Form of Supplemental Selenium Affects the Expression of mRNA Transcripts Encoding Selenoproteins, and Proteins Regulating Cholesterol Uptake, in the Corpus Luteum of Grazing Beef Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Procedure
2.2. Diet
2.3. Experimental Regimen
2.4. Cell Culture
2.5. Real-Time PCR
2.6. Se and P4 Analysis
2.7. Statistical Analysis
3. Results
3.1. Concentrations of Se in Whole Blood
3.2. Real-Time RT-PCR Analysis of Selenoprotein and Receptor mRNA Transcripts
3.3. Concentrations of P4, Luteal Weight, and Luteal Diameter
3.4. Production of Progesterone In Vitro
3.5. Real-Time PCR Analysis of Steroidogenic and Cholesterol Related mRNA Transcripts
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gleed, P.T.; Allen, W.M.; Mallinson, C.B.; Rowlands, G.J.; Sansom, B.F.; Vagg, M.J.; Caswell, R.D. Effects of selenium and copper supplementation on the growth of beef steers. Vet. Rec. 1983, 113, 388–392. [Google Scholar] [CrossRef] [PubMed]
- Erskine, R.J.; Eberhart, R.J.; Grasso, P.J.; Scholz, R.W. Induction of Escherichia coli mastitis in cows fed selenium-deficient or selenium-supplemented diets. Am. J. Vet. Res. 1989, 50, 2093–2100. [Google Scholar]
- Boyne, R.; Arthur, J.R. Alterations of neutrophil function in selenium-deficient cattle. J. Comp. Pathol. 1979, 89, 151–158. [Google Scholar] [CrossRef]
- McClure, T.J.; Eamens, G.J.; Healy, P.J. Improved fertility in dairy cows after treatment with selenium pellets. Aust. Vet. J. 1986, 63, 144–146. [Google Scholar] [CrossRef] [PubMed]
- Enjalbert, F.; Lebreton, P.; Salat, O. Effects of copper, zinc and selenium status on performance and health in commercial dairy and beef herds: Retrospective study. J. Anim. Physiol. Anim. Nutr. 2006, 90, 459–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, K.T. Metabolomics of selenium: Se metabolites based on speciation studies. J. Health Sci. 2005, 51, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Ammerman, C.B.; Miller, S.M. Selenium in ruminant nutrition: A review. J. Dairy Sci. 1975, 58, 1561–1577. [Google Scholar] [CrossRef]
- Flohe, L.; Günzler, W.A.; Schock, H.H. Glutathione peroxidase: A selenoenzyme. FEBS Lett. 1973, 32, 132–134. [Google Scholar] [CrossRef] [Green Version]
- Labunskyy, D.M.; Hatfield, D.L.; Gladyshev, V.N. Selenoproteins: Molecular pathways and physiological roles. Physiol. Rev. 2014, 94, 739–777. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.D.; Zhao, Z.P.; Zhao, J.C.; Lei, X.G. Evolution, regulation, and function of porcine selenogenome. Free Radic. Biol. Med. 2018, 127, 116–123. [Google Scholar] [CrossRef]
- Arnér, E.S.J. Focus on mammalian thioredoxin reductases-important selenoproteins with versatile functions. Biochem. Biophys. Acta 2009, 1790, 495–526. [Google Scholar] [CrossRef] [PubMed]
- Rundlöf, A.K.; Carlsten, M.; Arnér, E.S. The core promoter of human thioredoxin reductase 1: Cloning, transcriptional activity and Oct-1, Sp1 and Sp3 binding reveal a housekeeping-type promoter for the AU-rich regulated gene. J. Biol. Chem. 2001, 276, 30542–30551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lillig, C.H.; Holmgren, A. Thioredoxin and related molecules-from biology to health and disease. Antioxid. Redox Signal. 2007, 9, 25–47. [Google Scholar] [CrossRef]
- Takebe, G.; Yarimizu, J.; Saito, Y.; Hayashi, T.; Nakamura, H.; Yodoi, J.; Nagasawa, S.; Takahashi, K. A comparative study on the hydroperoxide and thiol specificity of the glutathione peroxidase family and selenoprotein P. J. Biol. Chem. 2002, 277, 41254–41258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beilstein, M.A.; Vendeland, S.C.; Barofsky, E.; Jensen, O.N.; Whanger, P.D. Selenoprotein W of rat muscle binds glutathione and an unknown small molecular weight moiety. J. Inorg. Biochem. 1996, 61, 117–124. [Google Scholar] [CrossRef]
- Novoselov, S.V.; Kryukov, G.V.; Xu, X.M.; Carlson, B.A.; Hatfield, D.L.; Gladyshev, V.N. Selenoprotein H is a nucleolar thioredoxin-like protein with a unique expression pattern. J. Biol. Chem. 2007, 282, 11960–11968. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Qiu, F.; Zhou, H.; Peng, Y.; Hao, W.; Xu, J.; Yuan, J.; Wang, S.; Qiang, B.; Xu, C.; et al. Identification and characterization of selenoprotein K: An antioxidant in cardiomyocytes. FEBS Lett. 2006, 580, 5189–5197. [Google Scholar] [CrossRef] [Green Version]
- Reeves, M.A.; Bellinger, F.P.; Berry, M.J. The neuroprotective functions of selenoprotein M and its role in cytosolic calcium regulation. Antioxid. Redox Signal 2010, 12, 809–818. [Google Scholar] [CrossRef] [Green Version]
- Kryukov, G.V.; Kumar, R.A.; Koc, A.; Sun, Z.; Gladyshev, V.N. Selenoprotein R is a zinc-containing stereo-specific methionine sulfoxide reductase. Proc. Natl. Acad. Sci. USA 2002, 99, 4245–4250. [Google Scholar] [CrossRef] [Green Version]
