77 ± 0.115 | 5.77 ± 0.058 | 5.60 ± 0.300 | 5.80 ± 0.100 | 5.60 ± 0.100 | 5.70 ± 0.100 | 5.50 ± 0.173 | 0.911 | 0.115 | 0.109 |
Lys, mg/g | 10.27 ± 0.252 ab | 10.07 ± 0.153 bc | 9.63 ± 0.058 d | 10.37 ± 0.153 a | 9.87 ± 0.058 c | 10.00 ± 0.001 c | 9.93 ± 0.058 c | 0.002 | 0.172 | 0.000 |
His, mg/g | 2.80 ± 0.100 d | 3.20 ± 0.100 ab | 2.73 ± 0.208 d | 3.37 ± 0.115 a | 2.97 ± 0.153 bcd | 3.13 ± 0.115 abc | 2.90 ± 0.100 cd | 0.052 | 0.132 | 0.000 |
Arg, mg/g | 8.57 ± 0.153 bc | 8.87 ± 0.208 ab | 8.43 ± 0.208 c | 9.00 ± 0.100 a | 8.53 ± 0.058 bc | 8.63 ± 0.379 abc | 8.53 ± 0.153 bc | 0.16 | 0.056 | 0.031 |
Pro, mg/g | 4.87 ± 0.058 ab | 4.90 ± 0.200 a | 4.57 ± 0.208 bcd | 4.50 ± 0.100 cd | 4.33 ± 0.305 d | 4.60 ± 0.100 abcd | 4.67 ± 0.058 abc | 0.927 | 0.150 | 0.005 |
Essential amino acids | 50.37 ± 0.379 a | 50.23 ± 0.551 a | 47.26 ± 0.845 c | 50.57 ± 0.635 a | 48.70 ± 0.656 b | 49.63 ± 0.493 ab | 48.97 ± 0.231 b | 0.23 | 0.150 | 0.080 |
Non-essential amino acids | 71.37 ± 0.252 bc | 72.03 ± 0.961 ab | 69.17 ± 0.305 d | 73.07 ± 0.473 a | 69.57 ± 0.723 d | 71.50 ± 1.311 bc | 70.43 ± 0.651 cd | 0.003 | 0.010 | 0.084 |
Protein, mg/g | 153.33 ± 3.215a | 145.67 ± 3.055 cd | 146.67 ± 2.082 bcd | 152.00 ± 4.359 ab | 144.33 ± 2.082 d | 147.67 ± 3.215 bcd | 150.33 ± 2.309 abc | 0.01 | 0.645 | 0.709 |
Moisture, mg/g | 513.00 ± 2.646c | 518.00 ± 1.000bc | 523.67 ± 6.658ab | 501.67 ± 2.082 d | 519.67 ± 0.578 bc | 532.67 ± 12.220 a | 527.33 ± 1.527 ab | 0.964 | 0.073 | 0.266 |
Cholesterol, mg/kg | 9324.85 ± 70.15 c | 11235.58 ± 172.75 a | 9276.28 ± 145.59 c | 10451.50 ± 121.79 b | 10137.68 ± 176.82 b | 10195.01 ± 108.52 b | 10316.91 ± 195.99 b | 0.000 | 0.532 | 0.000 |
Choline, mg/g | 7.03 ± 0.115 c | 9.98 ± 0.066 a | 6.82 ± 0.053 d | 5.81 ± 0.096 f | 8.55 ± 0.126 b | 6.09 ± 0.076 e | 6.17 ± 0.148 e | 0.000 | 0.000 | 0.000 |
Phospholipids, U/g | 11858.40 ± 303.32 d | 14738.89 ± 416.27 c | 14491.99 ± 303.32 c | 16330.02 ± 47.52 a | 15589.32 ± 332.61 b | 14505.71 ± 365.75 c | 16549.48 ± 345.10 a | 0.000 | 0.032 | 0.098 |
Traits 2 | Control Group | Concentration 3 | P-Value from ANOVA Mixed Design | |||||||
---|---|---|---|---|---|---|---|---|---|---|
1.5% | 3% | |||||||||
Soybean Oil | Lard | Mixed Oils | Soybean Oil | Lard | Mixed Oils | Type | Concentration | Type × Concentration | ||
Asp, mg/g | 8.87 ± 0.058 d | 9.73 ± 0.058 c | 10.03 ± 0.058 b | 9.67 ± 0.058 c | 9.80 ± 0.100 c | 10.50 ± 0.100 a | 10.00 ± 0.100 b | 0.000 | 0.000 | 0.002 |
Thr, mg/g | 3.93 ± 0.058 e | 4.30 ± 0.001 cd | 4.43 ± 0.058 b | 4.23 ± 0.058 d | 4.27 ± 0.058 d | 4.63 ± 0.058 a | 4.37 ± 0.058 bc | 0.000 | 0.001 | 0.006 |