- Matthews, J.C.; Zhang, Z.; Patterson, J.D.; Bridges, P.J.; Stromberg, A.J.; Boling, J.A. Hepatic transcriptome profiles differ among maturing beef heifers supplemented with inorganic, organic, or mixed (50% inorganic: 50% organic) forms of dietary selenium. Biol. Trace Elem. Res. 2014, 160, 321–339. [Google Scholar] [CrossRef]
- Cerny, K.; Garbacik, S.; Skees, C.; Burris, W.; Matthews, J.; Bridges, P. Gestational form of selenium in free-choice mineral mixes affects transcriptome profiles of the neonatal calf testis, Including those of steroidogenic and spermatogenic pathways. Biol. Trace Elem. Res. 2016, 169, 56–68. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Jia, Y.; Burris, W.R.; Bridges, P.J.; Matthews, J.C. Forms of selenium in vitamin-mineral mixes differentially affect the expression of genes responsible for prolactin, ACTH, and alpha-MSH synthesis and mitochondrial dysfunction in pituitaries of steers grazing endophyte-infected tall fescue. J. Anim. Sci. 2019, 97, 631–643. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.F.; Brown, K.R.; Stromberg, A.J.; Burris, W.R.; Boling, J.A.; Matthews, J.C. Dietary supplementation of selenium in inorganic and organic forms differentially and commonly alters blood and liver selenium concentrations and liver gene expression profiles of growing beef heifers. Biol. Trace Elem. Res. 2011, 140, 151–169. [Google Scholar] [CrossRef] [PubMed]
- Brennen, K.M.; Burris, W.R.; Boling, J.A.; Matthews, J.C. Selenium content in blood fractions and liver of beef heifers is greater with a mix of inorganic/organic or organic versus inorganic supplemental selenium but the time required for maximal assimilation is tissue-specific. Biol. Trace Elem. Res. 2011, 144, 504–516. [Google Scholar] [CrossRef]
- Slavik, P.; Illek, J.; Brix, M.; Hlavicova, J.; Rajmon, R.; Jilek, F. Influence of organic versus inorganic dietary selenium supplementation on the concentration of selenium in colostrum, milk and blood of beef cows. Acta Vet. Scand. 2008, 50, 43. [Google Scholar] [CrossRef] [Green Version]
- Patterson, J.D.; Burris, W.R.; Boling, J.A.; Matthews, J.C. Individual intake of free-choice mineral mix by grazing beef cows may be less than typical formulation assumptions and form of selenium in mineral mix affects blood Se concentrations of cows and their suckling calves. Biol. Trace Elem. Res. 2013, 155, 38–48. [Google Scholar] [CrossRef]
- Pehrson, B.; Ortman, K.; Madjid, N.; Trafikowska, U. The influence of dietary selenium as selenium yeast or sodium selenite on the concentration of selenium in the milk of suckler cows and on the selenium status of their calves. J. Anim. Sci. 1999, 77, 3371–3376. [Google Scholar] [CrossRef] [Green Version]
- Gunter, S.A.; Beck, P.A.; Phillips, J.M. Effects of supplementary selenium source on the performance and blood measurements in beef cows and their calves. J. Anim. Sci. 2003, 81, 856–864. [Google Scholar] [CrossRef] [Green Version]
- Gunter, S.A.; Beck, P.A.; Hallford, D.M. Effects of supplementary selenium source on the blood parameters in beef cows and their nursing calves. Biol. Trace Elem. Res. 2013, 152, 204–211. [Google Scholar] [CrossRef]
- Muñiz-Naveiro, Ó.; Domínguez-González, R.; Bermejo-Barrera, A.; Bermejo-Barrera, P.; Cocho, J.A.; Fraga, J.M. Study of the bioavailability of selenium in cows’ milk after a supplementation of cow feed with different forms of selenium. Anal. Biol. Chem. 2006, 385, 189–196. [Google Scholar] [CrossRef]
- Givens, D.I.; Allison, R.; Cottrill, B.; Blake, J.S. Enhancing the selenium content of bovine milk through alteration of the form and concentration of selenium in the diet of the dairy cow. J. Sci. Food. Agric. 2004, 84, 811–817. [Google Scholar] [CrossRef]
- Ceballos, A.; Sánchez, J.; Stryhn, H.; Montgomery, J.B.; Barkema, H.W.; Wichtel, J.J. Meta-analysis of the effect of oral selenium supplementation on milk selenium concentration in cattle. J. Dairy Sci. 2009, 92, 324–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerny, K.L.; Anderson, L.; Burris, W.R.; Rhoads, M.; Matthews, J.C.; Bridges, P.J. Form of supplemental selenium fed to cycling cows affects systemic concentrations of progesterone but not those of estradiol. Theriogenology 2016, 85, 800–806. [Google Scholar] [CrossRef] [PubMed]
- Carr, S.N.; Jia, Y.; Crites, B.R.; Hamilton, C.H.; Burris, W.R.; Edwards, J.L.; Matthews, J.C.; Bridges, P.J. Form of supplemental selenium in vitamin-mineral premixes differentially affects early luteal and gestational concentrations of progesterone, and postpartum concentrations of prolactin in beef cows. Animals 2020, 10, 967. [Google Scholar] [CrossRef] [PubMed]
- Forde, N.; Carter, F.; Fair, T.; Crowe, M.A.; Evans, A.C.O.; Spencer, T.E.; Bazer, F.W.; McBride, R.; Boland, M.P.; O’Gaora, P.; et al. Progesterone-regulated changes in endometrial gene expression contribute to advanced conceptus development in cattle. Biol. Reprod. 2009, 81, 784–794. [Google Scholar] [CrossRef] [Green Version]
- Carter, F.; Forde, N.; Duffy, P.; Wade, M.; Fair, T.; Crowe, M.A.; Evans, A.C.O.; Kenny, D.A.; Roche, J.F.; Lonergan, P. Effect of increasing progesterone concentration from Day 3 of pregnancy on subsequent embryo survival and development in beef heifers. Reprod. Fertil. Dev. 2008, 20, 368–375. [Google Scholar] [CrossRef]
- Garrett, J.E.; Geisert, R.D.; Zavy, M.T.; Morgan, G.L. Evidence for maternal regulation of early conceptus growth and development in beef cattle. J. Reprod. Fert. 1988, 84, 437–446. [Google Scholar] [CrossRef]
- Wiltbank, M.C.; Souza, A.H.; Carvalho, P.D.; Bender, R.W.; Nascimento, A.B. Improving fertility to timed artificial insemination by manipulation of circulating progesterone concentrations in lactating dairy cattle. Reprod. Fertil. Dev. 2012, 24, 238–243. [Google Scholar] [CrossRef]
- Gerloff, B.J. Effect of selenium supplementation on dairy cattle. J. Anim. Sci. 1992, 70, 3934–3940. [Google Scholar] [CrossRef]
- Dargatz, D.A.; Ross, P.F. Blood selenium concentrations in cows and heifers on 253 cow-calf operations in 18 states. J. Anim. Sci. 1996, 74, 2891–2895. [Google Scholar] [CrossRef] [Green Version]
- National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Beef Cattle: Eighth Revised Edition; The National Academies Press: Washington, DC, USA, 2016. [Google Scholar]
- Kubota, J.; Allaway, W.H. Geographic distribution of trace element problems. In Micronutrients in Agriculture; Mortvedt, J.J., Lindsay, W.L., Giordano, P.M., Eds.; Soil Science Society of America: Madison, WI, USA, 1972; pp. 525–554. [Google Scholar]
- Hatler, T.B.; Hayes, S.H.; Ray, D.L.; Reames, P.S.; Silvia, W.J. Effect of subluteal concentrations of progesterone on luteinizing hormone and ovulation in lactating dairy cows. Vet. J. 2008, 177, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Pate, J.L. Isolation and culture of fully differentiated bovie luteal cells. Methods Toxicol. 1993, 3B, 360–370. [Google Scholar]
- Poole, D.H.; Ndiaya, K.; Pate, J.L. Expression and regulation of secreted phosphoprotein 1 in the bovine corpus luteum and effects on T lymphocyte chemotaxis. Reproduction 2013, 146, 527–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, L.; McDonald, C.A.; Jiang, C.; Maroni, D.; Zeleznik, A.J.; Wyatt, T.A.; Hou, X.; Davis, J.S. Convergence of 3′,5′-cyclic adenosine 5′-monophosphate/protein kinase A and glycogen synthase kinase-beta/beta-catenin signaling in corpus luteum progesterone synthesis. Endocrinology 2009, 150, 5036–5045. [Google Scholar] [CrossRef] [PubMed]
- Szóstek, A.Z.; Lukasik, K.; Majewska, M.; Bah, M.M.; Znaniecki, R.; Okuda, K.; Skarzynski, D.J. Tumor necrosis factor-α inhibits the stimulatory effect of luteinizing hormone and prostaglandin E2 on progesterone secretion by the bovine corpus luteum. Domest. Anim. Endocrinol. 2011, 40, 183–191. [Google Scholar] [CrossRef]
- Gregoraszczuk, E.; Zieba, D. Effect of estradiol-17 on basal and hCG progesterone secretion by porcine luteal in various stages of the luteal phase. Endocr. J. 1994, 41, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Chang, C.J.G.; Rikihisa, Y.; Lin, Y.C. Inhibitory effect of gossypol on human chorionic gonadotropin (hCG)-induced progesterone secretion in cultured bovine luteal cells. Life Sci. 1990, 47, 407–414. [Google Scholar] [CrossRef]
- Gregoraszczuk, E.L.; Wojtusiak, A. Evaluation of the physiological value of porcine luteal cells isolated in various stages of the luteal phase: Tissue culture approach. Cytotechnology 1992, 8, 215–217. [Google Scholar] [CrossRef]
- Pate, J.; Condon, W. Effects of prostaglandin F2a on agonist-indust progesterone production in cultured bovine luteal cells. Biol. Reprod. 1984, 31, 427–435. [Google Scholar] [CrossRef] [Green Version]
- Cannon, M.J.; Davis, J.S.; Pate, J.L. Expression of costimulatory molecules in the bovine corpus luteum. Reprod. Biol. Endocrinol. 2007, 5, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Li, Q.; Burris, W.R.; Aiken, G.E.; Bridges, P.J.; Matthews, J.C. Forms of selenium in vitamin-mineral mixes differentially affect serum prolactin concentration and hepatic glutamine synthetase of steers grazing endophyte-infected tall fescue. J. Anim. Sci. 2018, 96, 715–727. [Google Scholar] [CrossRef] [PubMed]