Ser, mg/g | 5.63 ± 0.058 e | 6.27 ± 0.058 bc | 6.33 ± 0.058 b | 6.07 ± 0.058 d | 6.17 ± 0.058 cd | 6.77 ± 0.058 a | 6.27 ± 0.058 bc | 0.000 | 0.000 | 0.000 |
Glu, mg/g | 11.50 ± 0.001 e | 12.67 ± 0.153 c | 12.97 ± 0.058 b | 12.37 ± 0.115 d | 12.67 ± 0.252 c | 13.67 ± 0.115 a | 12.87 ± 0.115 bc | 0.000 | 0.000 | 0.002 |
Gly, mg/g | 2.97 ± 0.058 d | 3.30 ± 0.001 c | 3.40 ± 0.001 b | 3.30 ± 0.001 c | 3.37 ± 0.058 b | 3.50 ± 0.001 a | 3.40 ± 0.001 b | 0.000 | 0.000 | 0.571 |
Ala, mg/g | 5.13 ± 0.115 c | 5.70 ± 0.100 b | 5.80 ± 0.100 b | 5.60 ± 0.100 b | 5.77 ± 0.153 b | 6.13 ± 0.115 a | 5.73 ± 0.153 b | 0.002 | 0.008 | 0.178 |
Cys, mg/g | 2.13 ± 0.058 d | 2.20 ± 0.001 cd | 2.57 ± 0.058 a | 2.27 ± 0.058 c | 2.50 ± 0.001 ab | 2.47 ± 0.058 ab | 2.40 ± 0.100 b | 0.000 | 0.001 | 0.000 |
Val, mg/g | 5.80 ± 0.001 e | 6.47 ± 0.058 c | 6.67 ± 0.058 b | 6.27 ± 0.058 d | 6.47 ± 0.058 c | 6.90 ± 0.100 a | 6.60 ± 0.100 b | 0.000 | 0.000 | 0.003 |
Met, mg/g | 3.23 ± 0.058 d | 3.47 ± 0.058 c | 3.47 ± 0.058 c | 3.47 ± 0.058 c | 3.60 ± 0.100 b | 3.93 ± 0.058 a | 3.60 ± 0.001 b | 0.000 | 0.000 | 0.000 |
IIe, mg/g | 4.37 ± 0.115 e | 4.73 ± 0.058 cd | 5.03 ± 0.058 a | 4.63 ± 0.058 d | 4.83 ± 0.058 bc | 5.10 ± 0.001 a | 4.87 ± 0.058 b | 0.000 | 0.001 | 0.100 |
Leu, mg/g | 7.23 ± 0.058 f | 7.97 ± 0.058 d | 8.23 ± 0.058 b | 7.83 ± 0.058 e | 8.00 ± 0.001 cd | 8.60 ± 0.001 a | 8.07 ± 0.058 c | 0.000 | 0.000 | 0.000 |
Tyr, mg/g | 2.97 ± 0.115 c | 3.07 ± 0.058 c | 3.47 ± 0.058 a | 3.03 ± 0.058 c | 3.23 ± 0.058 b | 3.40 ± 0.001 a | 3.23 ± 0.058 b | 0.000 | 0.006 | 0.006 |
Phe, mg/g | 5.17 ± 0.115 d | 5.80 ± 0.001 bc | 5.90 ± 0.100 b | 5.70 ± 0.001 c | 5.90 ± 0.001 b | 6.20 ± 0.001 a | 5.77 ± 0.058 c | 0.000 | 0.000 | 0.011 |
Lys, mg/g | 5.90 ± 0.100 d | 6.57 ± 0.058 c | 6.70 ± 0.100 b | 6.43 ± 0.058 c | 6.53 ± 0.058 c | 7.03 ± 0.058 a | 6.57 ± 0.058 c | 0.000 | 0.001 | 0.002 |
His, mg/g | 1.83 ± 0.058 c | 2.10 ± 0.100 ab | 2.13 ± 0.058 ab | 2.03 ± 0.115 b | 2.10 ± 0.100 ab | 2.20 ± 0.100 a | 2.07 ± 0.058 ab | 0.066 | 0.384 | 0.768 |
Arg, mg/g | 4.67 ± 0.115 e | 5.03 ± 0.153 cd | 5.27 ± 0.115 b | 5.00 ± 0.001 d | 5.07 ± 0.058 cd | 5.50 ± 0.100 a | 5.20 ± 0.100 bc | 0.000 | 0.006 | 0.228 |
Pro, mg/g | 3.03 ± 0.115 d | 3.27 ± 0.058 c | 3.33 ± 0.058 bc | 3.27 ± 0.058 c | 3.30 ± 0.100 bc | 3.63 ± 0.058 a | 3.43 ± 0.058 b | 0.001 | 0.000 | 0.028 |
Essential amino acids | 35.63 ± 0.493 f | 39.30 ± 0.173 d | 40.43 ± 0.058 b | 38.57 ± 0.115 e | 39.60 ± 0.300cd | 42.40 ± 0.100 a | 39.83 ± 0.305 c | 0.002 | 0.000 | 0.010 |
Non-essential amino acids | 48.73 ± 0.153 g | 53.33 ± 0.231 e | 55.30 ± 0.173 b | 52.60 ± 0.346 f | 53.97 ± 0.551d | 57.77 ± 0.289 a | 54.60 ± 0.436 c | 0.005 | 0.005 | 0.000 |