- Wahlen, R.; Evans, L.; Turner, J.; Hearn, R. The use of collision/reaction cell ICP-MS for the determination of elements in blood and serum samples. Spectroscopy 2005, 20, 84–89. [Google Scholar]
- Burk, R.F.; Hill, K.E. Regulation of selenium metabolism and transport. Annu. Rev. Nutr. 2015, 35, 109–134. [Google Scholar] [CrossRef]
- Mattmiller, S.A.; Carlson, B.A.; Sordillo, L.M. Regulation of inflammation by selenium and selenoproteins: Impact on eicosanoid biosynthesis. J. Nutr. Sci. 2013, 2, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Veres, Z.; Tsai, L.; Scholz, T.D.; Politino, M.; Balaban, R.S.; Stadtman, T.C. Synthesis of 5-methylaminomethyl-2-selenouridine in tRNAs: 31P NMR studies show the labile selenium donor synthesized by the selD gene product contains selenium bonded to phosphorus. Proc. Natl. Acad. Sci. USA 1992, 89, 2975–2979. [Google Scholar] [CrossRef] [Green Version]
- Glass, R.S.; Singh, W.P.; Jung, W.; Veres, Z.; Scholz, T.D.; Stadtman, T.C. Monoselenophosphate: Synthesis, characterization, and identity with the prokaryotic biological selenium donor, compound SePX. Biochemistry 1993, 32, 12555–12559. [Google Scholar] [CrossRef]
- Xu, X.M.; Carlson, B.A.; Mix, H.; Zhang, Y.; Saira, K.; Glass, R.S.; Berry, M.J.; Gladyshev, V.N.; Hatfield, D.L. Biosynthesis of Selenocysteine on Its tRNA in Eukaryotes. PLoS Biol. 2006, 5, e4. [Google Scholar] [CrossRef]
- Garrel, C.; Ceballos-Picot, I.; Germain, G.; Al-Gubory, K.H. Oxidative stress-inducible antioxidant adaptive response during prostaglandin F2alpha-induced luteal cell death in vivo. Free Radic. Res. 2007, 41, 251–259. [Google Scholar] [CrossRef]
- Kato, H.; Sugino, N.; Takiguchi, S.; Kashida, S.; Nakamura, Y. Roles of reactive oxygen species in the regulation of luteal function. Rev. Reprod. 1997, 2, 81–83. [Google Scholar] [CrossRef]
- Chen, Q.; Vazquez, E.J.; Maghaddas, S.; Hoppel, C.L.; Lesnefsky, E.J. Production of reactive oxygen species by mitochondria. J. Biol. Chem. 2003, 278, 36027–36031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, A.; Gupta, S.; Sharma, R.K. Role of oxidative stress in female reproduction. Reprod. Biol. Endocrinol. 2005, 3, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawaguchi, S.; Sakumoto, R.; Okuda, K. Induction of the expressions of antioxidant enzymes by luteinizing hormone in the bovine corpus luteum. J. Reprod. Dev. 2013, 59, 219–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riley, J.C.; Behrman, H.R. Oxygen radicals and reactive oxygen species in reproduction. Proc. Soc. Exp. Biol. Med. 1991, 189, 781–791. [Google Scholar] [CrossRef]
- Carlson, J.C.; Wu, X.M.; Sawada, M. Oxygen radicals and the control of ovarian corpus luteum function. Free Radic. Biol. Med. 1993, 14, 79–84. [Google Scholar] [CrossRef]
- Hayashi, K.; Miyamoto, A.; Konari, A.; Ohtani, M.; Fukui, Y. Effect of local interaction of reactive oxygen species with prostaglandin F2α on the release of progesterone in ovine corpora lutea in vivo. Theriogenology 2003, 59, 1335–1344. [Google Scholar] [CrossRef]
- Al-Gubory, K.H.; Fowler, P.A.; Garrel, C. The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. Int. J. Biochem. Cell Biol. 2010, 42, 1634–1650. [Google Scholar] [CrossRef]
- Sawada, M.; Carlson, J.C. Rapid plasma membrane changes in superoxide radical formation, fluidity, and phospholipase A2 activity in the corpus luteum of the rat during induction of luteolysis. Endocrinology 1991, 128, 2992–2998. [Google Scholar] [CrossRef]
- Sugino, N.; Nakamura, Y.; Takeda, O.; Ishimatsu, M.; Kato, H. Changes in activities of superoxide dismutase and lipid peroxide in corpus luteum during pregnancy in rats. J. Reprod. Fertil. 1993, 97, 347–351. [Google Scholar] [CrossRef] [Green Version]
- Vu, H.V.; Acosta, T.J. Catalase and glutathione peroxidase expression in bovine corpus luteum during the estrous cycle and their modulation by prostaglandin F2α and H2O2. Anim. Reprod. 2014, 11, 74–84. [Google Scholar]
- Vu, H.V.; Acosta, T.J.; Yoshioka, S.; Abe, H.; Okuda, K. Roles of prostaglandin F2alpha and hydrogen peroxide in the regulation of Copper/Zinc superoxide dismutase in bovine corpus luteum and luteal endothelial cells. Reprod. Biol. Endocrinol. 2012, 10, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vu, H.V.; Dam, T.V.; Acosta, T.J. Regulation of superoxide dismutase by prostaglandin F2alpha in the bovine corpus luteum. Anim. Reprod. 2013, 10, 88–98. [Google Scholar]
- Nakamura, T.; Ishigami, T.; Makino, N.; Sakamoto, K. The down-regulation of glutathione peroxidase causes bovine luteal cell apoptosis during structural luteolysis. J. Biochem. 2001, 129, 937–942. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Ran, Q.; Jang, Y.C.; Holstein, D.; Lechleiter, J.; McDonald-Marsh, T.; Musatov, A.; Song, W.; Van Remmen, H.; Richardson, A. Glutathione peroxidase 4 differentially regulates the release of apoptogenic proteins from mitochondria. Free Radic. Biol. Med. 2009, 47, 312–320. [Google Scholar] [CrossRef] [Green Version]
- Brigelius-Flohé, R.; Maiorino, M. Glutathione peroxidases. Biochim. Biophys. Acta 2013, 1830, 3289–3303. [Google Scholar] [CrossRef]
- Souto, P.L.; Carmouy, L.S.T.; Santos, C.; Martins, E.; Martins, V.; Hatamoto-Zervoudakis, L.K.; Murad, A.M.; Mehta, A.; McManus, C.; Ramos, A.F. Seasonal differences in seminal plasma proteins from two bovine breeds adapted to a subtropical climate. Trop. Anim. Health Prod. 2021, 53, 61. [Google Scholar] [CrossRef]
- Kuchenbaecker, K.B.; Ramus, S.J.; Tyrer, J.; Lee, A.; Shen, H.C.; Beesley, J.; Lawrenson, K.; McGuffog, L.; Healey, S.; Lee, J.M.; et al. Identification of six new susceptibility loci for invasive epithelial ovarian cancer. Nat. Genet. 2015, 47, 164–174. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, K.; Zhang, D.; Zhao, Z.; Huang, J.; Zhou, L.; Feng, M.; Shi, J.; Wei, H.; Li, L.; et al. GPx6 is involved in the in vitro induced capacitation and acrosome reaction in porcine sperm. Theriogenology 2020, 156, 107–115. [Google Scholar] [CrossRef]
- Dear, T.N.; Campbell, K.; Rabbitts, T.H. Molecular cloning of putative odorant-binding and odorant-metabolizing proteins. Biochemistry 1991, 30, 10376–10382. [Google Scholar] [CrossRef]
- Kryukov, G.V.; Casellano, S.; Novoselov, S.V.; Lobanov, A.V.; Zehtab, O.; Guigó, R.; Gladyshev, V.N. Characterization of mammalian selenoproteomes. Science 2003, 300, 1439–1443. [Google Scholar] [CrossRef] [Green Version]
- Burk, R.F.; Hill, K.E. Selenoprotein P- Expression, functions, and roles in mammals. Biochim. Biophys. Acta 2009, 1790, 1441–1447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hart, C.G.; Camacho, L.E.; Swanson, K.C.; Vonnahme, K.A.; Lemley, C.O. Hepatic steroid metabolizing enzyme activity during early, mid, and late bovine pregnancy. Domest. Anim. Endocrinol. 2014, 49, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Alila, H.; Dowd, J.; Corradino, R.; Harris, W.; Hansel, W. Control of progesterone production in small and large bovine luteal cells separated by flow cytometry. J. Reprod. Fertil. 1988, 82, 645–655. [Google Scholar] [CrossRef] [Green Version]
- Fitz, T.; Mayan, M.; Sawyer, H.; Gamboni, F.; Niswender, G. Characterization of two steroidogenic cell types in the ovine corpus luteum. Biol. Reprod. 1982, 27, 703–711. [Google Scholar] [CrossRef]
- Harrison, L.M.; Kenny, N.; Niswender, G.D. Progesterone production, LH receptors, and oxytocin secretion by ovine luteal cell types on day 6, 10, and 15 of the oestrous cycle and day 25 of pregnancy. J. Reprod. Fertil. 1987, 79, 539–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotwica, J.; Skarzynski, D.; Mlynarczuk, J.; Redawiecki, R. Role of prostaglandin E2 in basal and noradrenaline-induced progesterone secretion by the bovine corpus luteum. Prostaglandins Other Lipid Mediat. 2003, 70, 351–359. [Google Scholar] [CrossRef]
- Weems, Y.S.; Bridges, P.J.; Sasser, R.G.; Ching, L.; LeaMaster, B.R.; Vincent, D.L.; Weems, C.W. Effect of mifeprestone on pregnancy, pregnancy-specific protein B (PSPB), progesterone, estradiol-17B, prostaglandin F2α (PGF2α) and prostaglandin E (PGE) on ovariectomized 90-day pregnant ewes. Prostaglandins Other Lipid Mediat. 2002, 70, 195–208. [Google Scholar] [CrossRef]
- Hoyer, P.B.; Niswender, G.D. Adenosine 3’,5’-monophosphate-binding capacity in small and large ovine luteal cells. Endocrinology 1986, 119, 1822–1829. [Google Scholar] [CrossRef]
- De Rensis, F.; López-Gatius, F.; García-Ispierto, I.; Techakumpu, M. Clinical use of human chorionic gonadotropin in dairy cows: An update. Theriogenology 2010, 73, 1001–1008. [Google Scholar] [CrossRef]
- Alila, H.W.; Corradino, R.A.; Hansel, W. A comparison of the effects of cyclooxygenase prostanoids on progesterone production by small and large bovine luteal cells. Prostaglandins 1988, 36, 259–270. [Google Scholar] [CrossRef]
- Fitz, T.A.; Hoyer, P.B.; Niswender, G.D. Interactions of prostaglandins with subpopulations of ovine luteal cells. I. Stimulatory effects of prostaglandins E1, E2, and I2. Prostaglandins 1984, 28, 119–126. [Google Scholar] [CrossRef]
- Fitz, T.; Mock, E.; Mayan, M.; Niswender, G. Interactions of prostaglandins with subpopulations of ovine luteal cells. II. Inhibitory effects of PGF2α and protection by PGE2. Prostaglandins 1984, 28, 127–138. [Google Scholar] [CrossRef]
- Pratt, B.R.; Butcher, R.L.; Inskeep, E.K. Antiluteolytic effect of the conceptus and of PGE2 in ewes. J. Anim. Sci. 1977, 45, 784–791. [Google Scholar] [CrossRef] [PubMed]