Protein, mg/g | 101.70 ± 3.157 b | 105.00 ± 3.606 ab | 105.67 ± 2.517 ab | 105.33 ± 2.309 ab | 106.33 ± 0.577ab | 107.67 ± 2.082 a | 103.67 ± 2.517 ab | 0.366 | 0.651 | 0.437 |
Moisture, mg/g | 877.00 ± 4.000 b | 877.00 ± 1.000 b | 868.00 ± 1.732 c | 877.33 ± 2.517 b | 883.33 ± 0.577a | 869.67 ± 1.527 c | 882.00 ± 1.732 a | 0.000 | 0.001 | 0.196 |
Traits | Control Group | Concentration 2 | p-Value from ANOVA Mixed Design | |||||||
---|---|---|---|---|---|---|---|---|---|---|
1.5% | 3% | |||||||||
Soybean Oil | Lard | Mixed Oils | Soybean Oil | Lard | Mixed Oils | Type | Concentration | Type × Concentration | ||
Hardness, g | 142.86 ± 22.847 d | 158.75 ± 19.975 cd | 170.69 ± 18.584 ab | 196.46 ± 22.560 a | 189.36 ± 28.124 a | 197.24 ± 20.473 a | 182.66 ± 18.380 bc | 0.260 | 0.203 | 0.000 |
Springiness, mm | 0.90 ± 0.017 a | 0.88 ± 0.027 ab | 0.87 ± 0.034 ab | 0.90 ± 0.034 a | 0.85 ± 0.075 b | 0.89 ± 0.017 ab | 0.89 ± 0.022 ab | 0.081 | 0.599 | 0.087 |
Cohesiveness | 0.90 ± 0.024 ab | 0.89 ± 0.042 b | 0.87 ± 0.044 b | 0.92 ± 0.057 a | 0.87 ± 0.036 b | 0.88 ± 0.028 b | 0.89 ± 0.017 b | 0.038 | 0.218 | 0.126 |
Gumminess | 127.91 ± 20.246 e | 140.83 ± 18.997 de | 159.03 ± 19.768 bcd | 180.42 ± 26.257 a | 166.01 ± 30.330 abc | 174.48 ± 20.589 ab | 151.61 ± 16.269 cd | 0.037 | 0.437 | 0.000 |
Chewiness | 115.47 ± 18.607 e | 124.78 ± 17.999 de | 138.59 ± 20.225 bcd | 162.18 ± 28.289 a | 145.03 ± 29.867 abc | 155.44 ± 20.819 ab | 134.84 ± 16.337 cde | 0.037 | 0.518 | 0.000 |
Resilience | 0.63 ± 0.025 a | 0.61 ± 0.025 b | 0.58 ± 0.041 b | 0.60 ± 0.034 b | 0.58 ± 0.038 b | 0.60 ± 0.018 b | 0.61 ± 0.024 b | 0.406 | 0.935 | 0.007 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Z.; Duan, Z.; Zhang, J.; Zheng, J.; Li, F.; Xu, G. Effects of Oil Types and Fat Concentrations on Production Performance, Egg Quality, and Antioxidant Capacity of Laying Hens. Animals 2022, 12, 315. https://doi.org/10.3390/ani12030315
Gao Z, Duan Z, Zhang J, Zheng J, Li F, Xu G. Effects of Oil Types and Fat Concentrations on Production Performance, Egg Quality, and Antioxidant Capacity of Laying Hens. Animals. 2022; 12(3):315. https://doi.org/10.3390/ani12030315
Chicago/Turabian StyleGao, Zhouyang, Zhongyi Duan, Junnan Zhang, Jiangxia Zheng, Fuwei Li, and Guiyun Xu. 2022. "Effects of Oil Types and Fat Concentrations on Production Performance, Egg Quality, and Antioxidant Capacity of Laying Hens" Animals 12, no. 3: 315. https://doi.org/10.3390/ani12030315
APA StyleGao, Z., Duan, Z., Zhang, J., Zheng, J., Li, F., & Xu, G. (2022). Effects of Oil Types and Fat Concentrations on Production Performance, Egg Quality, and Antioxidant Capacity of Laying Hens. Animals, 12(3), 315. https://doi.org/10.3390/ani12030315