- Magness, R.; Huie, J.; Hoyer, G.; Huecksteadt, T.; Reynolds, L.; Seperich, G.; Whysong, G.; Weems, C. Effect of chronic ipsilateral or contralateral intrauterine infusion of prostaglandin E2 (PGE2) on luteal function of unilaterally ovariectomized ewes. Prostaglandins Med. 1981, 6, 389–401. [Google Scholar] [CrossRef]
- Henderson, K.; Scaramuzzi, R.; Baird, D. Simultaneous infusion of prostaglandin E2 antagonizes the luteolytic action of PGF2alpha in vivo. J. Endocrinol. 1977, 72, 379–383. [Google Scholar] [CrossRef]
- Reynolds, L.P.; Stigler, J.; Hoyer, G.L.; Magness, R.R.; Huie, J.M.; Huecksteadt, T.P.; Whysong, G.L.; Behrman, H.R.; Weems, C.W. Effect of PGE1 on PGF2α-induced luteolysis in nonbred ewes. Prostaglandins 1981, 21, 957–972. [Google Scholar] [CrossRef]
- Fernandes, M.S.; Pierron, V.; Michalovich, D.; Astle, S.; Thornton, S.; Peltoketo, H.; Lam, E.W.F.; Gellersen, B.; Huhtaniemi, I.; Allen, J.; et al. Regulated expression of putative membrane progestin receptor homologues in human endometrium and gestational tissues. J. Endocrinol. 2005, 187, 89–101. [Google Scholar] [CrossRef] [Green Version]
- Gellersen, B.; Fernandes, M.S.; Brosens, J.J. Non-genomic progesterone actions in female reproduction. Hum. Reprod. Update 2009, 15, 119–138. [Google Scholar] [CrossRef] [Green Version]
- Cook, C.; Kaltenbach, C.C.; Norton, H.W.; Nalbandov, A.V. Synthesis of progesterone in vitro by porcine corpora lutea. Endocrinology 1967, 81, 573–584. [Google Scholar] [CrossRef]
- Cook, C.; Nalbandov, A.V. The effect of some pituitary hormones on progesterone synthesis in vitro by the luteinized ovary of the common opossum (Didelphis marsupialis virginiana). J. Reprod. Fertil. 1968, 15, 267–275. [Google Scholar] [CrossRef] [Green Version]
- Kaltenbach, C.C.; Graber, J.W.; Niswender, G.D.; Nalbandov, A.V. Effect of hypophysectomy on the formation and maintenance of corpora lutea in the ewe. Endocrinology 1968, 82, 753–759. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Menon, K.M.J. Characterization of low density and high density lipoprotein receptors in the rat corpus luteum and regulation by gonadotropin. J. Biol. Chem. 1983, 258, 8020–8027. [Google Scholar] [CrossRef]
- Ohashi, M.; Carr, B.; Simpson, E. Lipoprotein-binding sites in the human corpus luteum membrane fractions. Endocrinology 1982, 110, 1477–1482. [Google Scholar] [CrossRef] [PubMed]
- Pate, J.; Condon, W. Effects of serum and lipoproteins on steroidogenesis in cultured bovine luteal cells. Mol. Cell. Endocrinol. 1982, 28, 551–562. [Google Scholar] [CrossRef]
- Brown, M.S.; Goldstein, J.L. A receptor-mediated pathway for cholesterol biosynthesis (Nobel Lecture). Science 1986, 25, 583–602. [Google Scholar] [CrossRef] [Green Version]
- Grummer, R.R.; Carroll, D.J. A review of lipoprotein cholesterol metabolism: Importance to ovarian function. J. Anim. Sci. 1988, 66, 3160–3173. [Google Scholar] [CrossRef]
- Infante, R.E.; Wang, M.L.; Radhakrishnan, A.; Kwon, H.J.; Brown, M.S.; Goldstein, J.L. NPC2 facilitates bidirectional transfer of cholesterol between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes. Proc. Natl. Acad. Sci. USA 2008, 40, 15287–15292. [Google Scholar] [CrossRef] [Green Version]
- Kwon, H.J.; Abi-Mosleh, L.; Wang, M.L.; Deisenhofer, J.; Goldstein, J.L.; Brown, M.S.; Infante, R.E. Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol. Cell 2009, 137, 1213–1224. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.L.; Motamed, M.; Infante, R.E.; Abi-Mosleh, L.; Kwon, H.J.; Brown, M.S.; Goldstein, J.L. Identification of surface residues on Niemann-Pick C2 essential for hydrophobic handoff of cholesterol to NPC1 in lysosomes. Cell Metab. 2010, 12, 166–173. [Google Scholar] [CrossRef] [Green Version]
- Sleat, D.E.; Wiseman, J.A.; El-Banna, M.; Price, S.M.; Verot, L.; Shen, M.A.; Tint, G.S.; Vanier, M.T.; Walkley, S.U.; Lobel, P. Genetic evidence for nonredundant functional cooperatively between NPC1 and NPC2 in lipid transport. Proc. Natl. Acad. Sci. USA 2004, 101, 5886–5891. [Google Scholar] [CrossRef] [Green Version]
- Shen, W.J.; Azhar, S.; Kraemer, F.B. Lipid droplets and steroidogenic cells. Exp. Cell Res. 2016, 340, 209–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreri, K.; Menon, K.M.J. Characterization and isolation of a high-density-lipoprotein-binding protein from bovine corpus luteum plasma membrane. Biochem. J. 1992, 287, 841–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraemer, F.B.; Shen, W.J.; Harada, K.; Patel, S.; Osuga, J.I.; Ishibashi, S.; Azhar, S. Hormone-sensitive lipase is required for high-density lipoprotein cholesteryl ester-supported adrenal steroidogenesis. Mol. Endocrinol. 2004, 18, 549–557. [Google Scholar] [CrossRef] [Green Version]
- Cook, K.G.; Yeaman, S.J.; Stralfors, P.; Fredrikson, G.; Belfrage, P. Direct evidence that cholesterol ester hydrolase from adrenal cortex is the same enzyme as hormone-sensitive lipase from adipose tissue. Eur. J. Biochem. 1982, 125, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Yeaman, S.J. Hormone-sensitive lipase—New roles for an old enzyme. Biochemistry 2004, 379, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Cook, K.G.; Colbran, R.J.; Snee, J.; Yeaman, S.J. Cytosolic cholesterol ester hydrolase from bovine corpus luteum. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1983, 752, 46–53. [Google Scholar] [CrossRef]
- Fredrikson, G.; Strålfors, P.; Nilsson, N.O.; Belfrage, P. Hormone-sensitive lipase of rat adipose tissue. Purification and some properties. J. Biochem. 1981, 256, 6311–6320. [Google Scholar] [CrossRef]
- Fredrikson, G.; Tornqvist, H.; Belfrage, P. Hormone-sensitive lipase and monoacylglycerol lipase are both required for complete degradation of adipocyte triacylglycerol. Biochim. Biophys. Acta 1986, 876, 288–293. [Google Scholar] [CrossRef]
- Selvaraj, V.; Stocco, D.M.; Clark, B.J. Current knowledge on the acute regulation of steroidogenesis. Biol. Reprod. 2018, 99, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Stocco, D.M.; Sodeman, T.C. The 30 kDa mitochondrial proteins induced by homone stimulation in Ma-10 mouse Leydig tumor cells that are processed from larger precursors. J. Biol. Chem. 1991, 266, 19731–19738. [Google Scholar] [CrossRef]
- Lin, H.; Sugawara, T.; Strauss III, J.F.; Clark, B.J.; Stocco, D.M.; Saenger, P.; Rogol, A.; Miller, W.L. Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis. Science 1995, 267, 1828–1831. [Google Scholar] [CrossRef] [PubMed]
- Clark, B.J.; Wells, J.; King, S.R.; Stocco, D.M. The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). J. Biol. Chem. 1994, 269, 28314–28322. [Google Scholar] [CrossRef]
- Mitani, F.; Shimizu, T.; Ueno, R.; Ishimura, Y.; Izumi, S.; Komatsu, N.; Watanabe, K. Cytochrome P-450011b and P-450scc in adrenal cortex: Zonal distribution and intramitochondrial localization by the horseradish peroxidase-labeled antibody method. J. Histochem. Cytochem. 1982, 30, 1066–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanukoglu, I.; Jefcoate, C.R. Mitochondrial cytochrome P-450scc: Mechanism of electron transport by adrenodoxin. J. Biol. Chem. 1980, 255, 3057–3061. [Google Scholar] [CrossRef]
- Hanukoglu, I.; Spitsberg, V.; Bumpus, J.A.; Dus, K.M.; Jefcoate, C.R. Adrenal mitochondrial cytochrome P-450scc: Cholesterol and adrenodoxin interactions at equilibrium and during turnover. J. Biol. Chem. 1981, 256, 4321–4328. [Google Scholar] [CrossRef]
- Hanukoglu, I.; Hanukoglu, Z. Stoichiometry of mitochondrial cytochromes P-450, adrenodoxin and adrenodoxin reductase in adrenal cortex and corpus luteum: Implications for membrane organization and gene regulation. Eur. J. Biochem. 1986, 157, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Labrie, F.; Simard, J.; Luu-The, V.; Bélanger, A.; Pelletier, G. Structure, function and tissue-specific gene expression of 3B-hydroxysteroid dehydrogenase/5-ene-4-ene isomerase enzymes in classical and peripheral intracrine steroidogenic tissues. J. Steroid Biochem. Mol. 1992, 43, 805–826. [Google Scholar] [CrossRef]
- Aten, R.F.; Duarte, K.M.; Behrman, H.R. Regulation of ovarian anti-oxidant vitamins, reduced glutathione and lipid peroxidation by luteinizing hormone and prostaglandin F2α. Biol. Reprod. 1992, 46, 401–407. [Google Scholar] [CrossRef] [Green Version]
- Behrman, H.R.; Aten, R.F. Evidence that hydrogen peroxide blocks hormone-sensitive cholesterol transport into mitochondria in rat luteal cells. Endocrinology 1991, 128, 2958–2966. [Google Scholar] [CrossRef]
- Carlson, J.C.; Sawada, M.; Boone, D.L.; Stauffer, J.M. Stimulation of progesterone secretion in dispersed cells of rat corpora lutea by antioxidants. Steroids 1995, 60, 272–276. [Google Scholar] [CrossRef]
- Gatzuli, E.; Aten, R.F.; Behrman, H.R. Inhibition of gonadotropic action and progesterone synthesis by xanthine oxidase in rat luteal cells. Endocrinology 1991, 128, 2253–2258. [Google Scholar] [CrossRef] [PubMed]
- Vega, M.; Carrasco, I.; Castillo, T.; Troncoso, J.L.; Videla, L.A.; Devoto, L. Functional luteolysis in response to hydrogen peroxide in human luteal cells. J. Endocrinol. 1995, 147, 177–182. [Google Scholar] [CrossRef] [PubMed]
Gene | Gene Name | qPCR | |||
---|---|---|---|---|---|
ISe | MIX | SEM | p-Value 2 | ||
Iodothyronine deiodinases | |||||
DIO1 | Iodothyronine deiodinase 1 | 1.6668 | 1.3540 | 0.5915 | 0.89 |
DIO3 | Iodothyronine deiodinase 3 | 1.8881 | 0.7281 | 0.5667 | 0.54 |
Glutathione peroxidases | |||||
GPX2 | Glutathione peroxidase 2 | 1.1133 | 1.3412 | 0.2026 | 0.45 |
GPX4 | Glutathione peroxidase 4 | 1.0200 | 0.8963 | 0.0906 | 0.36 |
Thioredoxin reductases | |||||
TXNRD1 | Thioredoxin reductase 1 | 1.0338 | 1.2380 | 0.1528 | 0.37 |
TXNRD2 | Thioredoxin reductase 2 | 1.0034 | 1.0816 | 0.0435 | 0.24 |
TXNRD3 | Thioredoxin reductase 3 | 1.0357 | 1.2130 | 0.1613 | 0.50 |
Other selenoproteins | |||||
SELENOF | Selenoprotein F | 1.0223 | 0.8537 | 0.0983 | 0.26 |
SELENOI | Selenoprotein I | 1.0089 | 1.2904 | 0.1215 | 0.14 |
SELNOK | Selenoprotein K | 1.0143 | 1.2131 | 0.0810 | 0.12 |
SELNOM | Selenoprotein M | 4.6687 | 7.5038 | 2.9960 | 0.52 |
SELENON | Selenoprotein N | 1.0196 | 1.0072 | 0.0733 | 0.91 |
SELENOO | Selenoprotein O | 1.0234 | 1.1227 | 0.0808 | 0.33 |
SELENOS | Selenoprotein S | 1.0131 | 1.2860 | 0.1229 | 0.16 |
SELENOT | Selenoprotein T | 1.0398 | 0.9553 | 0.1090 | 0.60 |
SELENOW | Selenoprotein W | 1.0183 | 1.1465 | 0.1134 | 0.44 |
SEPHS1 | Selenophosphate synthetase 1 | 1.0655 | 1.6289 | 0.2718 | 0.18 |
SEPHS2 | Selenophosphate synthetase 2 | 1.0142 | 1.0127 | 0.0738 | 0.99 |
Selenoprotein P receptors | |||||
LRP2 | LDL receptor related protein 2 | 1.0335 | 1.2207 | 0.1478 | 0.40 |
LRP8 | LDL receptor related protein 8 | 1.0647 | 1.2923 | 0.1858 | 0.41 |
TFRC† | Transferrin receptor | 1.0104 a | 1.5173 b | 0.1116 | 0.01 |
Treatment | |||
---|---|---|---|
Variable | ISe LS Mean ± SEM | MIX LS Mean ± SEM | p-Value 2 |
Progesterone (ng/mL) Year 1 * | |||
No. of cows (n) | 9 | 9 | |
Day 6 † | 3.44 ± 0.18 a | 5.14 ± 0.60 b | 0.035 |
Year 2 ** | |||
No. of cows (n) | 12 | 12 | |
Day 4 | 1.02 ± 0.22 | 0.94 ± 0.12 | 0.740 |
Day 7 † | 2.92 ± 0.27 a | 3.91 ± 0.16 b | 0.006 |
Day 10 | 7.17 ± 0.54 | 6.36 ± 0.55 | 0.308 |
Year 3 | |||
No. of cows (n) | 5 | 5 | |
Day 5 | 0.59 ± 0.58 | 1.20 ± 0.55 | 0.456 |
Day 6 | 0.86 ± 0.55 | 1.19 ± 0.55 | 0.678 |
Day 7 | 1.87 ± 0.55 | 2.92 ± 0.55 | 0.198 |
CL weight (g) | 6.07 ± 0.82 | 6.77 ± 0.82 | 0.563 |
CL diameter (mm) | 22.3 ± 1.09 | 23.2 ± 1.09 | 0.576 |
Gene | Gene Name | qPCR | |||
---|---|---|---|---|---|
ISe | MIX | SEM | p-Value 2 | ||
Enzymatic transcripts | |||||
STAR | Steroidogenic acute regulatory protein | 1.0231 | 1.2259 | 0.1132 | 0.2410 |
CYP11A1 | Cytochrome P450, family 11, subfamily A, polypeptide 1 | 1.0068 | 0.9822 | 0.0503 | 0.7371 |
HSD3B1 | Hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1 | 1.0014 | 0.9521 | 0.0398 | 0.4069 |
PTGS2 | Prostaglandin-endoperoxide synthase 2 (COX2) | 1.0079 | 0.9396 | 0.1574 | 0.7668 |
PTGES | Prostaglandin E synthase | 1.4308 | 0.9376 | 0.3539 | 0.3533 |
Receptor transcripts | |||||
LHCGR | Luteinizing hormone (LH) G-protein coupled receptor | 1.0484 | 0.6859 | 0.1433 | 0.1112 |
PGR | Nuclear progesterone receptor | 1.0076 a | 0.8415 b | 0.0508 | 0.0495 |
PGRMC1 | Progesterone receptor membrane component 1 | 1.0355 | 0.9044 | 0.1060 | 0.4071 |
PGRMC2 | Progesterone receptor membrane component 2 | 1.0248 | 1.0553 | 0.0970 | 0.8295 |
EP1 | Prostaglandin E receptor 1 | 1.2310 | 1.4844 | 0.0721 | 0.5832 |
EP2 | Prostaglandin E receptor 2 | 1.0385 | 1.0890 | 0.1392 | 0.8041 |
EP3 | Prostaglandin E receptor 3 | 1.0286 | 0.7820 | 0.1045 | 0.1337 |
EP4 | Prostaglandin E receptor 4 | 1.0313 | 1.2515 | 0.1524 | 0.3368 |
PAQR5 | Progestin and adipoQ receptor family member 5 (mPR γ) | 1.0342 | 0.9295 | 0.1187 | 0.5502 |
PAQR7 | Progestin and adipoQ receptor family member 7 (mPR α) | 1.0165 | 0.8922 | 0.0804 | 0.3058 |
PAQR8 | Progestin and adipoQ receptor family member 8 (mPR β) | 1.0042 | 1.0206 | 0.0678 | 0.8687 |
PGTFR | Prostaglandin F receptor | 1.0493 | 0.8624 | 0.1735 | 0.4680 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carr, S.N.; Crites, B.R.; Pate, J.L.; Hughes, C.H.K.; Matthews, J.C.; Bridges, P.J. Form of Supplemental Selenium Affects the Expression of mRNA Transcripts Encoding Selenoproteins, and Proteins Regulating Cholesterol Uptake, in the Corpus Luteum of Grazing Beef Cows. Animals 2022, 12, 313. https://doi.org/10.3390/ani12030313
Carr SN, Crites BR, Pate JL, Hughes CHK, Matthews JC, Bridges PJ. Form of Supplemental Selenium Affects the Expression of mRNA Transcripts Encoding Selenoproteins, and Proteins Regulating Cholesterol Uptake, in the Corpus Luteum of Grazing Beef Cows. Animals. 2022; 12(3):313. https://doi.org/10.3390/ani12030313
Chicago/Turabian StyleCarr, Sarah N., Benjamin R. Crites, Joy L. Pate, Camilla H. K. Hughes, James C. Matthews, and Phillip J. Bridges. 2022. "Form of Supplemental Selenium Affects the Expression of mRNA Transcripts Encoding Selenoproteins, and Proteins Regulating Cholesterol Uptake, in the Corpus Luteum of Grazing Beef Cows" Animals 12, no. 3: 313. https://doi.org/10.3390/ani12030313